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ABSTRACT 

A problem of feedback stabilization is addressed for a class of uncertain 
nonlinear mechanical systems with n degrees of freedom and nc < n control 
inputs. Each system of the class has the structure of two coupled subsystems 
with nc and nr  degrees of freedom, respectively, a prototype being an uncertain 
base isolated building structure with n degrees of freedom actively controlled via 
actuators applying forces to specific degrees of freedom of the base movement, 
nc < n in number. A nonlinear adaptive feedback strategy is described, which, 
under appropriate assumptions on the system uncertainties, guarantees a form 
of practical stability of the zero state. Numerical simulations are also presented 
to illustrate the application of the control strategy to a base isolated building. 
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1. INTRODUCTION 

The problem of actively controlling structures has been extensively 
studied in the last two decades. Whilst in many cases controllers have 
been designed under the assumption of having a perfectly known structural 
model, there has also been considerable interest in questions of robustness. 
Among the approaches proposed in the literature for the control of uncer- 
tain systems, there is one in which the systems are described by differential 
equations, the uncertainties are modeled deterministically, and Lyapunov 
techniques are used constructively to design feedback controllers to render 
the system "practically stable" (see [1] for an overview and extensive biblio- 
graphy). This approach has been adopted for active control of structures 
in previous work [2-4]. 

Although much of the literature has dealt with fixed-parameter con- 
trollers, the design of adaptive control laws has also been considered [5, 6]. 
In this context, the word adaptive means that  the control law is param- 
eterized by a variable gain whose value is autotuned according to some 
appropriately designed law. The present paper essentially falls into this 
category and focuses on the construction of adaptive controllers for a class 
of uncertain nonlinear coupled mechanical systems that  can be decomposed 
into two subsystems with feedback control acting on one of them. Although 
the control law is developed in the context of this general class of systems, 
the problem of actively controlling a base-isolated building structure is our 
prototype. 

2. THE CLASS OF SYSTEMS 

We consider a class of uncertain mechanical systems E with n degrees 
of freedom and nc < n control inputs. Each system of the class has the 
structure of two coupled subsystems, Ec and Er, with nc and nr degrees of 
freedom, respectively, n = nc + nr, and described by equations of motion 
of the following form: 

E~: M~(q~(t))~(t) + g~(q~(t), (t~(t)) = h(qc(t), 4c(t)), 

q (to)) = (qO, 

E~: M~(q~(t))~c(t) + go(t, qr(t), qr(t), q~(t), O~(t)) = u(t), 
o o (q~(to), ~¢(to)) = (qc, v~). 

(1) 

Here, qr(t) E R n',qc(t) E ~nc are vectors of generalized coordinates and 
u(t) C ]~nc is the vector of control forces; the matrix-valued functions Mr 
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and Me represent inertias, and the (nonlinear) functions gr, h, gc model 
damping, stiffness, coupling, and Coriolis effects, as well as extraneous 
inputs and disturbances acting on the overall system. 

Assumptions I to 6 below complete the description of the system class Z. 

ASSUMPTION A1. The function Mr is continuous with uniformly 
bounded inverse, that is, for some (unknown) positive scalar rh, IiM~-l(qr)]] 
< ~ for all qr E R "~" . 

ASSUMPTION A2. The function M~ is continuous and such that, for 
some (unknown) positive scalars ~ ,  m and known continuous function #, 
the foUowing hold for allq~ E Rue: (i)I{M~-l(q~)I] <_ rh#(q~), and (i i)M/l(qc) 
> m I  (in the sense that (v,M~-l(q~)v) > miivil ~ for all v E<_ prnc). 

ASSUMPTION A3. The function gr is continuous. 

ASSUMPTION A4. The function h is continuous, with h(O,O) = O. 

ASSUMPTION A5. With h =- 0, the subsystem Er is quadratically asym- 
ptotically stable in the sense that there exists an (unknown) positive definite 
quadratic form Vr on R n" such that, for some (unknown) positive scalar c 

dv~ r(qr(t), qr(t)) _~ -cVr(qr(t),  qr(t)) 

for almost all t on every solution (qr,0r)('). 

ASSUMPTION A6. The function gc is of Carathdodory class and such 
that, for some known continuous function % the following holds for some 
(unknown) scalar c~: 

IIg~(t, qr, vr,q~,v~){I ~ C~7(qr,vr,qc,vc) 

for almost all t E R and all (qr, vr, qc, vc) E R 2~. 

Thus, the only a priori system information available to the controller is 
the pair of continuous functions ~ and #: in particular, we stress that  the 
uncertainty bounding parameters rh, m, rh, and c~ are unknown. 

The question to be addressed can be posed as follows: Does there ex- 
ist an adaptive feedback strategy, parameterized by )~ > 0, which, for 
every system (unknown to the controller) of class E, every solution of the 
feedback-controlled initial-value problem (1) is asymptotic to a ball centred 
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at zero in IR '~ of radius p(,k), where p(A) --~ 0 as )~ --* 0? In Section 3, we 
answer this question affirmatively by explicit construction of one such feed- 
back strategy. 

2.1. Example: Active control of base-isolated structures 

In the field of civil engineering structures there exists a great interest 
in reducing the structural response produced by seismic ground motions. 
In recent years, as one of the possibilities to achieve this objective, hybrid 
control systems have been proposed which combine base isolators with 
active control systems. 

Base isolators at tempt to uncouple the structure from the seismic ground 
motion by means of replaceable devices, placed between the building and 
the foundation, capable of absorbing part of the energy induced by earth- 
quakes [7]. The base isolation component can reduce by itself both the 
interstory drift and the absolute accelerations of the structure. Thus the 
structure tends to behave like a rigid body, the price paid being a signif- 
icant displacement of the base. Another drawback of such systems is the 
dependence of their effectiveness on the frequency of the excitation. More- 
over, they cannot be applied in the case of tall or heavy structures due 
to the size of the dynamic forces involved and to the risk of endangering 
the global stability of the structure. The objective of the active control 
component is to reduce the base displacement by means of forces applied 
on the base. From a practical point of view, this hybrid scheme is appeal- 
ing since it is possible to achieve the afore-mentioned objective by means 
of a single force which, moreover, does not exceed some acceptable lim- 
its due to the high flexibility of the base isolators. Moreover, the active 
control action essentially does not depend on the frequency content of the 
dynamic excitation. From a theoretical point of view, the development 
of a control law to calculate the active force involves difficulties associated 
with the nonlinear behavior of the base isolators and to the uncertainties in 
the models describing the structure-base isolator system and in the seismic 
excitation. 

A robust control law for linear systems has been proposed in a previ- 
ous work [2]. Also for linear systems, the application of predictive control 
has been considered [8] as well as a form of bang-bang control [9]. The 
nonlinearity of the isolators has been considered in [10], .assuming no un- 
certainties in the structure-base model. Some experimental works with 
small-scale hybrid systems have been recently reported [11, 12]. 

The hybrid control problem we are dealing with can be cast within the 
framework of the class of systems defined by (1). In the remaining of this 
section the equations of motion governing this problem will be presented. 
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The dynamic behavior of the structure with the hybrid control system 
can be described by means of a model composed of two coupled systems: 
Er (the building) and Ec (the base). It is assumed that  the structure has 
a linear behavior due to the effect of the base isolation. The behavior of 
the isolator may be nonlinear. The vector qr represents the horizontal dis- 
placements of the n degrees of freedom respect to an inertial frame, while 
the displacement of the structural base is described by a single degree of 
freedom with horizontal displacement qc relative to the afore-mentioned 
frame. The dynamic excitation is produced by a horizontal seismic ground 
motion, characterized by a displacement d(t) and its velocity v(t).  A sin- 
gle horizontal control force u(t) acts upon the structural base. Thus, the 
equations of motion are 

E~: M ~  + C(t~ + Kqr = CJqc + KJqc  
E~: m b ~  + [Cb + JTcJ]( tc  + [kb + JTKJ]q~ (2) 

- J T C ( t r  - J T K q r  -- CbV -- kbd + f(q~, q~, d, v) = u, 

where M, C, and K are the mass, damping, and stiffness matrices of the 
structure, respectively. The vector J expresses the rigid body motion ac- 
cording to the degrees of freedom of the model (in this case it is an unit 
vector), rob, Cb, and kb are the mass, damping, and stiffness of the base. 
The last two parameters correspond to the elastic and damping forces which 
appear on the base due to the linear effects of the isolator; f is an addi- 
tional horizontal force produced on the structural base by nonlinearities in 
the isolator. 

Assumptions A1-A5 hold as M is invertible, mb > 0 and C and K are 
positive definite. Assumption A6 holds under the following conditions: 

IlCbV(t) + kbd(t)l I < t/ (3) 

[If(q¢,o~,d,v)ll < a'~/'(q~,4c) (4) 

for almost all t and all (q~, q~) c R 2, v and a~ being unknown scalars and 
V ~ a known continuous function. 

3. THE ADAPTIVE STRATEGY 

Throughout  this section, we assume A > 0. We first introduce some 
notation. Let d~ denote the function defined (on R '~c, R n~, R 2'~°, or ]R 2n~ 
as context dictates) by 

Ilvll -,~, Ilvll ~ 
d ~ : v ~  O, IIv[l<~, 
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Let s~ denote the function defined on N nc by 

IIVlI-Iv, dA(v ) > 0 
s ~ : v ~  ,~_%, d~(v)=O. 

The proposed adaptive strategy, parameterized by .~ > 0, is given by 

u(t)  = - k (  t)U~ (qr(t),  Or( t), qc(t) ,pc(t)  ) 
pc(t)  = Oc(t) + ~qc(t) 

J~(t) = K~(qr( t ) ,  Or(t), qc(t), pc(t)) (5) 

k(to) = k °, 

where r 1 > 0 (a design parameter) is open to choice, and the functions U), 
and K~ are defined as follows: 

u~ : (qr, vr, q~, pc) ~ pc + ~.(qr ,  vr, qc,p~)s~(pc) 
K~ : (qr ,vr ,Pc)  ~-* d~(Pc)[llPcll + ~/.(qr,vr,qc,Pc)] (6) 

~ :  (qr ,vr ,qc ,Pc)  ~-* #(qc)~'(qr,vr,qc,Pc -- rlqc). 

3.1. Stabili ty analysis 

The overall controlled system representation on R N, N -- 2(nr + no) ÷ 1 
now becomes 

i r ( q r ( t ) ) ~ r ( t )  + gr(qr(t) ,  Or(t)) = h(qc( t ) ,pc( t )  - r/qc(t)) 
Oc(t) = -~/qc(t) + pc(t) 
Pc(t) = P).(t, qr(t),  Or(t), qc(t), pc(t),  k(t))  (7) 
k(t)  = K~(qr( t)Or(t) ,  qc(t) ,pc(t))  
(qr( to), Or(to), qc(to), pc(to), ke(to) ) = (q°r, v°r, q° c , p°c, k °) =: x ° E 1R N, 

where the function Px is given by 

P~(t, qr, Vr, qc, Pc, k) : =  ~ P c  - -  u 2 q c  - -  M j  l(qc) 

x [gc(t, qr ,vr ,qc ,pc  -- rlqc) + kU~(qr ,vr ,  qc,pc)]. 

Equivalently, writing x( t )  = (qr(t), qr(E), qc(t), pc(t), k(t)) ,  

k ( t )  = Fx( t ,  x ( t ) ) ,  x( to)  = x °, (8) 

where 

F~: x = (qr, vr, qc, Pc, k) ~-* (vr, M~- l[h(qc, Pc - ~lqc) - gr (qr, vr)], 

- ~qc + Pc, Px(t, x),  K~(x ) ) .  



Control of Coupled Mechanical Systems 305 

This  sys tem satisfies the  classical Cara th~odory  conditions and so, for every 
(to, x °) E N x R N, the  above initial-value problem has a solution and every 
solut ion can be extended into a maximal  solution. 

On [0, c~), define 

h: A ~-* sup{Iih(qc,pc - r~qc)Ii I d~(qc) = 0 = d~(pc)}, 

which, by vi r tue  of Assumption A4, is continuous with h(A) ---, 0 as A --* 0. 

THEOREM 1. Let A > 0 and (to, x °) E R x R g .  For every maximal  
solution x(.)  = (qr, Or, qe, Pc, k)(.): [to, w) -+ ~ N  of the initial-value problem 
(7) (equivalently (8)), 

( i )  ~ = ~ ;  
(ii) limt--.~ k(t)  exists and is finite; 

(iii) d~n_l(qc(t))  and d~(pc(t)) --* 0 as t --* oc; 
(iv) for  some positive scalar c, d&(~)(qr(t),  qr(t)) ~ 0 as t --* oo. 

PROOF. Let  V denote  the  C 1 function 

V: Pc 1 d 2 (pc ~ 

Then,  for almost  all t E N and all x = (qr, vr, qc,Pc, k) E R N, we have 

(VY(pc),  Pa(t,  x)} _< da(pc)[,2[[qd[ + (arh - m k ) % ( q r ,  Vr, qc,Pc) 

+ (~ - mk)t lpcl[ ] .  

Defining k* := _m- 1 ( .  + ccr~), it follows tha t  

d v(pc( t )  ) <_ - m ( k ( t )  - k*)k(t) + .2dx(pc(t) )llqc(t)[[ 

for almost  all t E [t0,w). Integrat ion now yields, with co := V(p°c) + 
½ m ( k o  - 

0 < V(p~(t))  < Co - ½m(k(t)  - k*) 2 + ,2 ftto d~(pc(s))ilqc(s)Hds, 

which is valid for all t c [t0,w). • 

We briefly digress to  prove a technicality. 
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PROPOSITION. For some positive scalar el, 

d~(pc(s))llqc(s)llds <_ cl [d~(pc(S)) + d~(pc(s))]ds 
) 

for all t E [to, w). 

PROOF. First observe that  

I]qc(s)]l _< IIq~°ll+ e-~(s-~)[lp=(o)lld~ 
J t o  

< Hq°]] + e-V(s-~)[d~(pc(a) + Alda 

f; -< IIq~ll + ~ + e-V(~-°)d~(pc(a)) da" 

Therefore, 

~t( t _< (][qO][ + A) d~(pc(s))ds 
) 

S: + d,x(pc(s)) e-~(s-~)d.~(pc(~))da ds. 

Applying H61der's inequality to the second term on the right, 

~td~(pc(S)) ~ e-~(s-G)d~(pc(a))da ds <- ( ~i  d2(pc(s))ds) 

x e -2"s e'~da(pc(a))da ds 
) k d t o  / / 

Integrating by parts in the last term on the right 

I e-2ns en~d~(pc(a))da ds < d~(pc(s)) 
J t o  \ J t o  } 

fo × e-v(s-°)d~(pc(a))da ds. 

We may now conclude that  

d;~(pc(s)) e-n(s-a)d;~(pc(a))da ds < d2~(pc(s))ds, 
) 

whence the claim. • 



Control of Coupled Mechanical Systems 307 

Re tu rn ing  to  the  proof  of the  theorem,  we now have 

0 <_ Y(pc( t ) )  <_ Co - l m ( k ( t )  - k*) 2 + el(1 + A-1)(k( t )  - k °) 

for all t E [to, w). Therefore ,  we see t h a t  the  mono tone  increasing funct ion 
k(.) is bounded.  This,  in turn ,  implies boundedness  of V(pe(')) and so pc(') 
is bounded.  I t  immedia te ly  follows t h a t  qc(') is bounded.  By  assumpt ions  
A4 and A5, we see t h a t  (qr, Or)(') is bounded.  We have now shown tha t  
the  solut ion x(.)  is bounded  and so w = oo. Asser t ion (ii) of  the  t heo rem 
is now a consequence of boundedness  and monotonic i ty  of k(.). 

To prove asser t ion (iii), we argue as follows. Observe  t ha t  

d~(pc(t))i[qc(t)[[ <_ d~(pc(t))A-t]{pc(t))l[ [qc(t)][ <_ A-11[qc(t)l[]~(t) 

and so, by boundedness  of q~(.), there  exists posit ive scalar c2 such t h a t  

rl2d.x(pc(t))llqc(t)ll <_ c2k(t) 

for a lmos t  all t >_ to. Wri t ing c3 := re(k* - k °) + c2, we conclude t h a t  

d v ( p c ( t ) )  <_ - k ( t )  + (c3 + 1)]~(t) 

for a lmos t  all t _> to. Therefore  the  funct ion 

W: (Pc, k) ~-* V(pc) - (1 + ca)k 

is such t h a t  

d w(pc( t ) ,  k(t)) < <_ - d ~  (pc(t))]lPc(t)]l (9) 

for a lmost  all t > to. Boundedness  of the solution x(.)  ensures t ha t  it has 
n o n e m p t y  w-limit  set  f~. Since the  solution approaches  its w-limit  set, we 
first prove t h a t  

d~(pc(t)) ~ 0 as t ~ cx~ 

by showing t h a t  d~(pc) = 0 for all 5: = (~r,~r,cic,Pc, k) E ~.  Suppose  
otherwise.  T h e n  there  exists • = (~r, Vr, q c , ~ ,  k) E ~t and e > 0 such t h a t  
d~(Pc)lLPcli > 2e. By  continuity,  there  exists 5 > 0 such t ha t  

- Poll < d ( )ll ll > 

Since 2 is an w-limit  point ,  there  exists a sequence (ty) wi th  t j  --* c~ and 

x ( t j )  = (qr(tj),  4r(tj) ,  qc(t j) ,pc(t j) ,  k( t j))  --~ 5c 
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as j --+ co. By Assumptions A1-A6, it is readily verified that  there exist 
> 0 and R > 0 such that  

II~-  ~ll < $ ~ IIF~(t,~)ll < R. (10) 

We may assume 5 < 6. By continuity of W, 

d 
W(pc(t j ) ,  k(t j))  - W(/~c, k) < 4---R (11) 

for all j sufficiently large. Let j* be such that  

IIx(tj)-  ~11 < ½~ Vj > j*. 

By (7) and (9), it follows that  

Ilpc(t3) -Poll < ~ vt E [tj , t j  + ($/(3R))1, 

which holds for all j > j*. Therefore, using (8), we have for all j > j* 

[ tj+(6/3R) £~ 
W(pc( t j ) ,  k(t j))  - W(~c,  k) >_ d~(pc(t))llpc(t)lldt > -~-R, 

dtj 

which contradicts (11). Therefore, d~(pc(t)) --* 0 as t --* co. 
Since Oc(t) = -rlqc(t) + pc(t), we also have d~n-~ (qc(t)) ~ 0 as t ~ ~ .  

This establishes assertion (iii). 
Finally, assertion (iv) is a direct consequence of Assumptions A4 and A5. 

REMARKS. By the above theorem, we see that  the proposed adaptive 
feedback strategy ensures a form of practical stability for the system class 
E. In essence, for any prescribed A > 0, the subsystem state (qc(t),pc(t)) is 
asymptotic to that  ball (centered at zero in R 2no) of radius A~/1 + 77-1, the 
remaining subsystem state (qr(t),(lr(t)) is asymptotic to a ball (centered 
at zero in N 2~)  of radius cA; however, the scale factor c > 0 depends on 
the unknown function h and so is not computable from a priori system 
information. 

4. ILLUSTRATIVE EXAMPLE 

Consider a 10-story base isolated shear building as shown in Figure 1 
and described by (2).The masses of the base and of each floor of the 
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FIG. 1. Bui ld ing  s t r u c t u r e  wi th  a hybr id  control  sys tem.  PC:  base  isolator; AC 
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FIG. 3. Displacement of the 10th floor relative to the base for passive and hybrid 
c a s e s .  

building are 6 x 105 Kg. The stiffness of the base is kb = 7 x 10 s N / m  and 
its damping ratio is 0.1. The stiffness of the building varies in 5 x 107 N / m  
between floors, from 9 x l0 s N / m  the first one to 4.5 x l0 s N / m  the top one, 
while the damping ratio is 0.05. The nonlinear force f produced by the 
base isolation device on the base has elastoplastic hysteretic characteristics. 
The purpose of this example is to show the effectiveness of the control law 
(5) and (6) when applied to the above described structural  system. To do 
this, the first step is to identify the function 3', appearing in (6). In this 
case, #(q~) = 1. To obtain the function 7, according to Assumption A6, we 
first need to identify function gc for the case of equations (2). Comparing 
subsystems Nc in (1) and (2), it is observed tha t  

gc(t, q~(t), it~(t), qc(t), qc(t) ) [Cb + JT c j]oc + [kb + j T  K J]qc 

-- JT COr - JT  Kqr - -  C b V  - -  kbd 

+ f(qc,gtc, d,v). (12) 
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FIG. 4. Active control force. 

According to the elastoplastic behavior considered for the isolator, the non- 
linear force f remains always bounded since it is limited by the yielding 
force. Thus, condition (4) reduces to 

Hf(qc,qc, d,v)l I < ~, (13) 

being an unknown scalar. Using now inequalities (3) and (13) in (12), it 
can be readily written 

[[gc(t, qr,(tr, qc,(tc)[[ ~- ev(qr,(tr,qc,(tc), (14) 

where e is an unknown scalar and 

~(qr, qr, qc, qc) = [q~ +q~ +q~l +' '"  + q,~o +q~l +' '"  +q~o +1]  1/2. (15) 

Using this function, the control law (5) and (6) is now applied to compute 
the active control u for all t ime t. 
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d i sp lacement  of the  10th floor re la t ive  to  the  base. 

The application of the control law has been numerically simulated and 
some of the results a r e  included in this section. In all the tests, pa- 
rameter  ~/ has been chosen equal to 1. Figures 2 and 3 show the t ime 
histories of the absolute displacement and the displacement of the 10th 
floor of the structure relative to the base. The seismic excitation has 
been tha t  of the E1 Centro (1940) earthquake. In both figures the re- 
sponses for the passive and hybrid cases are compared. I t  can be ob- 
served tha t  for the hybrid case the displacement response rapidly enters 
within a bounded region around zero: This shows a behavior as expected 
from the stability analysis performed in previous Section 3.1. The cor- 
responding control force, plotted in Figure 4, remains within an accept- 
able range. A is the most significant parameter  in the implementation of 
this control law since it defines the size of the stability region. In or- 
der to assess the influence of this parameter  in the effectiveness of the 
control law, Figure 5 displays the maximum values of the absolute base 
displacement and the displacement of the 10th floor relative to the base as 
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FIG. 6. Variation with A of the maximum active control force. 

a funct ion of  A. It can be observed that  the smaller the value of  A is, the 
smal ler  the  control led d i sp lacements  that  are obtained since it impl ies  a 
more  demanding  control  object ive .  This  behavior is also apparent in Fig- 
ure 6, where  the  m a x i m u m  value of  the control  force is p lot ted against A. 
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