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Abstract

The domain decomposition (D) method we present in this work aims at solving incompressible
ows around objects in relative motion. The DD algorithin is hased on a Dirichlet/ Neumann{Robin)
coupling applied to overlapping subdomaing. Henee, it 18 an extension of the clasgical Divich-
let /Nenmann{Robin) method which uses disjoint subdomains. Aectually, the field of application
of this work is wider as it proposes to set up a possible theoretical framework for studying
the overlapping extensions of classical mixed methods: the Dirichlet/Robin, Diriehlet/Neumann,
Huhln/Nmnnmm anil Hnlai:l}ﬁ.u]}hl DI ulﬂf.lmcl.ﬂ.

Wa obgerve that mixed DI methods inhevit gome properties of the Schware method while they
keep the behavior of the elassical mixed DD methods when the overlap tends to zero. As a main
result, we show that the overlap makes the proposed methods more robust than disjoint. mixed DD
methods.

The DD method we projpose is !.'I't.‘.'l.'hltli'l-l‘it'. and h];{t‘:l‘lt.hll’lk!. It ia gt':utm'.ia‘h! becaiae the partition
of the eomputational domain is performed before the meshing, and in aceordance to the DD
coupling. It is also algorithmic beeause the solution on each subdomain is obtained on separate
processes and the exchange of information between the subdomains is carried out by a Master
code. This strategy 18 very Hexible as it requires almost no modification to the original numerical
code. Therefore, only the Master code has to be adapted to the numerical codes and strategies
used on each subdomain,

Wer present a detailed deseription of the implementation of the DD methods in the numerical
framework of finite elements, We present interpolation techniques for Divichlet and Newmann data
ag well as conservation algorithms. Onee the domain decomposition coupling and interpalation
technigques ave defined, we set up a Chimera method for the solution of the How over objets
in relative movements, Tensorial transtormations are introduced to be able to express vaviables
measures in one subdomain,

Finally, the DD algovithi g applied to an implicit fiite element code for the solution of the
Navier-Stokes equations and algo of the Reynolds Averapged Navier-Stokes equations together with
a one-equation turbulence model.






Resumen

El miétodo de descomposicidn de dominios (DD) que se propone en esta tesis pretende resolver
flujos incompresibles alrededor de objetos en movimiento relativo, El algoritmo de DD esti basado
ot un acoplamiento del tipo Dirichlet/Neumann(Robin) aplicado a subdominios con solapamiento,
y es, por tanto, una extensién del método Dirichlet/Neumann{Rebin) eldsico con subdominios
disjuntos. En realidad, ¢l campo de aplicacion de este estudio es mucho mas amplio puessto que
en ol g propone un posible marco tedrico para abordar la extension a subdominios solapados de
log métodos mixtos clisicos: métodos Dirichlet/Robin, Dirichlet/Neumann, Robin/Neumann y
Robin/Robin,

Se observa que los métodos mixtos propuestos heredan propiedades del método de Schwarz v
al mismo tiempo conservan el comportamiento de sus equivalentes sin solapamiento cuando este
tiende a cero. Se muestra como resultado prineipal que el solapamiento hace estos métodos mas
robustos que los métodos sin solapamiento.

Bl método de DD que se estudia es geométrico y algoritmico. Es geométrico en el sentido de que
la particion del dominio computacional se lleva a eabo antes del proceso de mallado y de acuerdo
con el acoplamiento de DD que se prevé usar. Es también algorftmico porque la solucidn en cada
subdominio se obtiene en procesos diferentes y el intereambio de informacidn entre subdominios s
vealiza mediante un codigo macstro. Tal estrategia es muy flexible puedto que requiere muy pocas
modificaciones del eddigo numérico original, Por consiguiente, 8élo al codigo maestro necesita ser
adaptado a los cddigos y estrategias numéricos utilizados en eada subdominio.

Se presenta una deseripeion detallada de la implementacién del método de DD propuesto en el
contexto numérico de los elementos finitos. Presentamos téenicas de interpolacidn para los datos de
tipo Diriehlet y Neumann y desarrollamos algoritmos de conservacion. Una vez el acoplamiento de
DD v las interpolaciones definidos, presentamos un método del tipo Chimera para la resolucion de
Hujos alrededor de objetos en movimiento,. En particular, definimos transformaciones tensoriales
para transformar variables de un subdominio a otro.

Finalmente, el algoritmo de DD se aplica a un cddigo implicito para la vesolucion de las ecua-
clones de Navier-Stokes incompresibles y también a las ecuaciones de Navier-Stokes promedindas
con un modelo de turbulencia de una ecuacion,
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Introduction

The domain decompoesition (DD) method we present in this work aims at solving incompressible
flows around objects in relative motion. The DD algorithm is based on a Divichlet /Neumann(Raobin)
coupling applied to overlapping subdomains, Hence, it is an extension of the classical Dirich-
let/Neumann(Robin) method which uses disjoint subdomains.  Actually, the field of application
of this work is wider as it proposes to set up a posgible theoretical framework for studying
the overlapping extensions of classical mixed methods: the Dirichlet/Robin, Dirichlet/Neumann,
Robin/Neumann and Robin/Robin DD methods. As the proposed method are applied to over-
lapping subdomains, we expeet them to inherit some properties of the Schwarz method and to
conserve the behavior of the classical mixed DD methods when the overlap tends to zero. As noted
hy Lions |l]:

[ ... ] the Schwarz algorithm | ... | presenls some properties (like “robustness”, or
indifference to the type of equations considered...) which do not seem Lo be enjoyed by
ather methods,

As a main result, we show in fact that the overlap makes the proposed methods more robust than
di:-;jnini. mixed DD methods,

The DD method we propose is geometric and algorithmie, It is geometrie because the partition
of the computational domain is performed before the meshing, and in accordance to the DD
coupling. 1t is also algorithmic because the solution on each subdomain is obtained on separate
processes and the exchange of information between the subdomains is carvied out by a Master code.
This strategy is very floxible ag it requires almest no modifieation to the original numerical code.
Therefore, only the Master eode has to be adapted to the numerical codes and strategies used on
each subdomain, Although the algorithm can be easily parallelized, this is not the objective of this
work and we will only mention the possibility of using a multicoloring technique to parallelize the
computation.

We present, a detailed deseription of the implementation of the DD methods in the numerical
framework of finite elements, We present interpolation technigues for Divichlet and Neumann data
as well ag conservation algorithms. Once the domain decomposition coupling and interpolation
techniques are defined, we set up a Chimera method for the solution of the How over objets
in relative movements. Tensorial transformations are introduced to be able to express variables
measured in one subdomain in any other one.

Finally, the DD algorithm is going to be applied to an implicit fnite element code for the so-
lution of the Navier-Stokes equations and also of the Reynolds Averaged Navier-Stokes equations
together with a onesequation turbulence model.

The monograph is organized as follows. Chapter 1 presents a finite element method to moclel
advection-diffusion-reaction problems, as well as laminar and turbulent fows. The classical advection-
diffusion-reaction (ADR) equation is congidered as a model problem to introduce the finite element
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formulation, This includes a brief deseription of the physical meaning of the ADR equation, an
introduction to the theoretical context of the variational formulation, a review of the stabilization
methods developed in the literature, and the presentation of & variational subgrid seale method ns
a stabilization technique, Next, all the coneepts introduced in the study of the ADR equation ave
reneralized to the Navier-Stokes equations. Then we introduce a one-equation turbulence model,
namely the Spalart-Allmaras model, in an original form, and apply the numerical strategy devel-
oped for the general ADR equation. Finally, we study and validate the whole numerical model
through the solution of three numerical examples.

Chapter 2 is a brief introduction to domain decomposition methods. We start. by studying a
one-dimensional example in a more intuitive than vigorous manner. Although very simple, this ex.
ample is sufficient to present all the families of domain decomposition methods we will deal with. In
particular, we contemplate the possibility of using mixed DD methods on non-overlapping as well
as on overlapping subdomaing. Then, we consider the more general advection-diffusion-reaction
cquation, and deseribe all the possible improvements that can be achieved to the classieal DD
methods, In partienlar, we will mention the adaptive methods, At this point, we will have intro-
duced the necossary terminology to proceed with the vavintional approach. The weak formulation
of the damain decomposed problem will enable to justify the cholee of transmission conditions,
involving the essential and natural conditions. Then we discuss some ways of applications to the
finite element method and finally present the proposal of this work,

Chapter 3 proposges to apply some ideas developed in the preceding chapter to the solution of a
one-dimensional problem. In particular, we consider the overlapping extensions of two families of
digjoint DD methods, namely the Divichlet/Neumann and Dirichlet /Robin methods. The results
obtained with these methods are systemationlly compared to those ol their non-overlapping conn-
terparts and those of the Schwarz method. We study in detail the convergence of the unrelaxed
gocuential algorithm and its dependence upon the overlapping length,  Apart from the general
ADR equation, we stucly three limiting behaviors of the equation, i.c. the Polsson equation, the
advection-diffusion equation, and the hyperbolic limit, We also study the relaxed sequential vor
sions, as well ag the unrelaxed and relaxed parallel methods. This one-dimensional example enables
s to foresee the improvements in convergence and stability of the solution obtained by using mixed
DD methods with overlapping subdomains.

[n Chapter 4, we go on to the multi-dimensional ADR equation and study overlapping mixed
methods within a variational framework. This chapter constitutes therefore a theoretical basis for
the study of overlapping mixed methods. The model domain decomposition method is based on an
overlapping Divichlet/Robin coupling. The starting point is a two-domain variational formulation
of the problem, orlginating from a geometrical decomposition of the original domain of study, We
ghow how the formulation can be reformulated into an overlapping domain decomposition method
baged on a Dirichlet /Robin coupling. Next, the domain decomposition method for the subdomains
is ve-written in terms of a problem for the interface unknowns, An iterative and velaxed sequential
seheme is then introduced in order to solve the DD |p;'uhlt:!r||. The convergence is stucied through
the interface equations. We present the generalization of the overlapping DI} method introduced
ta other types of overlapping mixed conplings, in particular to an overlapping Dirichlet/Neumann
method. Afterwards, wo consider the diserete counterpart of the formulation. We then build an
iterative strategy to solve the two-domain problem. This strategy is studied algebraically, using
a finite element method and solving for the Schur complement system, and is illustrated by four
nimerical examples, Finally, we introduee the extension of the overlapping Dirichlet /Neumann
imethod to the Stokes and Navier-Stokes equations.

In Chapter 5 we derive a possible finite element implementation of two overlapping domain
decomposition methods, the classical Schwarz method and an overlapping Dirichlet/Neumann
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method, with particular attention on the latter. We first identify the transmission conditions
from the alternative formulations of the DD derived in the preceding chapter. Then we set an
iteration-hy-subdomain method applied to the solution of the ADR and Navier-Stokes bhased on a
Maater /Slave strategy. We briefly describe an element search algorithm, which consists in looking
for the host eloments (in the underlying mesh) of the nodes involved in the iterative process, At
this stage we are ready to interpolate the trangmission conditions, We present the interpolation
of the Divichlet data and two interpolation schemes for the Nenmann (or Robin) data. We then
explain the need for using a conservative interpolation and present two algorithms: an interface
constraining and a conservative interpolator. In order to be able to treat complex geometries, we
introduce a Chimera method, using all the ingredients presented previously, Finally, the domain
decomposition method i applied to moving subdomains by the way of tensorial transformations
and appropriate time integration,

The last chapter presents five examples of application of the Dirichlet /Nenmann method, They
aim at showing the robustness of the algorithin for solving stationary and transient flows in laminar

or turbulent state,






Chapter 1

A Finite Element Method for
Incompressible Flows

This chapter presents the finite element method used in this work to model advection-diffusion-
reaction problems, as well as laminar and turbulent flows, In the first section, the classical
advection-diffusion-reaction (ADR) equation is considered ag a model problem to introduce the
finite element forinulation. This includes a brief deseription of the physical meaning of the ADR
sqguation, an introduction to the theoretical context of the variational formulation, a review of the
atabilization methods developed in the literature, and the presentation of a variational subgrid
seale method as a stabilization technique. Next, all the concepts introduced in the sindy of the
ADR cquation are generalized to the Navier-Stokes equations. Then we introduce a one-gquation
turbulence model, namely the Spalart-Allmars (SA) model, in an original form, and apply the
numerical strategy developed for the general ADR equation. Finally, we study and validate the
whole numerical model through the solution of three numerical examples,

1.1 The Advection-Diffusion-Reaction Equation

This section studies a transport model equation known as the ADR equation, After a brief pre-
sentation of the physical meaning of the equation, we introduce the variational formulation of the
stationary problem, Then we dervive three weak formulations and study the properties of the asso-
cinted bilinear forms. Particular attention is paid on the natural conditions, as they are of special
interest. when studying mixed domain decomposition methods. We introduce a atabilized finite
element method based on o subgrid seale approach. Finally, we solve the transient ADR equation
using the trapezoidal rule for the time diseretization,

1.1.1  Description of the ADR equation

The advection-diffusion-reaction equation is a transport equation for a physical variable that mod-
els advection, diffusion and reaction effects, The physical quantity of interest can be the concentra-
tion of a pagsive chemical species, the temperature, a turbulence quantity, ete. In the following, it
is assumed that this scalar quantity does not interact with its surroundings: it is a passive sealar,
We propose to study the following ADR problem:

Li = —=sdu+ V- (au) +su=[  infl, (1.1)

1
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where 1 is a ng-dimensional domain (ng=1.2,3) with boundary 8§ £ is the diffusion constant of
the medium; f is the force term; a is the advection Held (not necessarily solenoidal) and # is a
soures ternm,

Apart from the transport phenomens, the partial differential equation (1.1) iz able to model
many other physical problems; for example, the Helmholtz equation

Au+ Fu=0,

which governs the motion of time-harmonie waves where & is the frequency parameter (this corre-
spands to the case & < 0): the Poisson uquntinu

—au= [,

which for example models the electrie field in a vegion of charge density f. We understand the
inportance of our model equation in the modelling of physical problems, and the need for a robust
and relinble numerical atrategy to solve it
The differential equation must be furnished with appropriate boundary conditions on 952, These
boundary conditions are a compromise between physical and mathematical considerations, From
the definition of the physical problem, which for example tries to reproduce an experiment, we
may know the values of the unknown on part of the boundary, the flux on another, and have no
information on those remaining. By determining if the differential equation is elliptie, parabolic
or hyperbolic in character, we may have to give up impoding some of the data inherited from
the experiment: for example, it is well known that when the equation is hyperbaolic, the unknown
cannot be prescribed on outflows. Finally, we will see that the weak formulation of the problem
will, in its turn, propose essential and natural boundary conditions, and the requirements for
the existence and unigueness of a weak solution may restrict the possible choices even more. To
simplify, we will only consider here only three types of boundary conditions, namely of Dirichlet,
Neumann or Robin types, preseribing the following quantities:
Dirichlet: w

i
Neumann; £ = eVu-n,
an

u

Robin: rm

+ vyl (1.2)

where d(:)/dn = n - V(-), n being the outward unit vector normal to the boundary considered,
and ay 18 ealled the Robin factor, coming from physical information or from the natural boundary
condition derived from the weal formulation. All along this work on domain decomposition meth-
oda, we will have to juggle with these three boundary conditions and we will have to face many
compromises, as some useful physical boundary conditions are not necessarily mathematically well
sufted! Sometimes we will be lucky, sometimes less... Now let us go back to our ditferential equa-
tion itself.

In orvder to obtain a frst insight into a new problem, it can be useful to derive the transport
equation in a dimensionless form.  This non-dimensionalization will enable us to mensure the
relative effects of the adveetion, diffusion and reaction processes and, in some limit cages, detormine
which of them will drive the transport of the sealar, We define 2 a characteristic measure of {2, 4 a
characteristic value of the adveetion field and |8 a characteristic value of the reaction term. Then



12 CHAPTIN 1. A FINITE ELEMENT METIOH FOR INCOMPRESRIDLE FLOWH

we label the dimensionless variables and operators of the problem with a superscript asterisk, By
introducing two dimensionless parameters, namely the Péclet number Pe and the reaction number
It of the equation, defined as

we can rewrite Equation (1.1) as [ollows:
- f}f- AT+ V- (a®u®) )+ Re™u® = % in fL

For example, when dealing with the temperature equation in heat transfer problems, the Péclet
number is the ratio of the bulk heat transfer to the conductive heat transfer, i.e,

Pe = pepla

k L]
where k is the thermal conductivity, ¢, the specific heat, p the density of the fluid, and 22 and A
are defined ag before, Keeping in mind the dimensionless form of the ADR equation, we will go
on with the original (dimensional) equation.

1.1.2 Properties of the work spaces

The first steps e r,]nrivhug" aoweak formulation of the problem are classical, We multiply the
differential equation (1.1) by a test function v belonging to a suitable gpace (1o be defined), integrate
the vesull over 2, and integrate by pairts some of the terms, We will present heve three weak
formulations, each one being derived from different integrations by parts of the convective term.
Before considering the weak formulations, we need to introduce some notations, We split 99 into
two components denoted I'p and Ty, and such that 80 = Up U Ty, As usual, La(52) refors to the
apace of square integrable functlons in 1. We sei the following definitions:

(w, v} = fmmm,
0

me:rwenwm|§}ehﬁm4=1m”mm
..J

Hy () = {v & H'(Q) | vjag = 0},
HE () o= {ve HY() | v, =0},
V9= Hp (),
V= Hp, (),
Likewise, we uge the notation
Codu 3= ) gavngamifi  1or @ (g — 1)-dimensional,

(oD 1= (o ) B )y s B () [or w ny-dimensional,
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for the duality paivings to be used. For these spaces, the duality paring is simply the integral
(e = [ O0) o
F i
W endow H*{ﬂ) with the [ollowing sealar product
{w,v)y = (w,w) + (Vuw, Vu),
anel the associated norm
[l = [(w,w) -+ (V'm,Vm)]!“ i

This norm is not “physically appropriate” as the units of its terms are not compatible. A more
adequate cholee would be to choose the graph norm, which containg the physical coefficient of
the problem, However, we are not going to develop estimates displaying their dependences on the
physical coefficients of L, and we prefer to work along with the usual H'(§2)-norm,

Finally, we introduee the frace operator. From the trace theorem (see eg. [2, 3]), we know that
there exists a unique linear continuous map g, called the trace operator, defined as

v = vjan € HYA(O0)  YveV (1.3)

This result applies equivalently to any Lipschitz continuous subset of 2§, The continuity of 7
means that there exists a positive constant €' such that

loallijzen < Cllvlly  Yoe H'(S).

1.1.3 Weak formulations

g i : | 4
Let ug congider our differential problem (1.1). We restrict ourselves to solutions in H'(§2), which
obliges us to choose the foree term such that

I e (H'()).

In order to be able to show the existence and unigqueness of the solution, we must assume that all
the remaining terms present in last equation are bounded, ie,

5 € L)),V a € Luo(f)), @t € Laalf)™. (1.4)

As we have just mentioned at the beginning of the section, we consider here three different
weak formulations, We will denote them weak [ormulations 0, 1/2 and 1. Before starting with the
firat weak form, let us assume for the sake of clarity that we preseribe a homogeneous Dirichlet
condition on I'p; the generalization to any Dirichlet data in H'/?(I'p) is straightforward.
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O-weak formulation. The first weak formulation we study is derived by integrating by parts
only the diffusion term, The weale formulation reads: find « € V7 such that

O, v) = (0" ey +{Livda VvEV,

where
a(w, v) 1= &(Vw, Vo) + (a+ Vw,v) + ([s + V - a]w,v), (1.5)
and
i
PN
&=

is known on [y,

The preseription of g i the natural boundary condition and stems only from the integration
by parts of the diffusion term. At the differential level, this condition corresponds to a Neumann
preseription, Le. the preserviption of the Aux,

1/2=-weak formulation. The derivation of the second weak form is more subtle. We first note
that according to the Gauss theorem (also known as divergence theoremn), we have that for any
wonw €V,

f V- (aawe) dfd [ (a - nyuwedl
i2 1y

f{V ca)we dfl + / (a  Vo)wd+ [ (a- Vo did (1.6)
i ey ¥
Thervefore, the convecetive Lerm can be rewritten as

(o - Vw)vdl = : [(a -V d) 4 1 (e « Vo) df)
Ja 2 /g 2/

- lf(u - Vw)e dil + .l (e - n)aww dl’
2 /g 2

I'w

5 [(@ vowan 3 [ (9-ayuan,
2Ja 2 Jq

and integrating by parts the diffusion term and only half of the convective term as shown by the
latter identity, the 1/2-weak formulation reads: find u € V' such that

a'u,v) = (@' ey +(fv)e YveEw,
where

, 1
ul“(-w.w) 1= 2 (Vw, Vo) + %(ﬂ i, v) — %(m,u - V) + ([a EV calu, v), (1.7)

and
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i known on 'y, At the differential level, the prescription of g'/? is a Robin condition with Robin
cocfficient oy = =4(a n),

l-wenk formulation.  The last weak form is devived by integrating by parvia both the diflusion
term and the convective term, using Equation (1.6). We can easily show that the weak formulation

of the problem thug reads: find w € V osuch that

a'(u,0) = (g ey + (Lvka Yo eV,

where
al(w,v) == e(Vw, V) — (w,a - Vo) + (s, v), (1.8)
and
' bg:i ~(a - nju
is known on Iy, In this case, the natural condition corresponds to a Robin condition at the dif-
fevential level, with Robin factor ey = —(a ), as defined m Equation (1.2).

We notice that we can write all the weak fovmulations dervived earlier in the same way, intro-
cducing a constant b which can take the following values:

U= Weanke formulation: b =10,
1/2-Weak formulation: b = 1/2,
I-Weak formulation: b= 1,

Owing to this definition, all the weak formulations read: find u € V" such that

a'(u,) = (@' ey + (L) YOEV, (1.9)
where
a'(w,0) 1= =(Vw, Vo) + (1 = b)(a - TVu,v) —blw,a- Vo) + ([s+ (1 =)V - alw,v), (1.10)
and
I S
g .—ED” bla n)u (1.11)

is known on Uy, Although strictly algebraieally equivalent, these formulations have two major
differences: their respective natural conditions and their variational properties, The former has
already appeared explicitly, as the natural boundary conditions are given by Equation (1.11). The
latter becomes evident when we study the existence and uniqueness of the solutions. That is
precisely wlhint we are going to do next,

From Lax-Milgram lemma, problem (1.9) has a unique solution if a{w, v) is hoth continuons
and coarcive for any w, v € V. Applying Caonchy -Schwartz inequality, we have for b= 0,1/2,1

o (w,0)| < Mlwlhllell,  Yw,veV,
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with
M = £+ ||a)|lan + |8+ (1 =)V - a]|lwa

According to hypothesis (1.4), _M is hounded which tmplies !hﬂ.'l. a” 18 continuous for b = 0,1/2, 1,
We now study the coercivity of a, Owing to the definition uf o’ given by Equation (1.10),

a'(v,v) = el|Vollg o + (1 - 2b) / (- o) dit + /(3 +(1=DVia)p?dl VYoeel(1.12)
Jo Ja
Using Equation (1.6), we have

/ (a - To)odft = 1 (a-n)v’dl — fl (V- a)v? dil.
0o 2 Jry 2 Ja

Substituting this result into Ecuation (1.12), we obtain

a’(v,0) = || Vollgq + ]_2—'%‘/ (@ nyp*dl +j (8 + :V cayptd) YwelV,
Ly f

1
Aﬂmlming that
1 "
84 -:EV a2 0 almost, everywhere, (1.13)
wir finel
‘ 1=30 [
) 2 ellVolla+ -5 [ (@onptar veev.
2. o
Using the Poineard -Fricdrichs inequality, we have
||'-’|lﬁ.n < G ?“v”"u #] vYeev,

and wo find

"(w,v) 2
a'(u,v) = 1

1—_'2—!, / (o m)o’dl’ Yoel (1.14)
2 Jr.

We are now leflt with an annoyving term involving the advection. Note that for pure Dirichlet
problems, this term disappears and the coercivity follows. If we consider the 1/2-weak formulation,
this term eancels and the coercivity is shown. However for the 0 and 1-weak formulations, we must
nssume further hypothesis on the data, Le. on the relative size of the advection vector e with
respect to the dillfugion coellicient and /or on its direction. Let ug study the O-weak formulation;
letting b = 0, we have that

a’ (v, v)

l+C el + = / (@-np?dll Yvel

For the gecond terni to be positive, we must assume that a-n = 0 on Uy, Le. that I'y is an
outfow, Conversely, for the l-weak formulation, we would requive 'y to be an inflow. This is a
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condition on the direction of the flow on 'y, On the other hand, if the direction of the How is
not ag required to show the coercivity, or if it changes along Ty, we can still derive a very simple
eatimate by noting that the last equation gives

d(v,0) = — 03 - |~'-'.;f]"

[+ 0 o nllecryllyrylir,, Yvel (1.15)

In addition, knowing that HY*(Iy) < L*(T'y), we have that

2 . 2
s lloes = € ol o

where O s a constant. Using the trace inequality (1.3), last equation gives
ol < € €Il
Substituting this last result into Equation (1,15), wo finally fnd
a'(v,e) 2 N} YeeV,

with

£ W1 =20
—co = Banjle .

N=—"
L+ Cq 2

The condition for coercivity is N = 0; by introducing the constant €' to absorb all the constants
of the latter equation, we then requive that

g =1 - 20| ||@ - nfjery (1.16)

which implies that ||a « )|, should not be too high with respect to the diffusion €. If the
condition N = 0 is satisfied, Problem (1.9) has a unique solution,

Let us sum up the assumptions we have stated up to now in order to prove the uniqueness of
the solution.

1. The data of the problem ave such that a4 € L (), a € Lo (82)"
o 1
2, the source terin and advection gatisfy & + E"F ca = 0 almost everywhere;

3. Finally, we requive that

& O-wenk formulation: Uy is an outflow or the advection is not too high in the sense of
Equation (1,16);

e | /2-weak formulation: no additional condition;

s l-wenl formulation: [y is an inflow or the advection is not too high in the sense of
Exquation (1.16).

We can easily see the great advantage that the weak 1/2-formulation has over the other two:
apart from condition (1.13), no condition on the magnitude and direction of a is required on Iy,
In Chapter 4, we will see how this property can be used for designing efficient mixed domain
decomposition methods.
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Remark 1.1. Although up to now we have considered only the natural conditions of the weak
form ns possible boundary conditions, we can always transform the bilinear form in order to
aceommaodate the formulation 1o our need. For example, considering the 1/2-weak formulation,
part of the contour integral on the right-hand-side can be recast to the left=hand side. Let us divide
['n Into two parts Ty, and Uy, such that Uy = Uy, Uy, and find w € V' such that

a2 (u,0) + (@m0, = (@1 ey, + @ s, +(fi0de YuEV,
b i ]

b

q . . ] " [ =
where o'/? is defined as in Equation (1.7) and

4 du 1
y,” = Fb; — E(ﬂ.' ),
/2 _(?'H
H-.gf = £

are known on 'y, and U'a,, respectively. Therefore, we have to preseribe a Robin condition on
I'n, and a elassical Neumann condition on Uy, IF in addition Ty, b5 an outflow a -7 = 0 on Dy,
and the bilinear form is coereive, In the same way, we could ¢reate a Robin condition from the
O-weal formulation by adding both to the left and vight hand side a Robin like term optt where oy
could be a constant; for example, we propose to find u € V' such that

a(u, v) + (o, v)ry = 0" vy + (000 Yuel,

where

is the Robin condition, known on Ty,

1.1.4 Finite Element formulation
Galerkin formulation

For the sake of clarity, we will consider here the following pure Dirichlet problem:

@w = 0 on 11, (1.17)

{ Lui=—cAu+a-Vut+su = [ in 12,
where we have faken ¥V oa = 0, and & = 0, We now study the existence and uniqueness of a
weak solution to the latter problem, using the Galerkin method, and present a very simple ervor
eatimate, This estimate will justify the need for a stahilization teclinigue under well-known eir-
cumstances and this is the subject of the following section, Then we introduce a discontinuity
capturing technique. Finally, the problem is generalized to transient situations, For the study of
the same problem with more general boundary conditions, see for example [3).

Let {£2°} be a regular finite element partition of the domain 2, with index e ranging from 1 to
the number of elements n,. The dismeter of {17} will be denoted by b as usual. Let us construct
the functional linear subspace V2 © V® from the previous partition: the resulting finite element
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appraximation is said to be conforming, The discrete Galerkin formulation of the problem consists
in finding uy, € V) sueh that

alien, vn) = ([, vn}n V€V (1.18)
whoere
ali, v) 1= e(Vuw, V) + (a - Vw,v) + (su,v). (1.10)

Note that in this particular case for which we only impose Divichlet conditions (Iy = @), the 0,
1/2 and 1-weak formulations are identical is the sense that they all have the same continuity and
coercivity constants. We haves

a) latuwy, vp)l < Mlwsllilleall Y ouwp, vy € Vi,

b) alvy,v) = N|le |l Yoy € V),
with

M = e+ |lallog + ||5]|w.a,

g
N=——.

|
Aceording to Lax-Milgram lemma, Equation (1.18) has a unique solution u;, € V. In addition,
we can derive the following error estimate

M
w=1ylli < = inf JJu=w
llu = ually = 5 "h“.h‘ull nlly

where u ig the solution of the problem
alu, v) = (f,v)n YueE Vg,

The latter error estimate simply states that the finite element solution is the best approximation
over all possible v, € V. Now let us introduce m, the degree of the polynomials used in the finite
element diseretization. Under regularity assumption on the domain €2, its boundary, and assuming
the solution u is smooth enough (see for example [3] for the details), we can show in addition that

M
lu —unlly <o Whm”“”mH- (1.20)

wheve A s the maximum diameter of the polyliedron of the trinngulation, and e is a constant
depending on the geomotry and triangulation of €, but not on h. Error estimate (1.20) is optimal
in the H' norm, so we conclude that the Galerkin method ean lack stability when M = N, that
is, when the diffusion ¢ is small compared to ||a|| o and ||s][. o and if b is not sufficiently small.
In fact, taking u = v =y in Equation (1.19), we have

1/2

alup,up) = el Vupll§ 4 [ls' w5,

as the convective term disappears when it is integrated by parts. We observe that we have no
control on the advective term of the equation. In addition, when '/ is high, we gain control
on the Ls norm of the nnknown at the expense of looging control on its gradient. This is why a
stabilization method is necessary.
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Stabilization strategy

We now present brielly the historical context of the stabilization technigue used in this work, the
vartational subgrid seale model. For a detailed review of these methods, see for example [4] and the
complete volume [5]. Before starting, let us mention that we will not mention techniques such as
the virtual bubbles [6], as they do not explicitly belong to the stabilization funily considered here
(although they are closely related). We will neither mention the Characteristic-Galerkin formu-
lation [7] and the Taylor-Galerkin [8] method, as they are devised starting from a transient equation,

The first stabilization methods that were developed were called artificial viscosity methods [9].
They consist in adding a viscosity-like term to the equation, a numerical viscosity, as follows:

alug, vy) — (oo +] F(Vuy - V) dil =0,
it}

where 7 15 the stability parameter. [t musi be proportional to i and the norm of the advection
field for two reasons: Lhe stability term must vanish when o goes to zevo, and it must be higher
and higher as the advection increases, These methods are not congistent, Lo, the exact solution
to the original problem does not satisfy the equation of the perturbed one. The diffusion is
added isotropically so the results can be over-diffusive, particularly in the erosswind direction,
They deteriorate the rate of convergence, as they were originally first order methods, although
more precise artificial viscosity methods have been developed sinee then to inerease the order of
convergence (see for oxample [10]).

To correct the indigerimination of the artificial viscosity, a streamline upwind was introduced,
firat in the finite difference context and next introduced in the finite eloment context in [11], They
lead to the following formulation:

alun, o) = (foonda + f #(a- Vig)(a - Vo) d2 = 0,
9]

where 7 is a stability parameter to be determined.  Although less diffusive, this method shared
the non-consistency of artificial viscosity methods. The consistent version which was called SUPG
(standing for streamline-upwind Petrov-Galerkin) was presented in [12]; this time the stabilization
term was added at the element level, Let us define

-/ﬂ'

where 2, 15 the nterior of element ¢ of the partition, The weak form of the consistent SUPG
method is

Tha

B,

alty, vn) = (f vn)o +[ ol - V) (Luiy, — [)efl =0,
17

where 7, 15 an elemont-wise stability parameter. Although it was clear where and how the SUPG
method acted as a stability method, no intuitive and perceptible interpretation had been found.
It was even thought that the upwind was necessary in order to be consistent with the hyperbolic
character of the equation when the advection was dominant, as information can ouly move down-
atremm, Actually, the eonerete interpretation of stabilization methods would only come 15 years
after... ag we will soon see.
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Simultaneously with their work on the advection-diffusion systems of equations, the Stanford
team [13] devised a Petrov-Galerkin formulation for solving the Stokes problem which avoided the
need to satisfy the Babudka-Brezzi (BB) stability condition, by adding a new perturbation to the
contbinuity equation proportional to the pressure gradient test function, Following the same ideas,
the Galerkin/Least-square (GLS) method was presented in [14] ag a “conceptual simplification”
and generalization of the SUPG method for advection-diffusion equations. The GLS formulation
ronds;

i, ) = (b + [ ol = 1) =0,
1

where 7, is still the stability parameter. By the same time, Douglag and Wang [15] developed
a stabilization technigue (known as Douglas-Wang method) for the Stokes problem, similar to
that developed in [13] with the only difference being the sign of the Laplacian of the perturbation
function. The method was soon npplif}d tor the advection=diflusion reaction in [lﬁ] and showed
better stability than the GLS method; the authora [ound that the perturbation function should no
longer be the differential operator L but minns its adjoint L*, The new formulation reads:

alwy, o) — 4 v + / To (=L wy ) [ Ly, ‘f} dfl = 1),
JLy

where 7, is the stability parameter, In the case of the ADR equation under study the adjoint

operator is given hy

L= =ciu=—a- Vu -+ su,

All the methods presented up o now, Le. SUPG, GLS and the Douglas-Wang methaod, involve a
stabilization parameter 7., and none of these methods introduces its value naturally. Actually, . is
enleulated using convergence analysis, and /or adjusting its value to obtain exact nodal solution for
some aimple problems. 7, liaving the units of time, it s genevally called the intringie time. Referring
to the stabilization paraneters 7; of a system of advection-diflusion, Hughes and Mﬂllﬂt[l?] wrote:

The 7, ure inlrinsic time scales of the variows components of the solution. [n the
adveckion-dominated limit, the 7 represent the bransil bimes for information lo be ad-
vected puer o distance equal to one-half the element length. These limes are reduced
by the presence of diffusion. The 7 approach servo as diffusion beging to dominale in
keeping with the inslantancous propagation time of diffusive phenomena (... )

Recently, Hughes [18] finally clarified the matter by introducing the idea of multiscales. The
numerieal ingtabilities of the Galerkin method are due to the unregolved space scales, Le. the seales
that are“smaller” than the element size. Therelore in some way the effects of the unresolved scales
must be modelled at the resolved level. This method explaing not only the instabilitics; it also
identifies clearly the intrinsic time. The unknown  is decomposed into a resolved seale @ and an
unresolved seale u' sueh that u = ¥ + u'. The first approximation of the unresolved scales [18]
conglsts In solving a Green's function problem for these subgrid seales; in addition, his study leads
to an analytical expression for 7., The resulting method is called algebraic subgrid scale model
(ASGS). In order to avoid confusion with large eddy simulation (LES) turbulence madel, this
appronch is often referved to as variational subgrid seale model, In [19], Codina painted out that
the subgrid seales should be l'-llv_li'“kl“,\’ nnughl. in the space orthogonal to that of the resolved seales;
his formulation leads to a more complicated formulation, but less diffusive, and “more precise”
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rro

in some sense, This method is referred to as orihogonal subgrid scale method (O88). In [20], he
also developed a first physieally based expression for 7, basing its derivation on a Fourier space
nnalysis, This is the expression for r, used in this work. The final formulation veads: find « € V),
sueh thai

ey, ) — (Fovn)e + / To{ =L v (Luy = [Ydil =0 Yo, € V),
Jey

where 7, is given by

=1
[ LIRS
s (qu +I!QIJJ:L -l-.'s) i (1.21)

where /i, is the characteristie length of the element e, |al. s the maxgimum of the Euclidean norm
of a in element e, and the constants are ¢; = 4 and ¢x = 2. For quadratic elements, /i is taken as
half of the element size. Codina [19] obtained the following ervor estimate for the method

= uplll € CEIR™ + 81 2RmH 4 |all2amH3),
where €' is a constant independent of A and ||| < ||| ig defined as

Nulll = "2 Fullo + |5 20]| + |7} 2a - Full Vo, € Vi,

where & is a modified reaction term defined as
= a= T8,

which, form the expression of 7. given by Equation (1.21 ), cannot be negative. We notice also that
the asymptotic behavior of & ag & tends to infinity enables not to loose control over the gradient,
In addition, the thivd term of the equation is the stabilization term that enables us to gain control
over the gradient. However, we see that this control is only obtained in the streamline direction,
this is a reason why a discontinuity eapturing could be needed.

Discontinuily capluring

The use of the subgrid scale model does not avoid the local oscillations prosent near sharp layers,
[n the finite element context, Hughes et al. [21] developed a first discontinuity capturing technique
(alzo called shock capturing technique), Noting that the oscillations appeared in the direction
normal to the gradient of the transported quantity, precisely where the ASGS stabilization does
not st I.Iu-*‘y introduced an additional dissipation in this erosswind divection, Codina [22] designed
a crosswind diffusion based on the study of the diserete maxinmm principle. The method is an
anigotropic discontinuity capturving technigue, referred to as ADC, For simple eases, the method
leads to & monotonicity preserving scheme; the resulting algorithm is non-linear and reads: find
uy € V), such that

alwy,vn) = {ivn)n + fw 1o (=L u ) Ly, = f) edS2

+ / [Aﬁ,.Vlln sy 4 (Hk, = k) = k. )Vvy (I-llﬂ) -V\ru,} et =10 Vo, € V),
JL0

|2
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where (e} is the Heaviside lnction defined as

H(z) = { x if =0,

0 elsowhere,

EL i the additional diffusion of the SUPG-like term of the 5GS method, glven by
ko= ral?

ke 18 the diffusion of the shock eapturing method defined as

L Ly =S|

=0 A

if V| # 0,

ke = ¢ 27000 1O
0 elsewhere.
In the latter expression, f, is the element characteristic length, and e, is given by
2
o, = max (f.).(,‘ - ) {1.22)
levy|fas

where ' depends on the type of element used (€ = 0.7 for linear elements and ¢ = 0.35 for
quadratic elements), Finally, @) is obtained by:

"y =

Lot na take a close look at the expression of the discontinuity capturing. Firat of all, the term
proportional to a®@a avolds adding twice the niimerical diffugion in the streamline divection, as it is
already provided by the SUPG term of the ASGS model. This justifies the name anisotropic shock-
capturing. The diffusion introduced by the ADC method is logically proportional to the residual
and this makes the method consistent, Finally, the expression for o, given by Equation (1.22) was
obtained in order to gatisly the maximum diserete prineiple for some particular examples,

1.1.5 Transient problem

We now want to solve the following transient problem in 2, from time 0 to time 77

B+ Lt = f(t) in 2% (0,7),
T on 852 = (0,71, (1.23)
o= iy in 2 % {0},

where operator L g defined by Equation (1.17),, and conld depend explicitly on time, as well as
the foree term f.

The generalized trapezoidal rule

The time digeretization 18 carvied out uging the generalized trapezoidal viale, Le. a finite differonce
gchiemne,  Using such a rule, the weak formulation of the transient problem ean be squivalently
obtained by first deriving the weak formulation of Problem (1.23) and then diseretizing it in time,
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or first by performing the time diseretization directly on Problem (1.23) before deriving the weak
formulation. For the sake of elarity, we choose the last option. Let ug introduce a uniform partition
of the time interval [0, 7] and define

a™ e gy e (1= 0)u”,
& 1= gt
e _ i

§ it [y .
i it

where 86 18 the tirme stop giges and superseript nodenotes the approximated golitlon at time ndt.
According to this integration rule, we have to solve the following equation for the unknown u"*?:

m,un 4 I Ln-}-ﬂ.”wq-ﬂ - fn--l-f-" “_24]

from which we compute the solution ab time step a1 as

e
f#

n

i i

= + (1.25)

In Equation (1.24), L and f have to be ealeulated at time (n+8)dt, as indicated by the superaeript
notation. The stabilization technigues, ASGS as well as ADC, can he applied divectly to the latter
system by replacing the vesidual (Luy, — f) by (Spu " 4 LrH0ui*t? = frobfy in their respective
expressions. We now deseribe two practical integrations, namely the backward FEuler and Crank-
Nicolson scheme, The details of their implementations can be found in [23].

The backward Euler approximation
The backward Euler approximation is obfained by choosing @ = 1, This approximation is of first

order in time and is unconditionally stable [:H]f The diserete Galerkin formulation form of the

problem consists in finding, for each n = 0, up ' € ¥y, sueh that

0, v ity € ""."n

(“’l'h'”h] V L] = 1"';”

(Spaep? L) + a™ '(-u::‘ Vo) = (™ wda

(i vn)

1

L]

where the bilinear form o i given by Equation (1.19) where all its termg are evaluated at time
e 1,

The Crank-Nicolson approximation

When precise time integration is needed, it may be useful to use o second order scheme, Crank-
Nicolson approximation is of second order and corresponds to the choice # = 1/2. The discrete
: . . A . 4171
Galerkin formulation form of the problem consists in finding, for each n = 0, u) """ € Vi, such
B = h
that

0, Vu, €V, x(0,T),

(4 “::-|-|/h‘r' op) + ”n+lf'1m;:.+-|/'-ﬂ. wy) — (™ l/!'.”h)"

(-u‘;:.-u;.) = (Mg, Uy) Yoy, € V.
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Contrary to the Euler scheme, the solution at time n - 1 must be explicitly ealenlated using
Equation (1.25), The Crank-Nicolson scheme presents a singularity at ¢ — 0. It is therelore
recommaended o wse the mopre dissipative backward Euler sehemie during the fivst thne iterations,

1.2  Incompressible flow Equations

This seetion stidies the equations of miotion of an incompressible Huid, namely the Navier-Stokes
equations. We first present the set of equations and introduce each one of the variables and physical
propertios in play, which are the viscosity, the density, the pressure and the veloeity of the Huid.
We briefly comment on some results on the existence and unlqueness of a solution to the equations,
Then we derive the form of the Navier-Stokes equations in a non-inertial frame of reference which
may be required when considering flows including moving objects, At this point, we are ready to
present s finite element formulation to solve general incompressible Auid problems.

1.2.1 Navier-Stokes Equations

Newton's second law of motion is the starting point of the derivation of the governing equation for
a fluid as a continuum, the Navier-Stokes equations. A detailed derivation of these equations can
be found in [25]. They are:

povu A plu - Nyu =2V - e(u) + Vp = pf,
Veu =0,
together with appropriate boundary and initial conditions, w« is the velocity of the Ouid and pits

pressure; ¢4 s the dynamic viscosity and p the density; £(u) s the rate of deformation tensor given
by

e(u) = =(Vu+ Vu');

it =

I is the veetor of body forces (for example, gravity). These equations describe the motion of
an incompressible Muid, e a fiid for which the density does not change significantly with the
presaire gradients In play, We expect the effects of compression to become important when the
velocity of the fuid approach the sound veloecity, Le. the velocity of propagation of the pressure
waves, In addition, we agsome that the density s constant over the computational domain and is
insensitive Lo pressure varlations.

The viscosity g is a measure of the internal friction of the Huid and consequently depends on
the temperature of the fluid. Its mechanical role is to eliminate any loeal deformation. The value
of the viscosity for a speeific fluid (gas or liquid) is usually measured experimentally as there do not
exist suitable theoretical arguments to derive an expression for general fluids. The expression for
the viscous term was fivst considered by Newton who recognized that in a parallel two dimensional
flow, the shear stress should be proportional to the rate of deformation, The interpretation of
the veloeity w in an Eulerian context is simply the velocity of the fuid point measured at a given
position and at a given time. The variable p is the mechanical pressure. If we denote o as the
stress tensor, then we have by definition

Pi==30u
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Figure 1.1: Partition of the contour of {2

[t can be shown that "minus the average of the normal component of the stress on a surface element
at a point over all directions of the normal 7 to the element” is precisely the pressure p, that is

1 1
== [ gymnydi(n) = —zou=p,
e / runydii(n) = —zou =1

where df}(n) is an element of solid angle about 7. This equation constitutes an intuitive definition
of the pressure, [t should be pointed out that p s net a thermodynamic variable, although it can
L pelated to the thevmodynamie pressure in some way (see the diseussion in [25]).

The Navier-Stokes equations ave solved in a domain £ of dimension n,, together with appro-
priate houndary conditions on the contour 1" 1= 883, For example,

= 1, on I'p % (0,77,
o=ty on 'y = (0,7,
wen =0 gy-a-n =1,
gy -am =ty on Uy = (0,7, (1.26)
FTRE T on 1 x {0},
where I' = [y U 3 WU Ty, 1 is the outward unit normal (see Figure (1.1)), g; and g, are the unit

vectors spanning the space tangent to Uap, £ = & - gy and fa = & - g4 ave the components of the
tangential traction &; and & is the stress tensor

a = =pl + 2pe(u),

The prescription of ¢ can be known, for example, from a wall function law if the turbulence equa-
tions are to be golvad. We assume that all the boundary conditions belong to the appropriate trace
BpACeH.

We now briefly intraduce the problem of existence and unigqueness of a solution (w, p) to the
Navier-Stokes equations [26]. The first studies were carried out by Jean Leray, a French math-
cmatician, in the 19307, but the proof of unigqueness of the solution in three dimensions still

remaing an open problem, ..,
Let ug look for a solution in a domain £, during a time interval (0,7°). We assume that

appropriate boundary conditions are imposed, for example 4 = 0 on 62; initial conditions are
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preseribed with some required regularity and assumed to be solenoidal (divergenee free); the domain
houndary is considered to be sulliciently smooth.

The general framework of study of the existence of a solution is the varintional form of the
Navier-Stokes equations, The solution we seck is therefore weak, and this enables us to naturally
define its spatial and time regularity, In our framework, the solutions w and p we seel ave in 7'(§2)
and L2({1) respectively, for all time ¢, and their energy are bounded in the time interval of study
i the sense that

T T
[l + [ it < oo

For the transient problem, we have the following results:
s for 2D and 3D flows, theve exidats a solution:
s for 2D flows, this solution is unigque;
= for 3D flows, unigueness is an open problem!

In addition, it ean be shown that for 3D Hows, if & more-regular-than-necessarvy solution exists,
then it s unigque. For the steady problem, we have to invoke the Reynolds number Re:

= for small Re, there exists a unique solution;
= for high Re, there exists at least one golution.

A good example of the existence of multiple stationary laminae solutions is the Couette-Taylor
Aow [27], The Couctie-Taylor problemn studies the How between two cylinders in relative rotation.
It admits a laminar Couetle solution at any Reynolds number, and when the Reynolds number is
sulficiently lavge, the fow becomes unstable nnd admits other stationary solutions, The way that
the flow bounces from one flow state to the other depends on the history of the fHow, This is a
characteristic of non<lincar problems.

1.2.2 Non-inertial frame of reference

Before proceeding, we lighten the Navier-Stokes equations by dividing the momentum equation by
2o We hiave:

a4 (u-Vin— 20V e(u)+ Vp = f;
Vou=1,

where # 15 called the kinematic viscosity and p is now the kinematic pressure, e, the dynamic
pressure divided by the density.

The elassical Navier-Stokes equations model Hows in inertial (Galilean) frames of reference.
When the boundaries of the Auid are accelerated, it may be convenient o solve the Navier-Stokes
eopuations in the frame of reference in which these boundaries remain at rest. We know that the
Navier-Stokes equations express Newton's second law, Le. that the rate of change of momentum of
an element of fuld is equal to the sum of the forees acting on it. If the element of fluid is considered
it & non-inertial frame of reference, we must therefore sdd to the original list of forees the ones doe
to the aceoleration of the frame, We are now going to measire the effective aceeleration a particle
of fluid P is undergoing when ita referential ig accelerated. Let € be an orthonormal basis of the
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Figure 1.2: Inertial frame to non-inertial feame transfovimation,

non-inertial frame, and let @ the position vector of P, equivalently X in the inertial fvame, such
that

=Gy,
where the ;' are the coordinated of 2. We consider the following tranaformation:

X=T4zx

= T o wie;,

whore T' is the position of the orvigin of &, as illustrated by Figure (1.2).
As mentioned earlier, we want to caleulate the effeciive aceeleration of P. Differentiating twice
the latter equation, we obiain

#?X T Py duy de; i [ de;
e B e o e g o D s e G sl e ) 1.
gt di? : e ‘ 2 it Al H i ( i ) (1.27)

The first term of the vight-hand side is obviously the acceleration due to the movement of the
origin of the non-inertinl basis e, The second term is the acceleration of F measured in e, Let
ug now investigate the last two terms, involving movements of the non-inertial basis. Given an
infinitesimal rotation vector 88, we can express an infinitesimal variation de; of e;, as

dey = 00 = ¢y,

for ench £, as shown in Figure (1.3). Dividing last equation by dt, an infinitesimal increment of
time, and taking the it to zero, we have that
de; o

W=IHE‘.

We now define the angular velocity w and linear acceleration ey vectors such that

df

A dt
dir

Bppf = o=,
G
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Figure 1.8: Infinitesimal rotation of the non-tuertial basis,

(_')wiug' Lo the latter three equalities, Equation (1.27) gives

d* X d*x il dey i
E-ﬁ_ = Qpaf 4 -FH‘ -+ lm E 4- .l?*a (l‘.ul X !‘!‘)
Y ) die; dw
= fyot + € + 2w % o Gt o xem WX (e % eqn).

Introducing the velocity w measured in the nen-inertial frame

- f‘f:f.'*F
o
and remembering that @ = ae;, we finally find
X rar au f 2w % 1w} i % rw X (w =)
dar — T it '

The effective aceeleration of the particle now has the required form. As alveady stated, the fivst
term is the linear acceleration of the non-inertial basis. The second term is the acceleration mea-
sured in the non-inertial frame. The last three terms arve due to the rotation of the non-inertial
axes: tho first one of these rotation terms is tho Coriolis foree, the second one is the term due to
the acceleration of the angular velocity and the last one is the centrifugal foree,

We are now veady to wrlte down the Navier-5toles equations in a non-inertial frame of veference.
We must add the relative aceeleration to the acceleration of the particle measured in the non-inertial
frame of reference, T'he transient Navier-Stokes equations are

A (- Viu+ 2w 2 u—20V-a(u) +Vp = f, (1.28)
Vou =0, (1.20)
where fis the vector of body forces, including the gravitational foree, and the non-inertial terms:

tliw
f = Qper W X (w ) — d-! ® .0,
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1.2.3 Dimensionless form

As was done for the ADR equation, the Navier-Stokes equations ean be non-=dimensionalized. We
assume w is constant and introduce the Reynolds number Re and the Ekman number Ek as

D
Ro = u
i
’ i
Ek 1= =————r,
k= Sl

whare I is a characteristic length and U a characteristic veloeity. Then, the dimensionless Navier-
Stokes equations are:

1 2
Re Tk w KU — mv ce(u)+ Vp

I,
Viu =1,

Oy (- V)u +

where w, p and f are now dimensionless velocity, pressure and force, respectively, The Reynolds
number i a measure of the relative importance of the convective effects and viseous effects, while
the Ekman number measures the relative importance of the viscous term and non-inertial term
die to rotation. The product (Re Ek) is known as the Rossby number.

1.2.4 Linearization and time discretization
Linearizabion

Equation (1.30) is non-linear becauge of the convective term, The linearization of this term can
be performed at the continuous level or at the variational level, t.hl'-_‘y are both L‘{ll.liw.ll(-:lll-. We
introduce an iterative scheme, and denote by m the iteration number. We propose the following
linearization stratepy:

]-(u s v)u]m =1 :5 (um " V)um-i-i + ﬁ(um F1 v}ulrl - ;‘5(11.'" . v)um

Taking /4 = 0, we obtain the so-called Picard method; taking 7 = 1 we obtain the Newton-Raphson
method. 1If conveetion is not, too high, it can be shown that the Pieard method converges linearly, If,
in addition, the initial solution i not too [y from the exact golution, the Nuwr.mbﬂ.u.phr;nn method
converges quadratically, See for example [28] for the proofs. An efficient numerical strategy to
obtain a converged solution for a Navier-Stokes problem would consist in the following:

1. Solve the Stokes problen: this provides a unigue initial solution,
2. Solve a few Picard iterations and take advantage of its robustness,

3. Switch to the Newton-Raphson method to accelerate the rate of convergence.
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Time diseretization
Let ug introduce a uniform partition of the time interval [0, T and define
u™ = g™ 4 (1 - B)u",

0t 1=t =0,

where we use the same notation ag in the ease of the ADR equation. According to this integration
rule, the timesdiseretized Navier-Stokes equations are solved as follows. Given an initial condition
u?, find w4 and p**! for each n = 0 such that

‘)"“n-i-# + {u""'“ ¥ V)u“" U gl o bl a8, a:('u.” H)) + V?Jll--l-ﬂ = -8 in 0,

vout? = in 2,

with the following boundary conditions

ut = u, on [y,
et =1, on Uy,

unm, g oo on =ty
gy " on =1y on [y,

where tha data could depend on fime and where each tiine dependent variable @ satislies

a2 i !

r ,

et gy

1.2.56 Finite element formulation

Lt us introduce the following lnctional apaces:
V = {v e H'{(W™ vy, =0,(v n)r, =0},
Q) = L*(51),
U={ve H (™ |vjr, =y, (0 -n)r,, =0, L€ (0,T)},

P={pe L} /p d =0Ty =0, t € (0,1)}.
#41

The last space is the functional space for the pressure unknown, If the normal component of the
traction is not preseribed anywhere on the contour, then the pressure is only defined up to any
additive constant, This is why we require explicitly its average over  to be zero. Let us construet
the diserete linear subspaces Oy C U Py © PV CV and @y © Q) from a partition of 2 in n,
elements. Let Uy = [wy,,py]' be the vector of nodal unknowns and ¥V, = [v,,q5]" the associated
welght lunctions vector. We define

BUMH = [Fult, o,
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We now present the linearized and time-diseretized Galerkin formulation. Thus we introduce
the two iteration indices presented earlier, the linearization index s and the time index wn, and
denote "L gy variable considered at linearization step m + 1 and time step o+ 1. The
linearization and time iterations are nested, the linearization obviously being the inner iterative
pProcess; for the sake of rln.:'il,_\:, we assume we use the Pleavd linearization. The diserete Galerkin

formulation of the problem reads as follows. Given -u;:""f"“ = u" € Uy, for each time step n = 0,
find for m = 0,1,... until convergence, U} € 1) = By, such that

{(sru;:-l.ﬂ.m-l I' Vh) + ””.J,.n,m{rf;:-l i I-I1I Vh) = lu-l-ﬂ(",rh).' y Vﬁ e Vh % Q'” (1.30)

where the bilinear forim and the foree term are evaluated at tine o+ & as

"t V) = 2 / Mg () < e (0) dS /l('u""'ﬂ"" - V)u| - v di
Ja Ja

4 f P f p ¥ wdt+2 [ (@™ x ) v,
i 1§ J11
V) = / F wdi +'f by vl / (Lyggy + taggs) - v dl.
41t P'x CA Y

The viscosity remains in the integral as it can be directly substitufed by the molecular viscosity
plus the eddy-viscosity when using a turbulence model.

It is well-known that the Iatter formulation can lack stability for three major reasons, The first
rimson is related to the ecompatibility of the finite element spaces for the veloeity and the pressure
which have to satisfy the so-called Ladyzhenskaya-Brezzi-Babugka condition [29]. This condition
s necessary Lo obtain a stability estimate for the pressure; without requiring this condition, the
presaure would be out of control, The second reason ig attributed to the relative importance of
the viscous and convective offects, It can be divectly related to the nstabilities eaused by high
advection in the case of the ADR equation, as studied in Section 1.1.4. Finally, the third one
appears when the Cortolis force becomes important with respect to viscous effects. We will now
present a stabilized formulation, based on the ASGS model deseribed in [18]. The method is
extensively deseribed in [30] and [31],

The original Navier-Stokes aystem (1.28),(1.29) can be re-written in a compact form as

fs!r‘}'n o 3 L" I'HUH'I'# == FHHJ in “‘

where L' is defined as

Ju-+ﬂ' [ oo
BTN V-u

(@ V)u+ 2" x u =200 e(u) + VUp ]

wheve a = wu before lineavization, and the force term s defined as

- .f”+u
i _[ e

Hek 1,0

The stabilized weak form reads: given u,

e Uy, tor ench time step e = 0, find form = 0,1,...
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: st 1t -
until convergence, Uh ’ e Uy = Py such that

(ﬁfcf;:-l-ﬂ,m-l-l ; Vh) i ﬂ.” }-H‘,m(u::'l i1 ' Vh)
e
+ E / (_L”r.luﬂv,h)priéllljr.h..‘hm-{I s Lh'\‘-ﬁu::-l-ﬂ.”r-l-i = Fu-l-f-'l = po-i ”(Vh)n “‘3”
sl 1.
VYV eV = G, where the convection is taken lram the previous linearization step, i.e,

il
a4 =g

& : )
and where L' is the adjoint of L™ given by

[ty [ —(a: Vv = 2wt x v - 20V e(v) = ¥y ]
= -9 v '

7 15 the matrix of atabilization parameters and is defined in each element as

7, = diag(r I, ), whiore
=1
= (L!:—:' - {—jJ:‘i +|’.‘31U"'+ﬂ|) b {1.3?)
2
Ty = t.‘.II:—:. “1-'33)

I 15 the ngedimensional identity. m contributes to enforcing the incompressibility of the flow, which
i3 excessively rolaxed by the term multiplied by 7. The values of the constants we use are ¢ =4,
oo = 2, 09 = 1, e = 1 and A 15 the characteristic element length, For quadratic elements, b, is
tiken as half of the element size.

1.2.6 Some finite elements

During this work we will consider two types of element using both equal order interpolation for
the velocity and the pressure, The Q1/Q1 element is continuons and bilinear (trilinear in three
dimensions) in both velocity and pressure. We will alzo work with the P1/P1 element, continuous
and linear in velocity and pressure. These elements do not satisfy the BB condition and therefore
]'t_'.tluirr- the wse of dtabilization.

1.2.7 Examples
Example 1: cavity flow

Through this example, we want to show the importance of the stabilization term involving the
incompressibility constraint, Le. the term multiplied by 7, We solve a square cavity ow at a
relatively high Reynolds number

[ UH
Ry = e = 5000,
t
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Figure 1.4: Cavity flow, (Left) Geometry and boundary conditions. (Right) Mesh.

Figure 15: Cavity How. (Left) e5 = 0 in Equation (1.33), (Right) ¢y = 1 In Equation (1,33),

where U is the veloeity at the top of the cavity and # is the height of the cavity, The geometry
and boundary conditions are shown in Figure 1.4 (Left). This problem is solved using 900 Q1/01
elements, and the mesh is refined in the upper part of the cavity (see Figure 14 (Right)). As
sketched in Figure 1.4 (Left), we expect four main vortices at the center of the cavity and at
the top left, bottom left and bottom rvight corners. On way of verifying the fulfillment of the
incompressibility is to look at the streamlines, Figure 1.5 (Left) shows some streamlines in the
bottom right corner of the cavity taking 72 = 0; we observe that some streamlines enter the bottom
wall, Figure 1.5 (Right) shows the same streamlines and confirms the improvement. achleved on
the hicompressibility constralnd.

Exanmple 2: stirred tank

We now study the imporfance of the stabilization of the rotation, Le. the term involving the
magnitude of the anpgular veloeity in Equation 1.32, We solve the Stokes problem on the sixth
part of a section of a stivved tank, shown in Figure 1.6 (Left), rotating at an angular velocity
w = [0,0,1]. The radins of the tank and the shaft are 1 and 0.4, respectively. The widtha of the
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periodic

Plgure 1.6: Stirred tank, (Left) Geometry and boundary conditions, (Right) Mesh,

blades are 0.1 and their radii are 0.8, The problem is solved in the rotating frame of reference so
the velocity is prescribed to w = —w x @ on the outer wall and to zero on the blades and shaft.
Periodic boundary conditions are imposed on the inflow and outflow of the domain (see [32] for
the details on the implementation of periodic boundary conditions), The reactor i meshed with
488 Q1/Q1 elements, as shown in Figure 1.6 (Right), For a rotating two-dimensional flow, the
centrifugal foree can be absorbed by the pressure tevm. In fact, we have that

1 ;
WXwxes =-§V(Lw x m|).
[t addition, we notice that
Ve{w=u)=|wV u=10

whieh means that the Coriolis term is the gradient of a function. Therefore, hoth the centrifugal
foree and the Coriolis term ean be ineluded In the presaure term. This 18 possible because the How
is confined; if 1t were not the ease, then we could not impose a physical traction on the Neumann
contonr, Henee, we expect the solution in velocity to be the same whatever the rotation is. This
enabled us to use the velocity field for w = 0 ag a reforence solution,

In order to test the stabilization in a eritical situation, we choose ¢ = 107" which gives an
Eckman number based on the outer wall radins

Ek = 0.5 x 10~7,

We only present here the results of the velocity module along the symmetry line of the domain,
Figure 1,7 shows the improvement in the solition using the stabilization of the rotation. Note that
the formulation with ¢y = 0 already includes some stabilization of the rotation, However, when
using the Gulerkin method, the inestability when the Eckman number is very small appears much

clearer [33).
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Figure 1.7 Sthrved tank, Velocity module on symmetry line for ditferent values of oy in Equation (1.32),
1.3 Turbulence Modelling

This section studies a simple approach to turbulence modelling.  Firat, the need for modelling
turbulence is justified by physical considerations. The elassical statistical method is introduced to
gimplify the Navier-Stokes equations and prepare them to the introduction of turbulence models
known as Reynolds-stress turbulence models, Then we introduce the Boussinesg approximabion (o
model the Reyvnolds shear siress and present a one-cquation turbulence model, namely, the Spalari-
Allmarns model, which provides a closire eqgiation to compiite [ov the eddy viscosity, Special
attention i paid to the boundary conditions to be hmposed on the walls of the computational
domain. In partienlar, we derive a wall function approach to avoid solving the whole boundary
layer.

1.3.1 Why model turbulence?

The motion of a fluid is obtained [rom the principles of mass and energy conservation and the
fundamental principle of mechanics, namely Newton's second law, As the Navier-Stokes equations
are the mathematieal deseription of such a maotion, it is expected that they can describe deter-
ministically the evolution of any fuid, provided its initial characteristics are prescribed. Hence
they are able to predict turbulence. This is a simple reason for hoping that the three-dimensional
transient solutions of the Navier-Stokes equations are unique,

Divect numerical simulations (DNS) solve the three dimensional and transient Navier-Stokes
equations. Obviously, the mesh must be fine enough to capture all the participating scales of the
How, that is from the macroscopic seale (determined by the dimension of the domain) down to the
characteristic length scale of viscous dissipation. By performing simple dimensional analysis [34],
it can be estimated that the total number of degrees of freedom should be proportional to Re?/?
in each divection, l.e. Re'/t, Knowing that the time step size should in its turn be proportional
o the mesh size, we obtain that the total computational work to integrate the transient Navier-
Stokes equations grows like Re®/* x Re"*, ie. Re®. Hence, the number of degrees of freedom
increases o drastically with the Reynolds number that DNS are far beyond our enrrent computer
possibilities... One way of achieving a numerical solution of turbulent Hows is to take advantage of
the random character of turbulence by using a statistical method, An instantancous How variable
[ is decomposed into a mean part f and a fluctuating part f* as follows

F=7+f,
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Figure 1.8: A typical turbulent fow, (Left) Mean flow is stitbionary. (Ii.iﬂht) Mean How is bramsient,

where f is computed performing some averaging (the same definition holds for vectors). We define
hove the time iLVl‘!I';LﬁhIH n]ml'm.inn AR

y
Tumsta) = i 7 [ fta eyt

anel the ensemble averaging, defined as

N
- 1
-"Nmmnhln(‘rv” = }.&“3'!‘; N Z Tnla, 1),

nm]

where n denotes the n-th experiment of N identical experiments, all performed with the same
set-up and running conditions,

Although the concept of time averaging is more intuitive, the ensemble averaging has the great
advantage that any difforential operation commutes with the summation sign. For a stationary
flow, the two averaging processes are asaumed 1o be equivalent; thig is called the ergodic hypothesis,
The mathematical properties of ensemble averaging are assumed valid while the physical analysis
is developed in the framework of time averaging (e for comparisons or calibration of models
with cxperimental or DNS results), The peneralization of time averaging to transient How can be
done as long as two time seales can be distinguished: one for the fluctuation and one for the mean
flow. This is schematized in Figure 1.8, On the one hand, Figure 1.8 (Left) shows the signal of
typical stationary turbulent flow at a given point. On the other hand, Figure 1.8 (Right) shows
a transient turbulent How, where the time seale of the large seale variation is much greater than
that of the turbulent fluctuastions.

Decomposing the velocity and pregsure fields ag explained belore,

o= H+u,

p=p+p,

an averaged solution of the Navier-Stokes equations can be obtained; the resulting equations are
referred to as the Reynolds averaged Navier-Stokes equations (RANS) and were first derived by
Reynolds in 1895, They are:

1 (1.34)
0, (1.35)

(- Vu—-V- (2we(@) —7)+ Vi =
Vi
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where 7 is called the Reynolds stress tensor. s components are associated with the correlations
hetween the fAuetuation velocities and oviginate from the non-linear term of the Navier-Stokes
equations, the convective term. lis components are;

s ey

il = oty

The Reynolds stress has six independent eomponents, for which coupled differential equations
ean be derived. However, the non-linearity of the Navier-Stokes equations generates higher order
correlations terms, including pressure-velocity correlations: this is the so-called elosure prolbilem.
Appruximntinnrﬁ are therefore needed to solve this closure problems. The models emerging from
this stochastic approach and modelling # arve called Reynolds atress elosure models (see [35] for o
complete review). An excellent introduction to the modelling of turbulence can be found in [36].

1.3.2 The Boussinesq approximation

For practical engineering applications, approximations are needed to avoid solving the six addition
equations for the Reynolds stress tensor. Before making any assumption regarding the modelling of
the Reyvnolds stress, it is worth recalling some imporiant physical and mathematical requirements:

s [t is known from experience that turbulent effects are more lkely in zones of strong velocity

Assuming that its deviatoric part is proportional to £(%@) is the Boussinesq approximation
[37].

s The Reynolds stress tensor must be symmetrical, e, 7 = 7',

s i must ‘vi('.ld positive energy components, 1., 'Ell".‘r.‘ = 0Vdi=1,2,3 This ia known as
realizability,

e [t must be Galilean invariant,
s [i should leave the RANS equations invariant under translation and rotation,
s [t must yield similitude under the Reynolds number.

e The fluctuating momentum equations are invariant under an arbitrary translational accel-
eration, Within the limit of two dimensional turbulence, the Reynolds stress should be
completely frame indifferent (see [38] and [39]).

Following the Boussinesq eddy-viscosity approximation, as stated by the fivst item, the Reynolds
stress is modelled as:

i Qi) = ?im. (1.36)

where 1 is the isotropic eddy-viscosity and I is the ng-dimensional identity, This model ig called
isotropic because the eddy-viscosity is a scalar. While the validity of the symmetry is evident
(from the symmetry of the strain rate tensor), the normal stress components resulting from the
Boussinesq eddy-viscosity approximation could violate realizability if 1 is not chosen properly,
The tevin k& is defined as a positive quantity such that, by contraction of the later equaition,

R
k= =u'u"

:
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with obvious meaning, & is called the speeific burbulence kinetie energy. The proofl of translational
and rotational invariance can be found in [40). The Galilean invariance as well ag the gimilitude
under the Reyvnolds number are easy 1o check. The two-dimensional invariance is treated in [38]
and [39].

For the sake of clavity, we drop the overline sign used to identify averaged varviables. Then,
the Reynolds-averaged equations together with Boussinesq eddy-viscosity approximation given by
Equation (1.36) are

hu+ (u-Viu4 2w xu=2V [(v+w)e(u)+Vp' = f,
V-u =10,

where 14 i3 the kinematic eddy-viscosity and

Pt %k.
*

k being the turbulence kinetic energy,  Note that when using p* as the independent pressure
variable, it is not possible to preseribe boundary conditions involving the physical pressure p, such
asin the ease in which the traction is pregeribed (e, preseription of the atmosphierie pressure), At
most, the preseription of the traction will be an approximation to the real one, When computing
forces however, p* is the pressure variable to consider as the term 2/3% acts as an additional
novmal stress, These equations are the RANS equations, in their divergence form (the viscous
term is computed using the strain rate tensor).

1.3.3  Spalart-Allmaras model

The turbulenee model chosen to compute the eddy-viscosity is a one-equation turbulence model,
namely the Spalart-Allmaras turbulence model [41], referred to ag SA from now on, This madel
was devised “using empiricism and arguments of dimensional analysis, Galilean invarance, and
selective dependence on molecular viscosity”. Tt invelves an eddy-viscosity variable &, related to
the eddy-viscosity # by:

v = [y, 17, with (1.37)
3 I
=i A =, FIES o
Jru| = .\'H - c?‘.t X o
The transport equation for # is:
iz . I | DR - ' fie )
o U Vi = ey, Si + Ev e+ )98 + ?“(vr:)f - """‘r""cr_' (1.38)

where o is the shovtest distance to the wall and g is the Von-Karman constant. The eonstants
of the model ave given later on, Equation (1,38} is not the orviginal SA model, For the sake of
clarity, some terms have been voluntarily omitted, The laminar region and transition eannot be
simulated using the version presented previously; see the original publication of the authors for
more information l-“.].
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The function f,, is given by

14ef 18
I”, = [—r‘m“ ] - with

g° + e,
e L, L e L
i = ey, r), e T

g ean take velatively high values, so it is preferable to compute [, as

| l+r~tza_]*.

1 -+ t.‘ﬂ.“fg"

The production term, the first term of the right-hand side of (1.38) involves the quantity S
which s a function of the magnitude of the vorticity S and is gi\rtfn lay

5=8+ ;;;:-:FL»,. fug =1= 1_'!'1|L\f—n.
with
& = \/EFI'T(;)_QW and
Q(u) = 5(Vu - Yu).

When the frame of reference is rotating at an angular velocity w, the velocity gradients Va should
i s T 3 5 4 .
be replaced by Ve 4+ 82, where £27 s the anti-symmetrie tensor associated with

i
) = exjiwn,

where Cligi s the pm‘uumul.iml “tensor”. Therelore, ﬂ{u) translormsa into:

Q(u) = %(Vu — Vu!) + (Y.

The values of the constants of the model are
ey, = 01,1380, ¢, = 0,622, 0 = 0,667, ¢y, = 7.1, 6 = 041,
Cun =t [+ (14 tie)/ e = 0.3, 04y = 2.0

As mentioned earlier, the original model containg laminar and transition corrections, The first
correction enables us to predict laminar Jowsd with the solution &, while the second one enables s
to simulate the boundary-layer transition [41]. These corvections are not of interest in our case ag
they are only effective if the governing equations have to be solved up to the wall.

1.3.4 Boundary conditions

The inflow condition F. is computed using Equation (1.37) from an infow value of # given as a
fraction of the kinematic laminar viscosity, At the outllows, we impose

Vi-n=I(L
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real wall <L

Figure 1.0: Local gystem on the boundary Uy,
Cllassical approach

The classical approach consists in imposing the eddy viscosity to zero on the walls. However, for
practical flows with high Reynolds numbers, the resolution of 5A equations would require too many
grid peints in the normal direction to the wall. In order to avoid solving the whole boundary layer,
we introduee aowall function approach,

Wall funetion approach

The RANS and turbulence equations can be solved using the wall funetion approach on the bound-
ary of the computational domain. The wall function approach implemented in this work consiats
in assuming that the computational wall i located sufficiently far from the real wall where the
no-slip condition for the velocity holds, in order to avold solving for the large gradients present in
the boundary layer, Then we nse a model equation for the traction together with a non-penetrating
condition for the velocity (zevo normal component) as well as a model equation for the eddy vis-
mmh.y. Various methaods have been m-c:pnma-d s |i|$|,1|mr|n|lt. the wall I'umrt.irma; HOG £, [42] for their
application to two-equation turbulence models, [-13] for their application to the present turbulence
model and [44] for o general discussion. A possible alternative is now presented.

The wall functions are imposed on the boundary 'y, as given by Equation (1.26). In the
following, variables on Uy are identified with o hat, The distance at which the boundary s is
located from the veal wall is assumed to be known and is a user-defined value #; here y refers to
the distance normal to the wall. This approximation 18 eqguivalent to consideving that the wall is
virtually inside the computational domain, at a distance § from Ty, as schematized by Figure
(1.9).

Following [42], another possibility wounld be to impose the dimensionless § rvather than its
dimensional counterpart. Remember that

o LN ;
yl - =L, (1.39)
where U7, g the Iriction velocity, defined as
U. = T‘?’J‘-u"-. (1.40)

where T 18 the wall shear stress, However, this method would place the real wall at o varying
physical distance along Uap, with possible infinite corresponding g when £/, reaches zero, which oc-
cura near stagnation pointa. On the other hand, the method proposed in this work gives no control
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on g, Although the wall functions presented here ean be used up to the wall, the conrse meshes
generally accompanying the method would not peviii them to capture the near-wall gradients.

Let (gy,n) (or (g, gy, n) in three dimensions) be the local basis of the current wall point on
47 (see Figure (1.9)), @ its veloeity, and define U1 as:

(1.41)

Remember that w s automatically tangential 1o Uy oas zevo-normal velocity is imposed on [y
(see Equation (1.26)). The law of the wall for smooth walls is mainly divided inio three zones,
namely the viscous sublayer, the buffer zone and the turbulent zone, The so-called Reichardt's law
relates U and g within these three zones as:

i 1 e H' y" . o '
/™ = ;;In{l 404574+ T8 |1 = exp Sl el exp(=0.335")] . (1.42)

Using (1.41) and performing a Newton-Raphson scheme for the latter equation enables one to
eabimate UL, the value of 4 s known [rom a previoos iteration. Knowing U, we madel the
tangential traction as
U'.!

b ot b 1.3

1 i'ﬂ-| 1 ( )
and impose it as a natural boundary condition of the Navier-Stokes equations (Equation (1.26))
with

by = by, and
ly = bt -4 for 3D {lows.

ty 18 the shear stress exerted on the fluid by the computational wall which slows down the flow, and
this justifies why ¢, points in the opposite direction of the loeal velocity, In addition, reeall that
the law of the wall was devised for two-dimensional flows, It is known that the velocity component
parallel to the wall shear-stress follows the two-dimensional liw of the wall, By imposing equation
(1.43), the velocity is aligned with the total shear stress; note that only the magnitide of the wall
shear-stress can be estimated, This cholce raises another controversy, The law of the wall for the
velocity is deduced by assuming the following relation

Ut = fwt), (1.44)

Equation (1.44) states that the velocity scales with the wall shear-stress ty,y = pUZ. However,
we have just imposed Equation (1.43) which states that the lecal shear-stress ¢; is aligned with
the veloeity: in faet we had no other choice ng we hiave only information on the magnitude on the
characteristic velocity of the wall zone but no physical information on its direction,

Remark 1.2, The wall boundary condition is non-linear as it depends on |4]; this non-linearity
is conpled with the non-linearity due (o the convective term of the Navier-Stokes equations,

Remark 1.3, The value of § is unknown and can only be esfimated a priori. It could be caleulated,
for example, as a fraction of the distance to the first node oft the wall, In this work, it is taken to
b constant and adjusted in order Lo be aronnd y* = 30 as an average along the walls. Remember
that the high-Reynolds nmunber version of SA maodel ig only valid outside the buffer zone.
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Remark 1.4, The distance to the wall must be corrected to d 4 3; this is the value used in Equa-
tion (1.38).

The wall condition for # is computed by fivst imposing a value for 5. The classical mixing
length hypothesis is used together with Van-Driest damping funetion, i.e.

By = fﬁ”ﬂﬂ- ! ‘-‘T_”-Hli
Itz = KT |1 =exp 84 \ (1.45)
fie i i '.zﬁ
where
g = |t g for 20 flows,
ty = v’@?m—)’ + (- !f:g}l'? far 3D Hows,

i the tangential velocity, Equation (1.45) corresponds to the inner-laver equation of Baldwin-
Lomax madel, approximating the magnitude of the vorticity by [n- V|, The term n- Vg is the
norvinal derivative of the tangential velocity. The latter equation can be re-expressed in terms of
the dimensionless guantities as:

& o) E Fof &
. 3paird , ] dl/ R i

where dl/*+ /dij* is obtained by deriving Reichardt’s law (1.42). Finally, the value & of & on I'y is
caleulated by solving Equation (1,37) using a Newton-Raphson method,

Performing an asymptotic expansion [45] to the first order of the inner-layer of the Navier-Stokes
equations, and uaing the Boussinesq approximation, we find that

Liut .

{1+ )E);j'; =1 (1.47)
This equation states that in the inner region, the total friction is constant and is equal to its value
on the wall, even in the presence of pressure gradients, It can be solved by substituting the value
H,*' given by the law of the wall (1.46). From there, two different resulig can be olitained from the
integration of (1.47). The first one, referved to as “our wall-law asymptotic-expansion integration”
uges AU [yt = dU [dyt obtained by deriving Equation (1.42) with respect to y*. The second
one uses U /0yt without any approximation, Note that in this ease, the corresponding PDE
for (1.47) involves the square of the velocity derivatives, This result will be referred to ns “exact
agymptotic-expansion integration”. Knowing that U = 0 at y" = 0, Equation (1.47) can be
integrated numerically for both methods and compared to Reichiavdt’s law. This is shown by
Figure (1,10). According to the figure, it can be concluded that the laws of the wall used for the
velocity and the eddy-viscosity {F‘;qm.\,l.innﬂ (1.43) and (].4{3)] e r.uu'q_mi.il)ltn with the first-order
asymptotic expansion ol the nner region.



A4 CHAFTER . A FINITE RLEMENT MNTHOB Foijg INCORMPRESSINLE FLEWS

Chur wall-law nuympluilu‘nmunnlnn inlegration -
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Figure 1,10: Comparizon of U -profiles fn the inner layer,
An estimate for y

As will be shown in the numerical examples, the estimation of the distance § from the real wall to
the computaiional wall is of primary lmportance when using the wall function approach. This is
g0 that the computational wall lies in the desived [ully turbulent zone, which is where we expect
the law of the wall to be valid (say in the range ¢ € (30,80)), We propose two estimates for g,
one for internal Aows and another for open lows,

For a (ully-developed ehannel How at |tlp|h Reynolds numiber {]U"‘ Lo I.l]'?}1 the [riction eoeflicient
follows the so-called Halleen and Johnston’s correlation [46]:

ey = 0.0706 Re '/,

where the Reynolds number is based on the channel height # and the averaged velocity U/, By
definition,

2
i t’-

L

f.r_; = U_'l

Henee, from the definition of y* (Equation (1.39)), we have that

4 = 5.323)" Re /8, (1.48)
H
Figure (1.11) {Left) shows the variation of the dimensionless distance where the computational
wall should be located, with vespeet to the Reynolds number, and for various 5. This provides a
good estimate for the 7 to be chosen,

For an open flow, we could estimate ¢ by choosing the skin friction coeflicient obtained for a
turhilent flow over o flat plate,

of = 0,074 Ro~ /8,

where Re is the Reynolds number based on the length ¢ of the flat plate, Last formula is valid for
Re from 107 ip Lo 107, We olstain in this case

]

5= 5,100 4% Re~ /10, (1.49)
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Figure 1.11: A first guess for it (l'.;-i'l:) Bounded flows. (Right) Open fows.

Figure (1.11) (Right) gives the guess for g, for different ut, as a function of the Reynolds number,

The two eatlinates we have devived ean be viewed as upper bounds as, in geneval, pressuace
gradients will tend to decelerate the flow in the wall vegion, Still, although the value of § is
problem dependent, Equations (1,48) and (1,49) can provide a good indieation for the numerical
experimentaliat, as the numerieal examples will show. Let us just mention that a simple scheme
could help to adjust, the value g iteratively within the program, in order to obtain an average value
of #* i the desived range.

1.3.5 Linearization

Before deriving the Galerkin formulation of the problem we have to linearize the SA equation. This
stationary transport equation for the eddy-viscosity variable 2 is an adveetion-diffusion-reaction
equation of the form

u- Vo=V (eVE) +air = [

We have shown in Section 1,13 that, in the simple case 2 = 0 on I, this equation is 'well behaved'
when ¢ and g are both positive, In thig case, the hilinear form associated to the problem s coorcive
atied the finite element approximation to the problem i8 in prineiple possible for any positive value of
= and g (see in particular Equation (1.14)). Following this indication, the SA equation is linearized
as follows:

{h}m-i-l ) P 1 )
+ - V-‘L‘”H-l + f"nujurd_.:lr'""H - -d-V . [(l.-' -+ U'"‘)v:}m'H]

ai

_ (1.50)
= %{V'}m)i + \‘:hl “;l}mr

where the superseript i stands for the iteration iumber, In practice, in order to enable convergence
classical under-relaxation is introduced and several relaxation iterations are performed, We now
present the stabilized Hnite element formulation.

1.3.6 Time diseretization

The thime derivaiive s approximated by a baclkwarvd-Eualer or Crank-Nicolson scheme, as presented
in Section 1.1.5,
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1.3.7 Finite element formulation

We split the Dirichlet boundary I'p which was defined when dealing with the Navier-Stokes equa-
tions into an inflow and a wall component, Up o and Up g, respectively, such that I'p =
Um0 U U e Let s introduce the following functional spaces:

= {d e H' ()| dy, =0},
P={de Hl(“”"p“'h.u- = Posy P = 0h

for the elassical approach (ntegration up to the wall), and

W {(b e ”l(nﬂ‘ibll‘;.:ul'” - 0]"
¢ = {‘f’ € ”I“)H‘Jr’li'u = Voo, Pry = ;'.‘fl

for the wall funetion approach. Let us construet the funetional linear subspaces 4y © @ and
Wy, © W from the partition of 2. The finite element formulation for selving equation (1.50) is
the variational ."Hll:'{l,'t'ii.l scale model deseribed in 114, The finite element algorithm reads as
follows: Given ﬁ':""' 0 Py, for each time step o = 0, find for e = 0,1,... untll convergenee,

iﬁ;l"i"""*'l & Py, such that

R ] 4 ;
j En':l'__,;,h 51 / (1), - VI}LHH.HWI Yebp, oIS + / HI};:-H}"”-'-lif)h Jd
i it J 40

o _/’ e VTl gy, d + f y(wn - Vo) (- Vip) d2 = / kel
i o ¥

T

I:ﬂ"dr’h lS2 - / ra(Ve Vi = soby + £y, = Vi - Viehy,) R;};:"'p"'" dr
Y

i 43 i?lﬂ

/ ey - V) (R 0™~ Vo)A iy € W
i

We have introduced the fu”uwing varlables computed using the values of the eddy-viscosity variable
al the previous linearizatlon step

1 ~ yhele it
e = —(u+ay*t"),

- tif-# 1
7
— 1 N
4= 'r-'uuf'm T 1
i?
L& = rif-f oy 8 e pie i
f==(Vg, )7 ko Sy i
a
= Fifefl o 5 o 8 ]
and where RE'"""™ is the residual of the discrete counterpart of the SA equation defined as

R ] — N

i : .
lej;:.p.‘!,m - il | ﬂﬂ_‘ h 4oy, vf}:: Fdm . v ; (Evf’ﬂ Hl‘.lrl) e ""'}:: B m J‘v
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Note that the ASGS term invalving the convection of # is integrated into the left-hand side. The
vitlue for 73 is given by

-1
£ 2
1= | rgE+ =|up| +s
1 (hj h‘r | h! ) '
where ep = 4 and e = 2,
Remark 1.5, In order to avoid local oscillations, the discontinuity-capturing erosswind dissipation
presented in Seetion 1.1.4 ean be used.
1.3.8 Numerical strategy

The complete numerical strategy nsed to solve the coupled RANS and SA equations using the
integration up to the wall 18 shown in Algorithn 1.1,

Algorithm 1.1 Solution of the RANS/SA equations: classical approach
for all time steps do
while stopping criterion not reached do
Solve the RANS equations
Solve several times the SA equation using under-relaxation
Update the eddy viscosity
end while
end for

The numerical strategy used to solve the coupled RANS and SA eguationd using the wall
funetion approach is summarized in Algorithm 1.2,

Algorithm 1.2 Solution of the RANS/SA equations: wall function approach
As ancinitial guess, let 4 = 0on 'y
for all time steps do

while atopping eriterion not reached do
Solve the RANS equations
Knowing @ on 'y, find U/, using Reichardt’s law (1.42)
Compute &5 on Uar using Equation (1.46) and deriving Equation (1.42)
Compute the corresponding value of # on the wall from Equation (1.37)
Solve several times the SA equation using under-relaxation
Compute £ from Equation (1.43)
Update eddy-viscosity

end while

el fl;u‘

1.4 Examples

We now present three numerical examples. The first one solves the channel flow at a velatively small
"(.‘}FIIIJMH number, for which DNS data arve available. The nexi example is the backward facing
step in which we test the behavior of the wall function approach in the presence of separation,
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== e

Finally we solve the trangient flow past a squave eylinder. In all these examples, @ and y arve the
streamwise and erosswise directions respeetively, and u and v ave their respective averaged veloeity
components, At the inflows, we prescribe o uniform low given by

ti = U,
v = (),
¥y = Hpoos

where U and i depend on the problem, At the outHows, we impaose
a:n =0,
Vir:m = 0,

I addition, the symmetry lines ave always parallel to the @-axis. They belong to sy for the RANS
erquations and to Uy of the A equation, On these lines we impose

gican=4t =0,
wrp=y =,
Ve-n =10,

where g is o tangent vector to the symmetry line (it is parallel to the r-axis).

1.4.1 Fully developed channel flow

We golve a [illy developed turbulent channel flow, Let 2H be the height of the channel and 7 be
the uniforni mflow velocity (bulk velocity). The geometry is shown in Figure 112 together with
the boundary conditions, The channel flow is solved at the following Reynolds number

symmeiry line

y=H
-
inflow |—#= outflow
_h..
wall . =0

Figure 1.12: Channel Aow, Geometry.

Re = E{E = 13750,

Iy

and the vesults of the SA model are going to be compared with the theoretical resulta ag well as
the DNS results of Mansour et al, [47].



1. EXAMPLES A8

The RANS and SA equations are solved using the Q1/Q1 element an three different meshes,
adapted near the wall. We denote i ag the average element length in the vertical direction. Mesh
I has 10 elements in the vertieal divection, Mesh 2 has 30 elemenis and Mesh 3, 60 elements,
The channel is taken to be sufficiently long to let the low develop (1004). Before presenting the
vesults, led us mention that the shock capturing strategy is not NECOSEATY for the iterative schemae
L0 converge.

We now derive the fully-developed channel flow equations. Qur starting point are the RANS
equations (1.34) and (1.35). We define u, v, w as the averaged components of the velocity field
and o', v’ ' as the Huctuating components: p is the averaged pressure. Assuming a 2-D steady
and fully-developed flow, we set;

du dy eIt

6: = z-_:}-”: m 5, = (),
iw =10
Hence, the momentum equation gives
u = u(y).

while the continuity equation becomes

Simplifying the RANS equations according to the previous results, we have:

i P2 7 R—
pemomentum: 0 = ﬂg’f + 5y (Haﬂfg = 'fr-’v‘) ) (1.51)

y-momentum: 0 = ﬂ({y-‘)i + 1),
Ay
zemomentum: ) = E(mﬁf)_
dy

We drop the thivd equation as it is unnecessary to compute the bwo-dimensional field we are
interested in. Let us pregent some vesults eoncerning the fvietion coeflicient. The y-momentum
equation states that

playy) + W y) = flx), (1.52)
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where f(e) is a function of & only, Henee, by denoting pyu as the valie of the pressure at the
wall, and knowing that the fluctuation veloeity is zero on the wall due to the no-slip condition,
Sepuntion (l A2) can be rewritien as

pla, ) + ()2 (y) = pean()

and therefore

dp(e,y) _ dpwan ()
i ' e

Integrating the p-momeitum Equation (1.51) with respect to g and substituting the last equas-
tion we obtain
fdu e dpyan (@)
e = it = ey - (), 1.53
iy de Y () \1:0%)
where e(x) is a function of x only. At the symmetry line (y = H), the Reynolds stress tensor
component u'v' and dufdy must vanish and hence, we have that

ela) = - 'EE"":{‘:'_{_*_) i

Since o' is also zero at y =0 (no=slip condition), Equation (1.53) gives for the wall shear stress

g

el
Twall = H |7

= ph
el PH

dpw ill
it

wiill

which upon substituting into Equation (1.40)

Puall

H
U+=‘/—
Iy

i
fiil] |
U, = \/H & - (1.55)

(1.54)

or, eoquivalently

The [vietion coeflicient (or skin friction) 18 by definition
L 2
oy = Tw,.nf(EﬂU )

and can therefore be divectly ealeulated from the evaluation of the friction velocity:

We therefore have two ways of evaluating ey, using the pressure drop (Equation (1.54)), or nsing
the wall shear stress (Eguation (1.85)). Figure 113 (Top) (Left) shows the resulis obtaimed for
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Figure 1.18: Channel llow. Resulis of the three meshes, (Top) (Lelt) Friction coeflicient. (Top) (Right)
Law of the wall, (Bot.) (Left) Reynolds shear sivess. (Bot,) (Right) Mean velocity.

cp, calenlated in hoth ways, as a function of the mesh size b, and compare them to the friction
coefficient caleulated using Halleen Johinston's correlation,

e = 00706 Re /! = 6,52 x 1077,

We observe that for a fine mesh, the integration o the wall gives reasonable resulia while it Tails
for the wery coarsde mesh.

Table 1.1 gives information on the grid point spacing in the near wall vegion, Note that the
first prid point of the very coarse mesh falls very high in the law of the wall,

Mesh y/H first node g™ first node  Nodes with 3 < 10
1 0.06274 16.2 0
2 (L.00GOE 25 4
3 0.00032 (1.1 23

Table 1.1: Grid spacing in the near wall region,

Figure 1.13 gives some profiles obtained. In Figure 1.13 (Bot.) (Right), we can appreciate that
for the very coarse mesh, the mean velocity profile is not well captured. When using finer meshes,
the results are in good agreements with DNS data, For these meshes, i.e. Mesh 2 and Mesh 3, the
Reynolds shear stress as well ag the law of the wall are well captured, ag confivmed by Figores 1,13
(Top) (Right) and (Bot.) (Left). The first grid point of Mesh 1 18 located around % = 10, while
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Figure 1 14: Backwird feing step, (Left) Geometry. (Right) Detail of Mesh 2,

that of Mesh 2 and 3 are located much eloser to the wall, at y* = 1and y' = 2, respectively, Let
us mention that as we do not assume any law of the wall, the friction veloeity is caleulated using
asimple difference scheme in the first layer of elements; this explaing the quite big departure from
the law of the wall, shown in Figure 1,13 (Top) (Right).

1.4.2 Backward facing step

The backward [acing atep s a great challenge for turbulence models, as well as for the associnted
numerical strategies, In this work, 1t will be used to study the influence of the inflow condition
¥ and the wall-funetion parameter § used in the wall funetion approach. The step height is H,
the channel height 2/, the channel entrance is 64 -long and the total length of the computational
domain is 50H. The inlet velocity profile is uniform such that u = (I7,0). Figure 1.14 (Left) shows
ihe geometry of the problem.

Note that the entrance length is too short to let the How develop before the step entrance: it
ghould be pointed out that we expect that this enhances the effects of the inflow conditions, The
Reynolds number is

Re = % = 70000,

A in the previous test case, the backward facing step is solved using three different meshes
of Q1/Q1 elements, Mesh 1 has 550 elements, Mesh 2 has 2000 elements, and Mesh 3 has 8000
clements. A detail of Mesh 2 in the step corner s shown in Figure 1,14 (Right), The shock
capturing technigue is necessary for this tedt ense as well ag under-relaxation of the eddy-viscosity,
Figure 1.156 shows n typical convergence history obtained using the Picard method as linearization
technique for the convective term,

Before starting the computafion, we want to estimate §. Taking formula (1.48) for y* = 50,
we finel that g/H = 1.5%. Taking intg account that in the region of interest, i.e, the step corner,
the frietion veloeity 18 expected to be smaller, we will talke this estimate as o minimum value, Nu-
merical experiments show that the greater §/H, the better the convergence. Also, the intepration
to the wall seems to be much move robust that the wall function approach.

The first results were obtained on Mesh 2, Table 1.2 shows the variation of the reciveulstion
length 1 versus the inflow condition for the eddy-viscosity vy . The table also shows the effect of
the boundary condition imposed on the eorner of the step entrance, located at (6H, H). In fact,
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g/ H (%) voofv

i7i

WE vert, W zero W horiz,

——er— v

4.0 1 Tod 6.6 5.6
1.0 10 7.2 6.6 5.6
4.0 Laa 6.9 6.6 L
4.0 1000 4.9 6.3 5.6
2.0 100 7.8 6.0 6.1
4.0 100 7.2 6.6 0.6
8.0 100 64 6.0 5.0
[49] standard ke with W 6.6
[49] standard k-w with WF 1.8
[48] experiments 7.0

Table 1.2 Recireulation length for Mesh 2,

the normal at this point is not well defined, When using the wall funetion approach, we thevefore
have three cholees. Let the flow go vertical (denoted veri. in the l-ll'llt‘-}, impnm 0EOTG w-:lut:.il.y
(zero in the table), or let it go horizontal (horiz. in the table).

We now study the influence of the eddy-viscosity inflow condition. The more diffusive the flow,
the more quickly the momentum of the incoming Aow will dissipate down to the wall, and the
shorter the recireulation length, This is procisely what is mensured, although the dependence on
the inflow eddy-viscosity is very light. That is good news!

We notice that the boundary condition at the step entrance is really important, If the stream-
wise velocity is slowed down approaching the corner point, ie. il di/de < 0, then from the
continuity equation, the vertical component must increase. This means that when the horizontal
component of the velocity is zero at the corner, the flow will rise up when approaching it, and
therefore the vecirculation length is expected to be greater, The table confirms this remark.

The results exhibits a high sensitivity of the recirculation length to the wall distance . We
obtain variations of up to 20% for g/H = 2.0 to g/H = 8.0, As an indication, the experimental
reciveulation length ia 7.0 £ 1h and is talen from |il8]; wir ailzo Hi"’" the results h."' Soto [-'m],

Table (1.3) shows the mesh dependence of the results. When the mesh 8 vefined, the eflects
of the boundary condition at the step entrance diminish. 1t also compares the results obtained
when integrating the SA and RANS equations up to the wall, to get an insight of how the model



LT CHAPTER 1. A FIRITE BELEMENT METHCOD IFOR INCOMPRESSIILE FLOWS

Wall treatment  Mesh 1 Mesh 2 Mesh 3

WF veri. 9.3 7.2 6.3
WF zero 8.2 6.6 6.0
WI horiz, 5.9 0.6 5.7
Up to the wall 5.9 5.5 5.4

Table 1.8: Recieculation length [FH fov ey o fie = 100 and g/ H = 4%.

Behaves in the worst situation, With respect to the wall funetion approach, the model exhibits
a much weaker dependence on the mesh size. The recirenlation is under-predieted, but remains
reasonable. The resulis of this table should be compared to those given in Table 1.2,

Figte 116 shows the results obtained with the SA maodel for two different values of . The
top graphs give the variation of y* along the bottom wall of the channel beyond the step, The
simulation using §/H =8% vields values of 4 much larger than the recommended value of 30, The
second simulation, performed with §/H =2%, yields acceptable values of yt all along the wall.

1] 3604
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¥ 60 ¥* 200
50 175-
Lh 0
404 135
30 1004
30 A4 o
80 -
- 35 -
T T T T T 1 — " W
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Figure 1.16: Dacloward facing step, ., /12 = 100, (Top) (Left) g+ along bottom wall for §/H = 2%.
(Bot) (Left) Stremmlines for /0 = 2%, (Top) (Right) y+ along bottom wall for 5/H = 8%, (Bot.)
(Right) Streamlines for gﬂ".f = 8%,

1.4.3 Flow past a square cylinder

We solve a transient turbulent flow past a square eylinder, shown in Figure 117 (Top). When the
Reynolds number of the low is sufficiently high, the turbulent Hows undergo transient separation
and exhibit periodic vortex shedding beyond the cylinder. The capture of the features of the
vortex, Le. ita size and its [requency is of primary importance in engineering as it is responsilile for
the dynamic loading and torque exerted on the body, for example at the trailing edge of a turbine
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Figure 1.17: Square cylinder. {Top) Geometry, (Bot,) (Left) Mesh 1, (Bot,) {Right) Mesh 2,

blade or an airfoil, behind a building, ete. We base our numerical simulations on the experiment
of Lyn et al. [50] and on the numerical simulations with k-r models of Bosh et al. [51]. See also
the experiments of Durao et al. [52).

Through this example, we test the ability of the turbulence model (o capture the transient
turbulent flow. First of all, we want to check if the numerieal scheme is able to distinguish the
various scales of motion in play. In the case of a stationary flow, the signal is decomposed into a
mean and a fluctuating part with the fluctuating component participating to the extra diffusion
through the eddy-viseosity, However, it can ocour that another time seale participates, If this is the
case, we hope that the turbulence model will be able to manage time-varying mean variables. The
large time scale represents a coherent structure, the vortex, while the small time seale represents
the random turbulence fluctuations. We will see that both time seales ean be aceurately captured
by the SA turbulence model with wall functions. The situation in schematized in Figure 1.8 and
the Roynolds number is

I
Ri'= (Tﬂ = 22000,

where £/ is the inflow velocity,
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In view of treating large three-dimensional examples, we want to be able to solve this problem
on a rather conrse mesh, using the law of the wall, Mesh 2 is composed of 3200 Q1/Q1 elements,
The results on Mesh 2 will be compared to the solution obtained on a very coarse mesh, Mosh 1,
composed of 800 elements. Both meshes ave shown in Figure 1.17 (Bot.) (Left) and (Bot.) (Right).

Using Fauation {1,49) to guess the value of i for 4 = 50 and L = D, we find that §/0 =
3.2 1077 We will take a larger value as the presence of boundary layer separation will tend to
dimiinish the characteristic fvietion velocities on the wall.

We first solve the stationary problem on Mesh 2 and check that at the wall of the eylinder, 3"
lies within a reasonable range. Taking §/0 = 8% and as inflow condition for ¢, = 100k, we obtain
the vesults shown in Figure 1,18 (Top) (Left).

As expected, the stationary simulations give a symmetrical vortex, Figure 118 (Top) (Right)
shows the profile of the streamwise velocity on the centerline. The size of the vortex i over-
predicted in all cases, However, we observe that logically, a higher inflow turbulent eddy-viscosity
pives a smaller vortex length, The influence of the value of 3 has no significant influence on the
vortex length, For the sake of comparison, the figure also includes the resulis of the it:t.t,:grlltiml up
to the wall, which is expected to [ail for this very coarse mesh... however, the resulis are similar
to that of the wall funetion approach.

Table 1.4 gives the value of the drag cocflicient computed on the square. The results are very
close to those obtained by the veferences, although the latter are results of transient simulations.
Note that the references use a 4410 element mesh.

wil” treatment f_wll (%) *:'hsb-.rf"" T 5
i B_ - Ty

W 100 1.671 -

WF 8 1 1.738 -

WF 12 100 1646 -

Up to the wall . 100 L706 -

(51] Bosh and Rodi, k- with WF 1.G18  0.126

[63] Kato and Launder, k-= with WF 1.660 0.127

[50] Experiment - 0,135
_[_.',‘;l_r_l] Experiment for Re = 5 = 10° 2.19 (.123

Table 1.4: Stationary results, Mesh 2.0 Drag coefficient and Strouhal number,

Transient {low can he I'.I'iggm'm! by introducing a perturbation into the stationary golution, for
example, by introducing a small vortex near the wall of the eylinder. We have considered two thne
steps, a large one 8 = 0.8U/D and a small one 8 = 0,20/, The large time step was chosen
in order to resolve the vortex shedding with approximately ten time integration sfeps. Using the
experimental value of Lyn, we find 8 = (1/5)/10 = 0.74 U/ D, where 5 is the Stroulal number,
dlefined as

. D
5= f« 17'.!
_f, |mh1g tlie vartes she l!llug ]‘L‘t,'.qut"nc'.y. Fitler titne ilﬂ.(_e;.{j‘ﬂl.lt‘m 15 c':n!y firat ordoer in I-.';u'm, and when
naing the coarse thme step, the vortex is numerleally dissipated in few time iterations. The second
order scheme is more adequate to study fine transient simulations.  Figure 1,18 (Mid.) (Left)
presents the vertical velocity profile of a point P2 located downstream the cylinder as a function of
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time. It can be appreciated how that the second ovder Crank-Nicolson scheme performs well when
the Euler scheme fails, ie, for 8¢ = 080U/ D,

Figure 1.18 (Mid.) (Right) presents the results of a fast Fourier transform performed on the
vertical velocity at P, when the perfodic motion is well established (the spectrum were normalized
by their maximum values). The spectra shows a clear periodic motion, of higher frequency for the
small time step, From this plot, we compute the Strouhal number. Values of S are shown in Table
L5 for the different time integration schemes and time steps nsed. The table also gives the mean
diag coeflicient.

sk, virea ThioETaon % 5
Mesh 1, 1% order, M =03U/D 1.516G B
Mosh 1, 2" order, 4t =0807/D 1531 0.092

Mesh 1, 2™ order, 8t =020U/D 1565 0.107
Mesh 2, 1% order, &1 =080/D 1670 E

Mesh 2, 2" order, 8t = 08U/D  1.854 0.099

Mesh 2, 2" order, 8 =020/D  1.860 0.126

[51] Bosh and Rodi, k-z with WE 1.618 0.126

(53] Kato and Launder, k- with WF 1,660 0.127
Experiments (see [51]) 2.05-2.19  0.135-0,139

Table 1.5: Transient results, Mesh 2. Drag coeflicient and Stroulial number,

Finally, the streamwise velocity profile at the centerline is time averaged and compared to
experimental and numerical results in Figure 1.18 (Bot.) (Left) for Mesh 1 and 1.18 (Bot.) (Right)
for Moesh 2,
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1.5 Conclusion

In this chapter we have studied a numerieal strategy to solve turbulent flows. The numerical
examples have shiown the possibilities ag well as the limitations of the model. The use of the shock
capturing technigue and under-relaxation for the eddy-viseosity are in general necessary to make
the whole numerical strategy reliable and robust. On the physical level, the model hag proven to
be capable of differentiating the varions time scales of unsteady flows; this possibility is augpicious
in view of simulating complex unsteady flows, like for example rotodynamic flows which exhibit
strong unsteady patterns. For high Reynolds number flows, inasmuch we generally prefer to use the
wall function approach as a near-wall treatiment, but we must be aware of its numerical drawbacks
and physical imitations, In particular, we have shown the dependence of the results upon the
presevibed distance of the computational houndary to the real wall. However, the wall function
approach we have derived can be used for any value of this distance and iF unsatisfactory results
arve obtained, smaller values can be chogen, In addition, small values of the distance are physically
preferable as the incidence of the wall funetions on the resolution of the boundary layer will be
lower.



Chapter 2

Domain Decomposition Methods:
A Guide Overview and Proposal

In this chapter, we Hrat introduce domain decomposition methods at the differential level, We stavt
by studying a one-dimensional example in a more intuitive than rigorous manner, Although very
simple, this example is sufficient to present all the families of domain decomposition methods we
will deal with, In particular, we contemplate the possibility of using mized DD miethods on hon-
overlapping as well as on overlapping subdomains, Then, we consider the more general advection-
diffusion-reaction equation, and deseribe all the possible improvements that can be achieved to the
classical DI methods. In particular, we will mention the adaptive methods, At this point, we will
have introduced the necessary terminology Lo proceed with the variational appronch, The weak
formulation of the domain decomposed problem will enable us to justify the clioice of tranzmission
conditions, involving the essentinl and natural conditions, Then we diseuss some ways of applying
these methods to the finite element method and fnally we present the proposal of this work.

2.1 Study of a simple problem

Wi want to solve the following one-dimensional Poigson problem

i .
-5 = [ Vaelm=(=1,1), (2.1)
u = 0 At p==1,1,

We partition §2 into two subdomains §; and £2,, disjoint or overlapping, such that £, = (—1,4)
and 25 = (=4, 1) with 0 = 4 < 1, The solution on each subdomain is uniquely defined by
preseribing the unknown w or its first devivative, or, more generally, & linear eombination of both.
We propose to solve in subdomain €2 a problem of the form

d*uy e
—TEy - L Ve,
wy = 0 at e = =1, (2.2)
ey + A % = at m=4,

GO
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where oy and #) are two constants such that aq # 0 or g # 0, and in subdomain £2; a problem
ol the form

o
= rf-:.-:: = f Vaefl,
‘g = 0 ab =1, (2.3)
gtz -+ [ fl!ﬂ._t = i al = =4,
dr

where g and Ay are two constants such that ag £ 0 or A # 0. Boundary condiiions (2.2)y and
(2.3)y ave relerred o as Robin conditions, Le. a linear combination of Dirichlet and Newmann
conditions. The coeflicients o and aa will be referved Lo as the Robin coefficients,

The goal of domain decomposition methods is to construct the solution of the ariginal problem
ﬁ'nm [.lu'. .-.'ulul.inn:-s 8 auu] g 00 l‘-:ufh Hl,!ht]m:min. To do 2O, W0 fecd Lo !im] t:&:pl‘:‘:HH‘imIH fosr i atil
s such that

Uy = Uy

= g, .

For veasons that are going to appear elear along the discussion, we have to treat the digjoint case
(8 = 0) and overlapping case (8 = 0) separately, We first consider disjoint subdomains,

Disjoint subdomains

T treat disjoint subdomaing, we et 8 = 0. Intnitively, in order to have a well defined problem in
2, the solution must have a certain degree of regularity in £, For this second order prablem, it is
expected Lhai

, . {
%EL‘”:&%EE“:&HEL".

which means that both the unlnown and its fest derivative most be continuous anywhere, and
in |:;,|,1't,i|;'.ulu.r on the interface. For this one dimensional problem, the first order derivative at the
interface is the flux. To illustrate the need for this double continuity on the inferface, let us agsume
we solve each subproblem (2.2); -5 and (2.3);_5 imposing gy and gs, We first asswme that only
the continuity of the unknown at x = 0 s imposed by setting o = a2 = 1, ) = [y = 0, and
gi = ga = g where g is arbitrary, Figure 2.1 (Left) shows that the continuity of only the unknown
at & = 0 is not suflicient to recover the original solution of the original problem, ie. we have
g # w, and ug # uy,, for an arbitrary g. Now we set oy = ag =0, fir=f=ladg =g =g
where g la arbitrary, Figure 2.1 (Right) illustrates that the continnity of the fivst derivative of the
unknown is not sufficient to recover the original solution which is expected to be continuous.
According to this, we set:

duy
= ¥ il ; fpeamCF 24
n = aug + [ T (2.4)
dliiy i
1 = gy + ﬁuw- (2.5)
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Pigure 2.1: Example of solution to the Poisson equation for digjoint subdomains, (n) Continuity of the
unknown at the interfaee, () Continuity of the derivative of the unknown at the interface,

The imposition of the continuities of the unknown and (s frst derivative implies that the coeflicients
vy, v, A and Ay omust be chosen sueh that

[y e = ava /By | # O {2.6)
Then we linve at @ = 0 the following two equalities:

i = g,

duy  dus

il e’

I this 18 the case, Lhe vaviable u defined as

i ty in £y,
T owein (b,

is solution of Problem (2.1). In particular, we see that the Dirvichlet/Dirichlet coupling (3, =
Ay = 0) ax well as the Neumann/Neumann (0 = ay = 0) coupling are not possible. Many
choices of Robin conditions are possilile, for in principle, the coeflicients ay and A, (and/or aa
ane As) ean take any values different from zero as long as Equation (2,6) holds, However, the
Robin condition has no interest in solving such s simple problem; indeed, we remark that only
the Neumann condition is a natural condition of the weak formulation. The Robin condition will
(5T prt‘:\su:m:d later on when .-;I;mlyinp, the ADR equation. DD methods employing different type of
boundary conditions are called mized domain decormposition methads.

Overlapping subdomains

We now consider the overlapping ease, As in the digjoint case, we assume that g and gg arve given
by Equations (2.4) and (2.5). We are first going to show that the solution in the overlapping zone
{2 N £y i the game. Let us define w = wy = wa. Subtracting Equation (2.2), from (2.3);, and
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Equation (2.2)s from (2.3)s using Equations (2.4) and (2.5), we obtain

i d*w .
- 0 Yaue(=4835),
§ onu % = 0 ab =6, (2.7)
d
g + I il 0 alp = =4,

I ey or vy fve not zero at the same thne, this problem has o unigue solution w, and therefore,
= s in (=3,8), Also, we hiave necessarily continuity of the derivatives of «; at x = —§ and wus
at =4, as g and ws are both solutions of the loeal differential problems. Hence, the variable
delined as

- in 2y,
] wgin 0\,

or equivalently defined as

imy in $2\§%,
1 in ﬂz‘

18 golutlon of Problem (2.1).

The case vy = @z = 0 corresponds to the overlapping Neumann/Neumann coupling, for which
the solution of Problem (2.7) s defined up Lo a constant.
Relation between disjoint and overlapping methods

Let us consider the additive Schwarz methad with a small overlap, The transmission conditions of
the Schwarz method are

i

1w = g at @ ;

iy = at @ = —4.

Performing a forward and backward Taylor expansions at & = 0, the latter two conditions can be
substituted by imposing at @ = 0 the following two conditions

iliey ity
ot S TR R i
b i ua + i !
iy —Jmi =ty — ﬁﬂl‘lﬂ
da i

This is precisely a Robin/Robin coupling for disjoint subdomains with the choice o = ey = 0 and
= —fs = 4. This explaing why the R/R method is often referred to ag the fictitious overlapping
mwiethod [55].
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Iterative solution

We have shown how the solution of the original problem can be constructed from the local solutions
on two digjoint or overlapping subdomains, using transmission conditions of Dirichlet, Neumann
or more generally of Robin type. These transmission conditions involve the unknown and/or its
first derivative and are sufficient to uniquely define the loeal solutions. In addition, we have shown
that they must be different in the ease of digjoint subdomains but can be equal in the ease of
overlapping subdomains, excopt when hoth conditions are of Neumann type,

In practice, Problems (2,2);.4 and (2.3); 4 are solved teratively, Given u.'i' anil -ug, for each
k = 0, solve successively the following two problems:

[" dyFt!
_-_'_'2 — f YuoE “v“
il
; uftl = 0 at @ = —1, (2.8)
. dut*! dul
€y H.?'*'I + == = o ft-jj o [y =i ata = 4,
i ilx
andd
i a2kt .
——3,}— J Yuefls,
el
1 wH o= 0 at & = 1, (2.9)
T ' dut’
okt g Gl r i WE
il + [l et = pat] 4 fpe——— at @ = =4,
ki pa el 24y + Py i
where &' is an iteration index which can be
el k for the parallel version,
= k41 for the sequential version,

The choice k' = k corresponds to the parallel version also referved to as additive, in reference to the
additive Schwarz method; the choice &' = k4 1 corresponds to the sequential version, in reference
to the multiplicative Schwarz method. In addition, one or both transmission conditions ean he
relaxed in order to gain control on the convergence of the algorithim.

2.2 DD for the advection-diffusion-reaction equation

2.2.1 Disjoint methods

We consider the more general adveetion-diffusion-reaction (ADR) equation (1.1) in ng dimensions,
For the sake of clarity, we assume that we update the transmission condition of subdomain €1
at iteration k+ 1 knowing the solution on subdomain €2, at iteration k. Generally, the interface
transmission conditions of Neumann and Robin types try to mimic as much as possible the natural
conditions of the associated weak forms. We set therefore:

Oyt Hub

R O il SRPSSRE, e 3
(7L vl oy pittj + & B, (2.10)
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n; being the outward unit veetor normal to the interface of 2; and where the cooflicients p; have to
be determined for all the interfaces, Let us take for example the 1/2-weak formulation presented
in Section (1.1.3). I we choose the transmission condition to be the natural condition, then we
have to choose

1
Pi = ==a:Ty.
)
However, this is not a restriction and the transmission condition ean be penalizod iteratively,
Following with our example, we could also impose a transmission condition of the form

auk

ke i j
= —=(tt )i + ul A4 gt
2{ 2 v dny

1 ; ) uwk-f-t
=5la: nultt bt pesd

in;

We now present the most common DD methods, The family of DD using disjoint subdomains
is referred to according to the type of transmission conditions nsed, All the possible couplings lead
to the following methods:

Dirichlet/Neumann (D/N) method,

Robin/Robin (R/R) method,

Robin/Neumann (R/N) and Dirichlet/Robin (D/R) methods,
Divichlet/Dirichlet (D/D) method, Le. the Schwarz method,

The D/N method was first considered in [56] while its first application to the FEM is due
to Marini and Quarteroni [57]. They study the D/N method in a variational context for a two-
subdomain partition and show the convergence of the iterative method for the discretized interface
problem.  The method is extensively reviewed in [58]. In [59], the relaxed D/N algorithm is
applied to second-order elliptic problems, The authors derive a method to compute iteratively the
relaxation parameters (o achieve exact convergence in a finite number of iterations,

In [60], Lions introduces the R/R method as a generalization of the Schwarz method to non-
nvm'lnupin}g subdomains, He studies a multidomain formulation for the solutlon of the continuous
Poisson problem and the generalization to the ADR equation. In particular, he shows the strong
convergence of the algorithm but leaves open the question on the choice of the Robin factors.
In [61], the authors reinterpret this method applied to elliptic problems within an augmented
Lagrangian framework for two subdomains,

The incluzion of fivst order derivatives in the ADR equation with respect to the simple Poisson
equation adds some difficultics, related to the fact that Dirichlet and Neumann conditions must be
imposed in accordance with the direction of the flow when advection is dominant, This requirement
is at its turn closely related to the well-posedness of the local variational problems for which
essentinl and natural conditions are needed, as was shown in Seetion 1.1.3. This was the arpument,
for developing the so-called adaptive methods, Adaptive domain decomposition methods have been
derived for disjoint subdomaing to take into account the divection of the flow on the interfaces. In
[62], & DD method for the solution of a transport equation on two subdomains of the advection-
renction type is presented. A Diviehilet condition s imposed on inflows, and outBows are left free,
Tho anthors study the method through an iterative Steklov-Poincard formulation, and show the
convergence of the Richardson procoedure,

Carlenzoli and Quarteroni [63] intraduce the adaptive D/N for which a Dirichlet transmission
condition at inflow and Newmann transmission condition at outflow and also an adaptive R/N
method, further considored in [64], These methods are reviewed in [65).
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In [66], Trotta presents some adaptive methods, namely the adaptive D/N, the adaptive R/N
and their damped versions, In damped versions, the fux are not calenlated when the diffusion ia
sufficiently small. All these methods ave considered and applied in [67).

In its actual form the R/R method can be viewed as an adaptive method as the Robin factors
depend on the direction on the flow, Auge, Kapurkin, Lube and Otto [68] consider a R/R method
applied to the solution of singularly perturbed elliptic problems. In Eqguation (2.10), they define
f4 a8

where the presence of the term v; # 0 is necessary in order to satisfy Equation (2.6). They show
the convergence of the algorithm and suggest that +; should be of the form

i = \/(u rm)? o Ag, (2.11)
A being a well-chosen positive constant. Once again, we note that the second term of the last
equation is required to satisly Equation (2.6) when the advection is parallel to the interface, By

using an approximate factorization of the advection-diffusion operator as transmission conditions,
Nataf and Rogier [69] give a similar expression for v;:

o= \/((L -mi ) dae,

We note that a coupling using this transmission condition does not make sense when 5 = 0 and
when the advection is parallel to the interface. Finally, we note that the simple choice A = 0 gives

i = |a - i,

which is the adaptive R/N method [63]. In fact, we ean check that in this case, the transmission
condition given by Equation (2.10) involves the following quantities

i
E ab outflows
i, :
hi; i
E—— = (@ 1)1 at inflows.
O ( i)

This method also fails when the advection is parallel to the interface. The design of the coefficient
Yi van be hased, for example, on the study of the singularly porturbed case. On the one hand,
when the diffusion £ tends to zero, we want the Neumann part of the Robin condition to dominate
in arder to avoid artificial exponential lnyers near the interface so that

lim 5 = | - 724,
i =l)

On the other hand, in parabelic layers, the Dirichlet and Neumann parts of the Robin condition
must balance. This justifies the term proportional (o the diffusion in Equation (2.11). See for
oxample [70].

Lube, Miiller and Otto (71, 72] review the R/R method presented in [68] and apply it to a
iransient ADR equation.
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Alongo, Trotta and Valli [73] introduce a coercive 3-D/R and a f-R/R which generalizes the
latter R/R method. They consider the case of a two-subdomain partition and for the v-R/R they
set 71 =7 and y2 = 5. They propose a variational framework for the study of these methods and
show how 5 must be chosen in order to achiove convergence for both methods, In the case of the
7-D/R, they obtain linear convergence while no information on the convergence rate is obtained
for the other method.

We should also mention the Neumann/Neumann method [74], although it cannot be expressed
as an iteration-hy-subdomain method as given by Equations (2.8) and (2.9),

2.2.2 Overlapping methods

For overlapping subdomains, we have seen that only the N/N coupling is not possible. The method
using a D/D coupling was first studied by Schwarz [75] and recently, Lions [76] reconstdered the
method in a new light. See for example [77] for the convergence of the Schwarz method applied to
asingularly perturbed advection-diffusion equation. The other choices of couplings on overlapping
subdomains can be viewed as a peneralization of the methods devised [or digjolnt subdomaing, The
overlapping versions of mized methods have not received particular attention and are precisely the
basis of this work (see for example [78, 79, 80]). As noted by Lions [1]:

[ ... | the Schwars alyorithm [ ... | presents some properties (like “robustness”, or
indifference to the type of equations considered...) which do not seem to be enfoyed by
ather methods.

S0 what happens when mixed methods are used on overlapping subdomaing? Can we expect
some of the robustness of the overlapping Schwarz method to be inherited by overlapping mixed
methods? In the next chapter, we apply some overlapping mixed coupling to a one-dimensional
ADR equation and try to answer this question. In Chapter 4, we introduce a possible mathematical
framework of study of such methods, taking the example of an overlapping D/R method,

2.3 Implementation of DD methods

In this section, we are going to present a general framework for designing mixed domain decompo-
sition methods for finite element applications. The discussion that follows is not absolutely formal;
the formal mathematical framework will be presented in Chapter 4.

We want to solve a partial differentinl equation of the form

L = f in {,
=10 on 911,

where L is a differential operator given by Equation (1.1) and f a given function. We assume we
look for solutions in V' = #j(£2). The last equation ean be reformulated in a variational wiy as
follows: find u & V' such that

afw,v) = {[iv)g Vvel, (2.12)

where the bilinear form can be anyone of the three bilinear forms considered in the last Chapter
and given by Equations (1.5), (1.7), or (1.8).

We divide 7 into two non-overlapping subdomains O and Qs with interface I, Let us introduce
the spaces Vi = Hj(f) and Va = H(fl:). We also define A = HV/3(I"). The iterative domain
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decomposition prablem reads as follows: given initial guesses, for each & = 0, find v4* € 1] and
H..f{""l & 1% sueh that

rﬂi('ﬂ-f.l I.'f.‘[) = (f, l.’|)”1 W L& (= 1’1“.
”:\-H - ,“5}- on I
(2.13)
as(us "' vg) = (f, v1)q, Vi € VP,
t.'.;;{'u..f,"'"l yEagt) = =ay {'H.:"I b i) + U. Eivpya, +{/, Eypidiz, YpE A,

where Ey and F; ean be any extension operators from A to V) and Va, vespectively. It can be
shown that if Algorithm (2.13); .4 converges, then its solution is that of Problem (2.12) (see o.p.
[58]). Equation (2.13)s vepresents the Dirichlet transmission condition, i.e. the continuity of the
primary variable, Let g; be the quantity involved in the natural boundary conditions of the weak
formulation of subdomain i for i = 1,2, Le. g is the boundary term coming from the integeation
by parts of the bilinear form, Therefore, it can be easily shown that Equation (2.13)4 implies the
continuity of g; across the interface, i.e, we have that

H.:‘h” = rféll o l".

Obwiously, the nature of g depends on how the terins of the original differential squation are
integrated by parts, and it is glven by Equations (1.5), (1.7), or (1.8) according to the bilinear
form used. If we consider the 0-weak formulation, i.e. if only the diffusive term is integrated by
parts, the tranamission condition is nothing but the diffusive Hux across the interface. By using
the 1/2-weak formulation or 1-weak formulation, the transmission condition would involve a Robin
condition. This states that Problem (2.13); .4 can be derived from the continuous differential
equation using a Dirichlet transmission condition when solving subdomain 1 and a Neumann (or
Robin) transmission condition when solving subdomain 2. Therefore, at the differential level, we
formulate the DD method as follows: given initial guesses, for each & = 0, find u':""" and ufg" U such
Eleat

Lu’}:“ = f in 12,
wit = on AN\,
eai" o= ol on I,

Luz?' = § in §a,

M.E' b= 0 on J\T,
Y on T,

We recover the mixed domain decomposition method introduced at the beginning of this Chapter.

Now let us po the diserete level and assume that the nodes in the overlapping region and on
the interfaces coincide, As in the continuons case, we have that if Algorithm (2.13), 4 convergos,
then its solution is that of Problem (2.12). However, when dealing with discrete subspaces, Equa-
tion (2.13)s ne longer implies the continuity of the diserete counter parts of the #;'s. This means
that the finite element DD problem cannot be derived directly from the continnons differential
problems without special eare. This point will be treated in Chapter 5 and is related to the fact
that genevally Luy, # [ where uy is the finite element solution in €y or 02, Let us give up the
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differcntial formulation for 8 mament,

According to the space diseretization used, we denote u the veetor of unknowns in 22, Problem
(2.12) leads to an algebraic system of the form:

Au=TF, (2.14)

We denote vy and ug as the vectors of unknowns of 25 and 2, respectively, excluding the interface
veetor of unknowns that we denote u,, By performing a simple node reordering, System (2.14)
onn be written as:

A} 1 { A|“ 11 l‘l
0 An Ay, g = fa |.
A-ul Ar:'.l Auu 8 P fg.

The solution of this system yields for the interface unknown the so-called Schur eomplement system

Qrf u-r: = xr_n

where 5, and s, are given by

Q. = Qi + QY
tllll} = ALI(E - AMAL:IAm for i = 1,2,
Xy = f,, o ﬁ.,“Aj'II I'; = A;,HAEQI l‘2|

and the matrices A for 4 = 1,2 are the contributions to the matrix Ay, from each subdomain
to the interface unknowns such that

‘A'ﬂ" - lArlllnl + Ar(i“p‘

We now consider the algebraic equivalent. of Problem (2.13);4. This problem leads to two de-
coupled algebraic systems to be solved sequentially. By performing some algebraic caleulations,
these two systems can be reduced to o low dimensional algebraic equation for the nnknown on the
interface w,. The resulting algorithm i8 a preconditioned Richardson procedure for the interface
unknown of the form

“f,'l:+l o P_i{xn - eru,‘:) + Ll::.

where the preconditioner P is given by

P -I = Qf’la) 1'
an depends divectly on the integration by parts which is performed to obtain the weak formu-
lation.  For example using the O-weak formulation we obtain the so-called Dirichlet/Nenmann
preconditioner, while the other two weak formulations lead to Dirichlet/Robin-like precondition-
ers. There are others possibilities, like the Neumann/Neumann method [74] mentioned previously
which consists in taking

P =0 Q" o ou® !,
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with ey and oy being two positive constants, This method has also a differential interpretation
[58]. In [81], the authors set up a Robin/Robin preconditioner, Berselli and Saleri [82] maodify
the classical Dirichlet /Newmann and Newmann/Neumann preconditioners to obtain symimetric and
pasitive definite preconditioners in order to solve nongymmetric elliptic problems.

We have established the link hetween Divichlet/Neumann(Robin) iteration-by-subdomain meth-
ods and Richardson procedures for solving the Schur complement system. From a more general
algebraic point of view, domain decomposition methods [83] aim at devising well preconditioned
iterative procedures for solving efficiently the Schur complement system. As a first improvement
the Richardson procedure can be sccelerated by using Conjugate gradient or Krylov subspace meth-
ads. In addition, such algorithms are in general not scalable, 1.0, the convergence deteriorates as
the number of subdomaing increases, Therefore, a coarse grid preconditioner may be necessary
to provide a global communication between the subdomaing [66, 84, 3]!: this is the multilevel
J,[ppm;lcth, For H:-:u'.rn.l discussion, see the survey papers IBE, 55] or the bhooks [33. 5-5].

In the previous section, we presented the Schwarz method in a differential context, Within the
algebraic framework, the Schwarz method is used as a preconditioner, generally inits adeditive form,
although the multiplicative form can be used together with a multicoloring technique 86, 83]. The
Sehwarz method can also be related o an levative procedure for solving the Schur complement
system, ns shown in [87).

The domain decomposition methods we have been talking about are called geometric, in con-
trast with algebraic DD methods [88] which decouple the computation working direcily on the
global matrix A without any knowledge of the geometry. The former have the advantage that they
can take into account the local characteristic of the flow to design eflicient methods; the latter have
the practical advantage that they ean be used as a "black box" integrated in the algebraic solver,
al the risk of being less eilicient.

We have briefly explained how geometric DD methods for disjoint subdomains lead to a veduced
problem for the interface unknowns, as well aa the particular case of the overlapping Schwarz
method, In Chapter 4, the variational formulation of the DD problem (2,13} 4 will be extended
to the ense of overlapping subdomains. We will show that all the previous discussion on non-
overlapping subdomaing can be extended to the case of mixed DD methods using overlapping
subdomains. In particular, we will establish the link and sometimes the equivalence between the
diffevential, variational and algebraic formulations.

2.4 DD for the (Navier-)Stokes equations

In principle, the application of the DD techniques mentioned previously to the solution of the
Stokes and Navier-Stokes equations ean be done. We vefer the reader to Quarteroni and Valli's
hoolk [58] (see also [89]) for the Dirichlet/Neumann method applied to the Stokes and [90] for DD
methods applied to the Navier-Stokes equations, See also [70] for the R/R applied to the Stokes
and Oseen equations and [91] for the R/R method applied to the non-stationary Navier-5tokes
eguations, For convergence restlis of the Schwary method applied to the Stoled equations see [75].
and see [92] for the application to the Navier-Stokes equations. When dealing with non-conforming
prids, we have several possibilities that will be described in Section 5.6. Here, we just mention the
mortar element method [93], the fictitions domain method [94] and the Chimera method [95],
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2.5 Proposal

Algebraic as well a8 geometric methods (in the sense explained above) work on conforming dis-
cretizations. (.)“:l' [-?:Hil] in I.hiﬁ work is to t‘ilh‘jiﬂ]] D’) jnt‘:tl'[()dﬂ to be t[ﬂq‘:(l o1 "(;”qyn"ﬁn'n'li”g 1101~
overlapping or overlapping grids, involving moving subdomains. Therefore we have no algebraic
equivalent. and we must act on the purely geometrical level, More clearly, we would like to use as
iransmission conditions the essential and natural conditions to build an iteration-by-subdomain
]Hl.'lrhul'l. SIH‘II il .."'\Ll'ﬂt.l.-'l!!l'lv woiill t‘.l]i‘llll(? 1is Lo use {“ﬂ'l?]'{-![][ fnite t‘!lt?lllt'lll; ilill?l'i}xiI'I'IR'.iUHH- on different
grids and to solve different physics on each subdomaing (heterogeneous DD methods). In addition,
the possibility of nsing overlapping subdomaing would provide a very powerful tool to treat complex
geometries by simplifying the meshing process, for example by designing Chimera methods with
mixed couplings, Finally, if we ave able to build a Master/Slave strategy to exchange transmission
conditions between the subdomains, then the modifications to the original finite element solver
would be minimum. The purpose of this work Is to devise such an algorithm.



Chapter 3

One Dimensional Analysis

In this chapter, we analyze three families of overlapping and non-overlapping domain decomposition
methods for salving the one-dimensional advection-diffusion-reaction. The first one is the Dirich-
let /Divichlet method, or Schwarz method, which is a purely overlapping method: the second one
uses o Dirichlet /Nenmann conpling for overlapping or disjoint subdomains, the latter version being
the classical Dirichlet /Neumann method; the third one uses a Dirichlet /Robin method for overlap-
ping or digjoint subdomains, the latter version being the classical Dirichlet/Robin method. In the
firat section, we present the domain decomposition algorithms. Next, we study the convergence of
the unrelaxed sequential algorithm, and, in particular, its dependence upon the overlapping length.
Apart from the general ADR equation, we study three limiting behaviors of the equation, Le. the
Poisson equation, the advection-diffusion equation, and the hyperbolic limit. Then we study the
relaxed sequential versions, In the [ollowing two sections, we consider the unrelaxed and relaxed
parallel methods, Finally, we sum up the resulis obtained and dvaw some conclusions,

3.1 Problem statement

We consider the following advection=diffusion-reaction equation in one dimension

i il
L= —E— A==t sy = J Yaeell=(-£,6), (3.1)
w=1 at @ = =, fs,

where £; and £2 are positive. We agsume ¢, and s are constants such that

£ >0, =0,

and impose a constant advection a such that
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The Péclet number Pe and the reaction number R of the equation are non-dimensional parameters
defined as

il
Pa = L.
E
af
R = —,
il

where £ = 0 + {3 15 the tatal length of the domain,

3.2 Domain Decomposition Algorithm

Let §3 = (=0;,4d) and 2y = (=48,6) with 0 < §& < min(fy, f). We define the following non-
dimensional variables (7 = £, /{, #5 = {3/{ and 6% = 4/{. Obviously, we have that

8% < min ({7, 13). (3.2)

The general iteration=hy-subdomain domain decomposition algorithm of overlap 24 to solve
system (3.1)) s reads: given initial guesses «? and ud, find «f*" and «f*" for & = 0 such that
. 1 3 i 3 =

Luf"" = Ve,

wf"" = at ® = =f;, (3.3)
Tty = 8 Byl + (1= 6) By(ul) atx =4,

Lug ™! = f Ve,

g+l = 0 at a = fq, (3.4)
Dy(ubt') = Oy Bulul) + (1= 8y) Da(uh) at x = 4,

where & and 4 are the linear functionals representing the transmission conditions at § and —4
respectively, @ and @ are positive constants, called the relaxation (or acceleration) parameters,
and K7 i an iteration index which can be

- k1 for the sequential version,
]k for the parallel version.

If wo assume the solution of problem (3.1);_s satisfies the transmission conditions, then the
Ed E41

error ¢; ' =y — u verifies the following homogeneous system of equations for & = 0
Lt_e‘}"" ' = 0 Ya e,
r__:.r-l-l - D at = —¥f;, (3.5)
tbl(ﬂ’;'"") =t Py(eb)+ (1 =8) ¢y(ef) otz =4,
Legt! = 0 Y €,
bt = 0 at @ = {y, (3.6)

By(eht) Oy Ba(ek') + (1 = 81) a(eh) otz = =4,
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We define three possible transmission conditions of Dirichlet, Neumann and Robin types:

Divichlet : @) = u, (3.7)
Noumann @ ®y(u) = ct'ng,
. 1
Robin : P (u) = eu'n, - -:E(n.u;.)-u. (3.8)
where I holds for Divichlet, N holds for Newmann, B for Bobin, and n, is the exterior normal
which can take the values ny = =1 and py = 1. The Neumann and Robin conditions congiderad

here correspond to the natural conditions of the 0 and 1/2-weak formulations of the ADR equation,
respactively (see Seetion 1,1.3).

The combinations of the first condition with any of the three at @ = =4 and ¢ = § will
lead to three families of overlapping domain decomposition methods, Dirichlet/Dirvichlet (Schwarz
methad), Divichlet/Nenmann and Divichlet/Robin. According to where each of the possible trans-
miggion conditions can be presevibed, Le. at @2 = —4§ and 2 = 4, we define the following five
couplings:

D/D: &) = by = I,
N/D: @,
D/N: §; = Bp, &; = dy,
R/D: &) = dg, P = dp,
D/R: @, = bp, by = by

1]!N y ‘l'ﬂ - 'I'I'h

For the names of the mixed methods, we have explicitly indicated where the Divichlet eondition is
imposed in order to study the eflects of the adveetion, which renders the loeal equations in each
subdomain dependent on the direction of the flow, Note that another coupling involving two Robin
conditions is also possible, although it will not considered horve,

Let us solve Equations (3.5)) and (3.6);. The general solutions are of the form
r.'f*" = .*lf'” exp [(w + T)a] + B exp [(w — 74,

where A:‘ Fg and Bf‘ "% are constant depending on the boundary conditions, and w and 7 are
given by

i 1 =
T = =/ 4 dea,

Y 2

or, in terms of the non-dimensional quantities Pe and R defined previously,

P 1 I ]
s T=S  (Pe/2)% 4 PeR.
Applying the boundary conditions given by Equations (3.5)2 and (3.6)a, the errors are given by

el (@) = OFY exp (wa) sinh(r(6 + 2)),

ebt(a) = O exp (we) sinh(r(fy — x)).
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where CL'f"'“ el (’_.‘g"'" are constants depending on the transmission conditions (3.5)y and (3.6)4.
The following simple estimates hold for the ervor:

|i¢:’;‘""(;r.'}| @ = |C-”{"”| sup |exp (we)sinh(r{ly + )},
rielly
[les™ ()] |o e = |G'.f,‘ F sup | exp (we) sinh(r(fa = 2))].

I
willy

We now develop the expressions for the error coefficients CF (i = 1,2), and also set up a general
;_uul]y,\si:g framework to be able to COTH LT all the DD methods of interest in o systematie way. As
a first step, let us introdice the following matrix notation,

hil
el = [ 0
(7 48
As will be seen in the following sections, all the DD algorithms lead to an algebraic system of the
form

et = Gl

4 i ! ; i k- | e 1 s OV,
where C is called the iteration matrie, The ervors e ! () and e () will converge to zero as the
iteration proceeds if and only i limg e e’ = 0. It ean be shown that a necessary and suflicient

condition is that the spectral radius p(C) of ©, also called convergence rate, satisfies
p(C) = 1. (3.9)

This convergence criterion s an asymptotic statement which does not ensure monotonicity of the
convergence. Only in some particular conditions we will be able to abtain o norm estimate, as s for
example the Ly matrix norm. This is precisely the case when the iteration matrix C I8 symmetric.
For such matrices, we know that [|Clla = o(C) where |- ||z 15 the matrix norm corvesponding to
the Buclidean vector norn || - ||s (also called root-mean-square vector norm), and defined as

Cx|l.
(|C]ls = sup "_‘fll-‘
elio 1%l

Therefore, il matrix C 15 symumnetric, we have

el = 1T e¥|la,
€Iz fl* 12,

(€[ 12,

1A

and if condition (3.9) is satisfied, the scheme i3 said to be monotonically convergent with respect to
the Lo-norm. We will see that this is the ease of the unrelaxed and relaxed sequential DD algorithms
presented here, whereas the parallel versions are in general not monotonically convergent.
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3.3  Unrelaxed sequential version

3.3.1 General case

Five conplings will be studied in detail, namely the D/D, N/D, D/N, R/D and D/R, The differ-
entintion between the N/D and D/N methods, as well as between of the R/D and D/R methods,
relerred to as mieed methods, s necessary because of the asymmetry of domain decomposition
methods in general. We will see how the convergence depends on the relative gizes of the subdo-
maing, as well as on the divection and magnitude of the advection field (remember that we have
assumed a = 0). This is obviously the case in the hyperbolie lmit, for which the direetion of the
advection field is an essential characteristic of the problem, As a first approach, the relaxation
[actors are set to 8 =y = 1, The effects of under-relaxation will be studied in a separate section
i order nol Lo complicate the analysig of the methods,

It can be noted firal that the equations for the ervor coefficients derived from Equations (3.5)3
and (3.6); with &' = & + 1, can be generally written in the following form when 8; = 65 = 1, for
any k=0

et = g, CY, (3.10)
Cit! m Ot (3.11}

where gy and ga do not depend on the iteration number k. Rearranging Equations (3.10) and
(3.11) we obtain gimply, this time for & = 1:

kol | &
f-". *l = (131 \f."#(-"'.e s
) 1 b
Cit = pypaCt,
which Hi“""" the following ieration matrix

e #1é3 0 } .

0 ez

Obviously, matrix © has a single eigenvalue A of multiplicity two:

A=pios
Let us define
o= p(C),
and we have therefore
e=lee,

C being a diagonal matrix, the convergence of the unrelaxed seguential version of the DD algo-
rithm is monotone with respeet to the Le-norm if p < 1.

We now determine the expressions of p for each of the five DD methods, before establishing
the conditions [or convergence,
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D/D method,  Dirichlet conditions are imposed at both @ = § and 2 = —d. The transmission
conditions give:

$y (e ™) = OFM exp (wd) sinh(r (6 + 6)),

By (e ) = O oxp (wd) sinh(7(2; — ),

Pa(ef ) = CF axp (—ws) sinh(r(0) = 8)),

Pa(eh ™) = O3 exp (—wd) sinh(r(fq + 6)).

Substituting these equations into the equations for the error transmission conditions (3.5)3 and
(3.6)3, we find that gy and gs are given by:

_ sinh(r(f; — 4))

~ sinh(r(f) +4))’ (3.12)
_sinh(7(f; ~4)) .
S sinh(7(fy +4))" (3.13)
and therefore,
_ sinh(r(fs = &) sinh(r(f; — 4)) Gk

= Sinh(r(ls + 6)) sinh(r(fy + )

N/} method, A Neumann condition is imposed at @ = d and a Dirichlet condition at @ = —46.
Knowing that n, = 1 at ¢ = 4§, the trangmission conditions give:

*llx(c:f'"") _ C",” 1 exp (wd)|ew sinh(r(f) + 8)) + er cosh(r{¢; + 8))],

By (e = CF oxp (wd)[ew sinh(r(ly - 8)) = er cosh(r(fy — &),

By (et ™y = O exp (—wd) sinh(+(8; - ),

‘I’g(ﬁ’:;-'-l) = t‘_'l'.}""l exp (=wd) sinh(r(fy + 8)).

Substituting these equations into the equations for the ervors transmission conditions (3.5)5 and
(1.6)5, we obtain:

_ wsinh(r(ly = 8)) = 7 cosh(7(fy — d))

. wsinh(r(f; + 6)) + r cosh(r(f; +4))° (3.15)
_sinh(r({; = 4))
o= ginh(r(fy + 4))° (3.16)
Noting that 7 = w, we ean show that py is alwaya negative. Therefore, p is given by
_sinh(r{fy = 8)) wsinh(r(fs ~ 8)) ~ 7 cosh(r(l; — §)) (317

sinhi(r(Ly + 6)) wsinh(r(é, +8)) + 7 cosh(r(¢, + 8))°
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D/N method,  We impose a Dirichlet condition at @ = § and a Neumann condition at @ = —4d,
Knowing that n, = —1 at @ = =4, the transmiasion conditions give:

*In(-:'*'“) = G“"“ exp (wd) sinhi(r{{; +48)),

By (eh ) = O exp (wd) sinh(r(f - 6)),

Dy(ef ') = OF oxp (—wd)[—kwsinh{r({; — 8)) — kreosh(r(f; — §))],

Bo(eltl) w I oxp (=wd)[=kwsinh(r (s 4 8)) + kreosh(r(ly + 4))],

ane gy amd go ave given by:

.. Sinh(r(f; — 4))
S e A (3:18)

- J;ﬁ'mmm 3) —nfmh(r(ﬂa M)) (3.19)
It can be shown that gu is always negative. Therefore, the spectral radius is
_ sinh(r(ls — 8)) wsinh(r((y — §)) + 7 cosh(r(t, — 6)) (3.20)
sinh(r(fy + &) wsinh(r(fy + 6)) = 7 cosh(r(ly + 4)) =
H,/D method. A Robin condition is imposed at 2 = & and a Dirichlet condition at @ = —4,

Noting that 7, = 1 at & = 4, the tranamission conditions give:

By (efy = CF exp (wd)[kr cosh(r(fy + 8))],
Fyleb') = CY' axp (wé)[—kr cosh(r(fy — 8))],
Dy (ef 1) = CF oxp (~wd) sinh(r(¢; — 4)),

By () = CFY axp (=wd) sinh(7 (s + ).

Substituting these equations into the equations for the ervors transiniasion conditions (3.5)y and
(3.6)3, we have:

cosh(r(ly — 8))
cosh(r (6, 7 8))" (i)

_ sinh(r(l, — 6))
= Ginh(r(ls +6))"

mhE-=

(3.22)

and the spectral rading is

_ainh(r(fy = 8)) cosh(r(fs: —d))
~ sinh(r(fs + 8)) cosh(r(£; + 8))
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D/R method. We impose a Divichlet condition at @ = d and a Robin condition at » = —d.
Noting that n, = 1 ot 2 = a, the transmission conditions give:

@y (ef ) = Cf Y exp (wa) sinh(r(8 + 8)),

Py (et 3 exp (wd) sinh(r(f2 = 8)),

By (e ) = O oxp (—wd)| kT cosh(r(f; — 8))],
Pafes ) = O3 axp (—wd)[kr cosh(r(f: + 8))],

which gives

 Snhirtes - 9)) g i
f > sinh(r(f; +4))" (P:85)

o SR 0] 3.
0= T Cash(r(fa + 8)) \ed)

and leads to the following spectral radius

= aln]u{-r(h —Ji)} cosh(r(f; — d))

S

= wmh{-*r[ﬁ + &) cosh(r(ls + 48))"

Despite the complicated aspects of the expressions developed for the g's, we can draw some
general conelusions about the DD methods studied here. First, we note that the D/D method is
always convergent for any 4*; knowing that sinh(z) is an increasing funetion, we conclude from
Equation (3.14) that p < 1 whenever % = 0. We note also that D/D method always behaves
indifferently with respect to relative lengths of the subdomains, In fact, interchanging £; and £ in
Equation (3.14), we recover exactly the same rate of convergence, The R/D and D/R methods do
nol share exactly this property, but nevertheless exhibit an interesting symmetry. In fact, let us
call I the length of the Dirichlet subdomain and fx that of the Robin subdomain. We ean easily
check that both the R/D and D/R methods give for the spectral radius

N amh(r[fn — 8)) msh{'r(ﬁp —r‘;))

Rlull(f{ﬁn + 4)) mn];{r(ﬂ“ + ﬁ])

Thia property ensures g that the Divichlet and Robin conditions can be located independently of
the direction of the flow. This is not the case of the Dirichlet/Nenmann-like conpling.

The convergences of the five DD couplings is now presented for three limiting behaviors of the
original equations, The fivst cnse is the purely elliptic equation for which we set a = 0, and 5 = 0.
The second ecase stidied g the original adveetion-dillusion equation withoit reaction, Le. & = (.
Finally, the advection-diflusion-reaction equation will be atudied in the hyperbolic limit, Le. when
Pe = oo, For ench of these cases, we give the simplified value of the spectral radius as well as the
stability criteria (g < 1) in terms the overlap 8 and finally compare the five methods,

3.3.2 Poisson Equation

To abtain the Poigson Eqguation, we set £ = 0, ¢ = 0, and 4 = 0. The equations for the C"” g ean
bt found taking the limit 7 = 0 nnd w = 0 in Equations (3.14), (3.17) and (3.20). Ohkuﬂy. the
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Rabin type condition is exactly the same than the Neumann condition for there is no advection,

We find:
- ‘.l.i__"'_si ‘flé - r5"

DIV 0= ETE e

[y -4
N(R)/D: p= n‘T&'W

E

& — &
D/NR) : o= G

The stability eriteria of the three methods are

D/D: & =0,
=4

2 1
=0

D/N(R) : 6" = —*T—.

N(R)/D ; §* >

We first note that the D/D method is stable for any 6* = 0 (obviously, this method without overlap
does not make sense!) and the rate of convergence increases with the overlap, In order to visualize
what happens for the mixed methods, let us introduce some notations,

We define AL as the difference between the length of the Divichlet subdomuain, noted £, with
that of the Neumann subdomain, £

Al = {p =y,
and we have
N(R)/D: & = {5 =], (3.25)
D/N(R) : Af* =] = (3. (3.26)

For this particular case, the convergence criteria for 8* of the N/D and D/N methods is exactly
the snme, Le,

. A
i - —T.
Remembering also that the value of 8% is limited from above by inequality (3.2), which can be
rewritten as

i = w' (3.27)
2
the permissible range for 87 18 therelore

A

_Af 1=|at|
3 Q=g
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Figure 3.1: Poisson equation, Minimum and maximum overlap 8% as a funetion of A for the N/ and
8] /N methods to converge.

as sketchoed in Figure 3.1, We observe that the mixed methods pive a stability eriterion which
depends on the relative sizes of the subdomaing. In particular, if the subdomaing are digjoint
(6 = 0}, the N/D and D/N methods converge only if A¢* = 0, L.e. if the Dirichlet subdomain is
larger than the Neumann subdomain (right part of the axis on Figure 3.1); this is a well known
result, see for example [59]. In addition, we note also that we have no way of converging when the
Neunmann subdomain s such that Af* < —0.5,

3.3.3  Advection-diffusion equation

We consider the original equation (3.1) without reaction, l.e. £ = 0, a = 0 and & = 0. This ease Is
interesting because the stability eriteria depond only on the difference of lengtha of the subdomains
(5 — 7 and on the Péelet number. Setting s = 0 implies that w = 7, and the equations for the p's
reduee to:

sinh|(f] — 8% )Pe/2| sinh|(£3 — 8°)Pe/2]

DID 0= ({65 + 5% Pef2] sinb((€; + 07)Pe/2]’

sinh[(f] = 6'}f’t*.f2l
sinh[(75 + 6*)Pe/2]’
sinhi[(£5 = 8*)Pe/2)

sinh[(f] + 6%)Pe/2]’

_ sinh[(f] —6%)Pe/2] cosh[(£5 - &6*)Pe/2]
 sinh[(£3 + 8%)Pe/2] cosh[(f] + &%) Pe/2]’
sinhi(f —&")Pe/2] coshl(f - 47)Pe/3)
sinh[(7 + 6°)Pe/2] cosh[(5 + 6*)Pue/2]
The following stability eriteria hold:

N/D: p = exp (=Pe/2)

DJ/N g =exp(Pe/2)

R/D:p

D/Rip=

D/D ;8 > 0,
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N/D 8 > el :

1 ] v.;qt-l[gtf; — 7 4 1)Pa/2] + exp [({5 — [} — L]l’e/;ﬂ]

DN > ok o [0 1 PO/ e (6= = P/

e 4o [ sinh((0F — 6))Pe/2] Hinhi[g‘.} —t)Pe/2] ]
R/D:d" = Fa In _ cosh(Pe/2) | \/ cosh? (Pe/2) F1],

e 1 [sinh[(£5 — £7)Pe/2)] sinb®[(f3 — (1)Pe/2] }
PIRAD> g I [ conttPor2) ot Pe/a)

We firat remark that except the D/ method, all convergence eriteria on 8% depend on the Péclet
number; in fact, the D/D method converges whenover 6 = 0. However, an important distinetion
between the Neumann-type and Robin-type couplings must be pointed out. On the one hand, the
D/N and N/D do not behave in the same way with respect to the asymmetry of the subdomains,
characterized by the magnitude of £ — £}, On the other hand, the D/R and R/D do, as already
pointed out at the end of Section 3.3.1. In the ease of the N/D method, for which the Neumann
condition is imiposed in accordanee with the direction of the flow, the convergence eriterion requives
that the |l§ln!§;t!| of the Neumann subdomain (Fl) i aufficiently small, thig criterion being looser
and looser as the Péelet number increases. This characteristic is shared by both the D/R and R/D
methods, But for the D/N method, the convergence condition on 8% is more and more restrictive as
the Péclet number inerease; in order to achieve convergonce, the length of the Neumann subdomain
must be taken smaller and smaller, or the overlap 8 greater and preater as Pe increases (when
studying the hyperbolic lmit of the full ADR equation, we will see that the presence of the reaction
term R helps the D/N to converge for high Péclet numbers), Let us illustrate these rvomarks, As
we have done for the Poisson equation, we define AL the difference between the length of the
Diriehlet subdomain with that of the other subdomain, which now can be of Neumann or Robin
type. We have

N/D and R/D: Al* = {5 =[],
D/N and D/R: Al" =] = 1.

Figure 3.2 shows the permissible range for 8" to achieve convergence, ag a function of the Péelet
number, and for four diffevent AC*. OF course, the value of 8* ia limited by inequality (3.2). which
i5 represented by the horizontal solid line, Note that the range for 6* has been extended to negative
values only for a graphical reason,

We observe onee more that for all the methods the convergence eriteria is easier to achieve
when the Divichlet subdomain is larger that the Neumann subdomain, e, when A = 0. For
the N/D, R/D and /R methods, we notice that the minimum 8% decreases as the Péclet number
increases whatever A0% is; the minimum 8% I8 always smaller that that of the Polsson equation,
On the conteary, the D/N method behavior worsens when Pe inereases. The hyperbolie limit will
be atudied in next seetion,
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Remark. IF ] = 5 = 1/2, the latter stability eriteria become
D/D: 6 >0,
N/D: 8 =0,
D/N: & = % Infcosh(Pe/2)), (3.28)
R/D: 8" =0,
D/R: &% =0,

The N/D is therefore unconditionally stable for a > 0, while the D/N is conditionally stable
under condition (3.28). As noted earlier, the higher the Péclet number, the more restrictive is this
condition, The D/D, R/D and D/R methods converge if and only if the subdomains overlap.

3.3.4 Hyperbolic limit

We conslder the hyperbolic limit of the advection-diffusion-reaction equation, i.e. Pe 2= 1. Ob-
viously, when Pe 3 1, 7 % 1. Noting that sinh(z) == exp (x)/2 and cosh(x) = exp (x)/2 when
@ 20 1, and assuming s # 0 (7 > w), Equations (3.14), (3.17) and (3.20) give the following rates of
convergende

D/D : p == exp (=2Ped”),
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e PR

R/Pu + oxp [=Pe(l; - %))
R/Pe 1 p

N/D ¢ p = exp (—2Ped”)

T | . "
DXN V= eXp (= H o) )Wll;illl':?’l'(m_ﬁ"}l v {3.39}

R/D : p = exp (=2Ped”),

D/R ; p = exp (—=2Ped"),

With reaction, £ = 0. If A has a finite value, the following stability conditions can be estab-
lished:

D/D: 8% =0,
N/D: & =0,

D/N : §° > 2-;%‘]!:'(1"::/]1 ), (3.30)

R/D:4° =0,

D/R: 8 =0,

We first notice that unlike the preceding two equations studied, e, the Poisson and advection-
diffusion equations, the condition on the minbmum value for §* does not depend on the lengths of
the gubdomaii.

On the one hand, the N/D method, for which tranamission conditions are consistent with the
subdomaing boundary conditions in the hyperbolic imit, te, Nenmann condition at outflow and
Dirichlet condition at inflow, 18 uneonditionally stable. On the other hand, the D/N ::t‘.lnpliug is
conditionally stable. Linposing a Dirichlet transmission condition at the outflow of 2y creates an
artificial boundary layer at @ = 8. The derivative of the unknown in the vicinity of the boundary
layer tends to infinity when the Péelet number tends to infinity, and if the Neumann transmission
condition is to be imposed inside this artificial boundary layer, the domain decomposition might
not converge, Let ug estimate the width o of the artificial boundary layver, When the diffusion
term {8 balanced with the advection term, we have gu/d” ~ au/d 80 that the boundary layer width
seales like

f‘ Pa=1
7 Pe™".

Inequality (3.30) states therefore that the overlapping must be larger than the artificial boundary
layer created at the interface at o = & This results holds only when a reaction term is present.
On the contrary, we have seen that the convergence criteria is 4 = 1/2 when Pe — oo,

As expected, the R/D and the D/R behave exactly as the D/D method, for the Robin transmis-
sion condition (3.8) tends to the Dirichlet transmission condition (3.7) when Pe 2= 1, OfF course,
thig remark only applies to this one-dimensional example; this result can only be extrapolated Lo
two and thres-dimension problems wlien the normal is "sufficiently” aligned with the adveetion
voeetor,
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Without renction, i = 0. The N/D method is unconditionally stable, while the D/D, R/D
ane D/R methods converge whenever 8 = 0, The rate of convergence of the N/D method is in
this case exp [Pe(l; — 8%)] smaller than that of the D/D, R/D and D/R methods, The stability
condition for the D/N method requires that:

D/N: 8% = 3,

Remembering that 6° < min(7, 63), the latter equation can not be satisfied if the Neamann
subdomain is larger than the Dirichilet subdomain (£ = ;). The algorithin is neither viable if the
Dirichlet subdomain is lavger, as the latter condition states that the overlap must be of the size of
the Neumann subdomain, which is nob of practical inferest!

3.3.56 Summary

All the stability conditions computed in the previons seetions hold for 8; = #: = 1. The conclusgions
are the following:

The D/D method is always stable whenever 4° = 0, and its convergence rate depends on the
relative lengths of the subdomains in general, and exponentially on the overlap in the hyperbolic
limit. When the Péclet number is zero or small, all the four mixed methods studied require that
the Neumann subdomain be "sufficiently” smaller than the Divichlet subdomaing, If this is not the
eage, convergence ean be achieved using "suflicient” overlap. The behaviors of the mixed methods
diffor drastically when the Péelot number is high, although their convergence criteria no longer
depend on the relative lengths of the subdomains, In the hyperbolie limit, the R/D and D/R
methods tend to the D/D method and converge whenever 8° = 0, at the same rates, In this
limit, the N/D method is the moat adequate method for this simple one-dimensional example, as
it exhibits the best convergence rate. As for the Dirichlet/Neumann method, we have geen that in
the hyperbolie limit, when no reaction term is present in the equation, we have no way of making
the method converge. However, the presence of the renction enables convergence if the overlap is
lavger than the artificial boundary layver ereated afb the Diviehlet interface.

3.4 Relaxed sequential version

We now atudy the effects of under-relaxation, In order to compare the vesults of the relaxed
versions with that of the unrelaxed version, we define [ the rate of convergence of the unrelaxed
versions, e,

yll"ll - JE’I &’ill

It will be shown that under-relaxation can, in some cases, help the DD algorithms converge,
In particular, in the presence of a geometrical asymmetry between the subdomaing, as already
observed, under relaxation is necessary for the N/D and D/N to converge. We have also observed
that the /N method for solving the advection-diffusion equation without reaction only converges
under sever resteictions iF & = 0, This section will present the effects of undersrelaxation on the
five DD algorithms studied. In particulary, a convergence condition for the under-relaxation factor
will be determined, as well as the optimum #,,, for which the rate of convergence p,, is minimum.
Finally, the two cases mentioned previously will be studied ag illnstrations of the under-relaxation,
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For all the methods studied, the underrelaxed version of the sequential DI methods can be
obtalied from Equations (3.5)y and (3.6)y loi k = 0:

kgl

!
i1

gl

henCE  + (1-0,)CF, (3.31)
BapaCY !+ (1 B)C1, (3.32)

where gy and go arve the convergence rates of the ervor coeflicients already caleulated for the
unrelaxed version, They are given by Equations (3.12)-(3.13), (3.15)-(3.16), (3.18)-(3.19), (3.21)-
(3.22) and (3.23)-(3.24) for the D/D, N/D, D/N, R/D and D/R methods, vespectively. The
iteration matrix C g for k8 = 0

o - [ 1 -8 B0y ] _
Ba(l = B)ps Oibapros + (1 - 8y)

ldeally, one wants to manipulate the least external parameters as possible to control the conver-
gence of the algorithm, We enable the following possible choices, (8,,8,) = (1, @) or (#,,0:) = (8,1),
By rearranging the ervor coefficients given by Equations (3.31) and (3.32), we notice that the iter
ation matrix C for hoth relaxed versions ean be re-written for & = 1 as:

L+6(pia = 1) 0 ]

G= 0 14 8(g pa — 1)

The diagonal form of the iteration matrix Is very convenlent as we know that the || - |]: norm of a
dingonal matrix is precisely its spectral radius, ie,

14 s < olle 2 o)

Therefore, the convergence condition g < 1 lmplies also monotonieity of the convergence with
respect to the [+ ||s norm. The condition for monotonicity cannot in general be established if both
#; and #y are different from unity.

As obtained for the case with no relaxation, we have an eigenvalue A of multiplicity two given
lay:

A= 1+ 8(p1os = 1),
which gives the following rate of convergence

¢ =1+ 8eme = 1)].
The convergence condition p < 1 gives

[L+8(gg = 1) < 1,
which is equivalent to

—2< Bpmpz— 1)< 0.

The convergence condition 18 therelore subject to the value of the product gy gs. Let us now obiain
3

the value of py gy for the five DD methods congidered. 1t can be easily shown from Equations (3.12)
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mrry

and (3.13) that the D/D method always gives 0 < grpg < 1 provided 6° = 0, When 6% = 0, we are
in the ease pyps = 1. For the N/D and D/N methods, we have already pointed in Section 3.3.1 that
the product g ps is negative; as for the R/D and D/R methods, from Equations (3.21)-(3.22) and
(3.23)-(3.24), we ensily check that ppos = 0. Therefore, the following two situations are possible:

s If pyoa =< 1. The condition for convergence becomes

2
0 Pie—t (3.34)
L= gps
anel, in addition, g = gy = 01
|
ﬂn: el —— s
it | - 1 0

e Il pypy = 1. p=1forall 8, and the D/D method does not converge.

Let ns sum up the results we have obtained. We have shown that all the DD methods studied
admit a maximum relaxation parameter &, such that they converge for any # < #,,.. as given
by Equation (3,34). We have also shown that the quantity g, po is such that

D/D: 0 =1, (3.35)

Mixed methods @ pypa < 0, (3.36)
which implies the following rates of convergence

D/D : 0= |14 8(pay = 1)|

Mixed methods 1 g = [1 = #{oue, + 1)),

and the following equations for &,

2
D D Hllll.'ll=" = "%
/ l L= ey
Mixed methods @ 8 = ;
X - A8 L Fmng 1+ Qe

In addition, all the DD methods admit an optimum relaxation parameter #,,, for which g = (0,
Let us define an iteration as a complete cycle for which we solve each subdomain; remembering
that Equation (3.33) is valid only for & = 1 (and not & = 0), therefore the DD methods converge
in at most two iterations when @ = @, with

e g
l _ Qﬁllq
. 1 & q:_":
I + fani

D/D - Bapt, =

1

Mixed methods @ (g, -

Figure 3.3 shows how the relaxation parameters acts on the rates of convergence of the relaxed
sequential algorithms, as a function of the sequentinl rate of convergence gy, It enables also
L appreciate how an opthnum relaxation parameter can be chosen 2o that the mixed methods
converge, whatever the corresponding sequential rate of convergence gy is.
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Figure 8.8 Relaxed sequential version. Rate of convergence as a function of & and puy,. (Left) D/D
method. (Right) Mixed methods,

Remark 1. In the hyperbolic limit, we have shown that the D/D, R/D and D/R methods
coincide.  Their rates of convergence p tend to zero, and therefore, their optimum relaxation
parameter is fop = 1.

Example 1. A# a fiest illustration of the under-relaxation, we consider the D/N method for
golving the advection-diffusion (without reaction) equation in the hyperbolic limit, This case is
precisely the most difficult as we have shown that it requires an overlap of the size of the Neumann
subdomain to achieve convergence! From Equation (3.29) with R = 0, we find that

0101 % — exp[Pe(t; — %),

The maximum permissible # is therefore

2

F“|!'Iln'M = ].+E"H[J[l’ﬂ([’; o l‘j']]’ (3.3?)

which in the hyperbolic limit gives
lim B = ot
Py o

This asymptotic value is represented by the convergence of the contour line of value 1in Figure 3.3
(Right), Theoretically, condition (3.37) can be fulfilled. However, small values of the relaxation
parameters can be prohibitive when performing numerical experimentations, for which the effects
of round ol errors become important.

Example 2, The second example studies the convergence eriterion for 8, using the N/D and
D/N methods for solving the Poisson equation. The maximum permissible # is

2

NfD: B = 14 (0] - GRS VAV 8*)'
2

D/.N s =

U (65— 8/ +0)
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Using the definition of A* introduced in the study of the unrelaxed DD algorithm for the Poisson
cquation (see Fquations (3.25) and (3.26)), the stability criterion of the N/D and D/N methods
in terms of # is exactly the same and ean be written as

B = 1+ AL +28°,

Figure (3.4) shows the stability curve obtained for different overlaps *. Remember that, owing
to Equation (3.27), Af* is bounded from below and above with respect to 6* according to

AL < 125",

Choosing # in the range below the curve leads to a stable scheme, whereas the zone above the
curve leads to an unsatable scheme, We see that in any case, the instability due to the asymmetry
of the problem can be cirenmvented by choosing a sufficiently small relaxation parameter. We note
also that the larger the Dirichlet subdomain, the larger the maximum permissible 8. Finally, we
remark that the maximum possible value of # over all A and §* is 8 = 2,

3.5 Unrelaxed parallel version

The parallel version of the domain decomposition algorithm to solve system (3.1); _a is given by
Equations (3.3); -4 and (3.4); -4 choosing &' = & in Equation (3.4)a.

The parallel version of the DD algorithms is first presented without under-relaxation, and
compared to its sequential counterpart, When no under-relaxation is used, all the parallel versions
of the DD algorithms lead to the following systems of equations for k = 0:

i = a4,

kgl
c

2O

which gives the following iteration matrix;

v | W0
L_[m 0]'
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The equation for the eigenvalues is
T
AT = it
which gives the following rate of convergence

e = Vel
= /Oiey: (3.38)
Therelore, the convergence condition g <= 1 for the parallel version is the same as that of the
gequential version, although its rate of convergence is the square of that of the sequential method.

In addition, we have no guarantee of monotonicity. Nevertheless, the simple form of the iteration
matrix allows ug to derive casily the expression for the || - |2 norm of C;

Gl = max (s ], |ez])
anidl therefore we can establish the following norm estimate

“I

lle®lls < max (o). [eah)lle* ]l

3.6 Relaxed parallel version

3.6.1 General relaxation

The iteration matrix of the relaxed parallel yversion is

| 1= e
C"[ku -8, |'

which gives the following characteristic equation
N (0 48— 2N+ L=t = a4 0 08a(1 = pypa) = 0, (3.39)
which corresponding determinant A is given by
A = (0 = 02)" 4 40,02p) pa.

We first note that the action of both relaxation parameters is symmetric, Le, we can interchange
their valies without modifying the resulting algorithm. In Section 3.4, we have shown that, for
the D/D method, the product pyps is always positive, while the mixed methods give a negative
product, as stated by Equations (3.35) and (3.36). We must therefore treat the D/D apart from
the mixed methods.
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D/D mathod. Owing to Equation (3.35), the produet pyos = puoq 18 positive and therefore the
eigenvalues solution of Equation (3.39) are real; they are

.
2

b= g (@m0 = O 0 000,

| —

M= g (@084 0 =0+ 1000

e

which give the following rate of convergence:

1 :
0= (2= 0 -0l fl0— 07 10010

Owing to the expression of g, we conclude that there does not exist a pair of relaxation parameter for
which g = 0. In addition, we see that the optlmum rate of convergence is achioved for 8 = 8y = 1,
therefore, we have no way Lo improve the rate of convergence achieved hy the inrelaxed parallel
version, given by Equation (3.38). We are now poing to see that the situation is different for the
mixed methods.

Mixed methods, Owing to Eqguation (3.36), product gy os = =geq. Thus, the determinant of
the characteristic equation is

A = (0 — 02)" — 161040400 (3.10)

atel the equation for the eigenvaliues (3.39) admita veal or complex solutions, according to the sign
of A, We ean easily see that the rate of convergence can bhe written as

I{ V(Z—8, -8 - A ifA <0 (3.41)
| 3.

EZFL 2= =+ VE ifA =0,

Lot ug by to shnplify this expredsion. Noting that

1 fo A <0
§{|"-\| +a) = { A if A =0, atid
0 g g Bl=8 [ JE--GI-4 ifA <0
\/(2 =00+ === =1 g = by ifA >0,

wir ean rewrite Equation (3,41) for g in the following form

v=%(\/w+ J(a—el—eﬂuw).

At a first glance, we see that we ean achieve p = 0 by setting both A and the torm 2 = 8 = 5 to
zera, The latter term vanishes if we introduce a unique relaxation parameter # such that (0 < @ < 2,
anel let

0 =, (3.42)
§; = 2 -6 (3.43)
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Figure 3.5: Optimum relaxed parallel version. Rate of convergence as a function of # and g, (Left)
13/ method. (Right) Mixed methaods,

The lollowing section studies the convergence of this “optimum relaxation™.

3.6.2 Optimum relaxation

This optimum relaxation uses a unique relaxation parameter to define #, and @y, as given by
Equations (3.42) and (3.43),

D/D method.  We have mentioned that the optimum rate of convergence of the relaxed parallel
D/D method is obtaln setting #; = #2 = 1, i.e. no relaxing av all. Anyway, it is interesting to
study the behavior of the D/D method using the optimum relaxation of the mixed method, For
the rate of convergence, we find:

0= 1000 = 2)(1 = ).

Imposing p < 1, we ean dervive the following inequality for the maximum possible relaxation
parameter

Biine = 2,

which iy independent of py,,. Figure (3.5) (Left) shows the variation of the rate of convergence as
a function of # and ggeq-

Mixed moethods.,  The rate of convergence is
0= 5 (VIBT+4 + VAT 3), (3.44)
22
with A& given by

A =400 = 1) = 40(2 = 0) pyoq-

Equation (3.44) Is represented by Figure (3.5) (Right). In order to achieve p = 0, we just have
to et the determinant to zero. Solving Equation (3.40) for A = 0, we find two optimum relaxation
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e G
factors 8, and 8,

L’ﬂl'.\ L I N e

fopt — 0,

The range of admissible relaxation factor can be determined by solving the problem g = 1. We
find that the mixed methods are convergent when

0<8< By 0r (2=0ux) =0 <2 i peg = 1,
D<f<2 if Gung < 1,

with #0x Eiven by

Qumi -1
Pueq + 1

Binnx =

We note that when gueq tends to infinity, #n,. tends to zero.

3.6.3 Other relaxations

In this section we compare some relaxation strategies, In addition to the optimum relaxation
we have already presented, we introduce two other strategies, We call the first one " Unigue
relaxation”, As explicitly indicated by g name, this strategy uses only one relaxation, the other
being set to nnity. We alzo introduce an " Equal relaxation”, for which both relaxation parameters
ke the same value. We do not derive the equations for the rates of convergence and we limit
ourselves to presenting some plots to have an idea of how the different relaxation algorithms act,
Let us sum up the choice of relaxation parameters for the three versions studied:

Optimum relaxation : @) = 8,8y =2 — 4@,
Equal relaxation : 0 =8; mf,

Unique relaxation : & =0,0; = 1.

Figures (3.6) shows the dependence of the rate of convergence on the relaxation parameter
f, for various sequential rates of convergence py,. We ean appreciate the fact that for the D/D
method, the optimum relaxation factors ave #; = &, = 1 for the three relaxation strategies studied,
Nevertheless, it should be pointed out that for given @ and geeq, the rate of convergence g of the
aptimum relaxation is always smaller than that of the other ones and that, taking 0 < # < 2, we
are always ensured that g < 1. In addition, the devivative of p near the optimum point at # = | is
continuous and the function smooth. This relaxation should be preferred to the other ones,

As for the mixed method, the conclusions are much more evident. We have shown that the
aptimum relaxation admits an optimum @ for which the rate of convergence is zero. This property
15 not. shared I|1_'u' the other two ﬂl.l':—ﬂ.t}giﬂﬁ. Neverthelegs, let ug mention that the devivative of the rate
of convergence near the optimum point 14 higher for this strategy, which malkes it more sensitive
to changes in # near the optimum point with respect to the other ones, around their respective
aptimum point,
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Let ua conclude ihis section about the relaxed pacvallel version, We have shown that there
always exist a @ for which parallel version of the DD methods converge. In addition, the parallel
version is obviously computationally more attractive than ita sequential counterpart. However,
monotonicity of the convergence is not guaranteed and there does not exist an optimal # for which
g = 0. Numerical parallelism can therefore be only achieved st the expense of lower stability and
glower convergence speed.

3.7 Conclusions

During the analysis of the one-dimensional problem, we have been studying the behaviors of live
domain decomposition methods, We have first considered the unvelaxed sequential versions and
established the conditions on the overlapping length so that the DD methods converge. The
following remarks have bheen made:

1. The D/D converges whenever the overlapping length is not zero, The higher the Péclet
number, the amaller the rate of convergence,

2. The N/D ig the most appropriated method for advection dominated flows, ns the Neumann
and Dirichlet conditions are imposed according to the hyperbolic character of the equation,

3. The D/N, which contradicts the latter remark, cannot converge for high Péclet numbers, when
the differential equation has no reaction tevim, However, when the reaction term is present,
we have shown that a minimum averlapping length enables to achieve convergence in any
ense, Note that in the translent ease, the veaction term eomes [rom the time diseretization
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with & =~ 1/8¢, 41 being the time step. We expect. therefore transient problems to be even
more favorable 1o the overlapping D/N method,

4. The R/D and D/R methods acts symmetrieally with respect to the transmission conditions.
Therefore, the Dirichlet and Robin conditions can be imposed without regards to the divection
of the flow, In addition, the overlapping length can be chosen so that the methods convergence
for all Péclet numbers, When Pe 2 1, the rates of convergence of the R/D and D/R methods
tendd to that of the /D method.

H. In all Chses, Convergenes i% monotone.

In order to enable convergence when no control was possible on the overlapping length, we have
introduced relaxation of the transmission conditions. We have found that setting one of the re-
laxation parameters 1o unity, we could achieve convergence for all the DD methods, and for any
Péclet number; as in the ease of the unrelaxed sequential version, this convergence is monotone.
In addition, we have shown that there always exists an optimum relaxation parameter for which
the DD methods converge in at most two iterations.

Then we have presented the parallel versions of the D/D method, The conditions for con-
vergence are exactly the same as those of the sequential method. Al methods exhibit a rate of
convergence which is the square root of that of the sequential versions.

Finally, we have relaxed the transmission conditions of the parallel version, On the one hand,
we have shown that we have no way of finding relaxation parameters so that the D/D method
converges in at most two fterations. On the other hand, this optimal convergence can be achieved
for the mixed method choosing the so-called optimum relaxation, using #; = 8 and #; = 2 —4# for
0 given by Equation (3.45). Finally, let us comment that we have not tried to caleulate a norm
eatimate; in general, the methods are not monotone,

Table 3.1 shows the rates of convergence obtained for the relaxed sequential and parallel meth-
ods, ag well as for the respective relaxed versions, Table 3.2 sums up the values of the optimum

Method  Seq.  Par, Rel. Seq. Rel. Par.
th =08 =1 =00 =2~0
D/D  puq /B |1+ 800 = 1) V180 = 2)(1 = pueq)

(=)
Mixed guq Bmg 1= 00wa + 1) 75 (VIBTF A + 1A= A)

Table 3.1: Rates of convergence, with pu = [proz]. (¢) & = 4(8 — 1)* — 48(2 — ) duoq.

velaxation factors and their corresponding optimum rates of convergence,

This one-dimensional study has enabled to point ouf the importance of three main factors in
the convergence of overlapping methods, namely the relative geometries of the subdomains, the
relagation fetor, aned the overlapping length, Next chapter treats the multidimensional problem
at the variational level. In particular, we will recognize easily the importance of the relaxafion
factor. However, the effects of the sizes of the subdomains and that of the overlapping zone will
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Method  Parameter Sequential Parallel
9;:9.{}-_;:]_ h=08=2=4¢
D/D 0 — = l
sl l T 9"““
fapt ] \/Z'er
Mixed i i 1 N _Em, ]
ups 1+ hoq o + 1
Hapt { 0

Table 3.2: Optinum relaxation parameter and optimum rate of convergenoe,

not be so clear, as they will be embedded inside the norm estimates of the operators in play. In
any case, the one-dimensional frame is a preview of what happens in multidimensional prablems
and ia a precious hint before performing a numerical experimentation.






Chapter 4

An Overlapping Domain
Decomposition Method

In Chapter 2 we contemplated the possibility of using overlapping mixed methods for solving
iteration-by-subdomain problems. We justified thelr mathematical foundation through a simple
example and intuited their advantage over their disjoint counterparts. In the next chapter, the
study of a one-dimensional ADR equation eonfitmed what we had advanced concerning the effeets of
the overlapping length, and in particular, the possibility of achieving convergence in the hyperbolic
limit oven when the Neumann and Divichlet interfaces were not placed in aceordance to the direction
of the How, In this t'Iul.lnl.t';" we propose to make one step beyvond and to study the convergence
of overlapping mixed methods within a variational framework applied to the solution of a scalar
advection-diffusion-reaction equation, This chapter constitutes therefore s theoretical basis for the
study of overlapping mixed methods [96, 97].

As a beginning, we introduce the continuous problem, derive the corresponding variational for-
mulation, and look for a weak solution, Then we present a new overlapping domain decomposition
method, The starting point is a two-domain variational formulation of the problem, originating
from a geometrical decomposition of the original domain of study; we follow the strategy presented
in [98] for the classical Dirichlet/Neumann method and extensively studied in [58]. We show how
the formulation can be reformulated into an overlapping domain decomposition method based on
a Dirichlet /Robin eoupling and how this formulation can be simply devived from a differential
problem. Next, the domain decomposition method for the subdomaing I8 re-written in terms of a
problem for the interface unknowns. An iterative and relaxed sequential scheme is then introduced
in order to solve the DD problem. The convergenee is studied through the interface equations, We
present the generalization of the overlapping DD method inbroduced to other types of overlapping
mixed ;3(_1”[}|i||§;:;‘ in I;-m'l.inul:.u' Lo an (m,:l'lm,:piug Dil‘it'.h|{!l.deﬂ.|1|:|;|tm method. Alterwards, we con-
sider the disorete connterpart of the formulation, We then build an iterative strategy to solve the
twosdomain problem. This strategy is studied algebraically, using a finite element method for the
spatial discretization and solving for the Schur complement system, and the overlapping D/N and
D/R methods ave illustrated by four numerical examples, We mention briefly the possibility of
parallelizing the algorithm using two or many subdomaing. Finally, we introduce the extension of
the overlapping Dirichlet/Neumann method to the Stokes and Navier-Stokes equations.

a7
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4.1 Problem statement

We propose to study the following ADR problem:

J inf,

Lu = —edu+ V- (au) -+ su
0 ondi,

i

alveady introduced in the fivst chapter. We choose to study the 1/2-weak formulation presented
in Section 1.1.3, and keep using the same notation, The weak formulation of the original problem
reads: find « € V' such that

a(u,v) = {f,v)q YvelV, (4.1)
where the bilinear form is

1 |
a(w,v) = =(Vw, Vv) 4 ﬁ(“ «Vw,v) = i(-w.u «Nw) - (ggw, v),

with

1
8p =4+ -‘jV ",

From the Lax-Milgram lemma, if 55 = 0 almost everywhere, Problem (4.1) has a unique solution.
From now on, we assume that sy = 0 almost everywhere.
4.2 Overlapping Dirichlet/Robin method

4.2.1 Domain partitioning and definitions

We perform a geometrical decomposition of the original domain §2 into three disjoint and connected
aubdomains {2y, (24 and 25 such that

0 = int (2, UL, UT).
From this partition, we define £ and 2 as two overlapping subdomains:

O =it (U, 2 =int (02, U).

Finally, we define I, as the part of 812 lying in £, and I'y as the part of 283 lying in §2s, formally
piven by

=300, =00 N

The peometrical nomenclatire g shown in Figuve 4.1 Ty and I, ave the sterfaces of the domain
decomposition method we now present, §1 is the overlap zone, In the following, index @ or j refor
to n subdomain or an intorface,
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Figure 4.1: Exumples of decomposition of domain  into two overlapping subdomains £ and (2.

We set the f{_\[]uwing defAnitions to be used for the variational formulation of the two-domain
problemn:

(w,v)n, = [ i elfl, for w and v in L2 (£2,),
Ju,

a(w,v) = e(Vw, Vg, + (spw, v)a, + %(u N, v)g, — %('m,c‘a V), (4.2)
Vie={ve Hl{“r‘) | ooy = 0},
V2 m (00,

where { can be any of the five subdomaing introduced previously, Le. ¢ = 3,4,5,1 or 2

We now introduce the trace operator. From the trace theorem (see e.g. [2, 3]), we know that
there exists a unique linear continuous map o4, called the trace operator, defined as

SRR h"f"'(t)fh}. such that o, = wjen, Vv €V, 1=3,4,5,1,2,

and that this vesult applies equivalently to any Lipschitz continuous subset of 9€;, Lot us denote
T, and T}, as the trace operators restricted to Iy and Ty, respectively. They ave defined by:

To: V— Hef?(Ta), Taw=wp, YUEV,
Th: V— .H,_:{fi(l";,), Tw=wp, YveVl.
In addition, we explivitly define the trace spaces on T, and Ty as
Ao 1= {a € HATDY  Awi= { € HYF (DD}
obviously, for any v € V, we have ojp € A, and vy, € Ay

We also introduce some basic properties of the spaces we are working with; as many conatants
are going to be introduced, we adopt a general nomenclature, We enunciate three inequalities
(Poinearé-Friedrichs, trace inequalities and an a-priord estimate) that characterize the functions
helonging to our work apaces, i.e. H'(2) and Hj(2). The domains of study are the original
domain 2 and its five partitions 1, with ¢ = 3,4, 5, 1,2, The Poincaré-Friedrichs inequality reads

ollg.a, < CollVeliig, Yoo e Hy(54). (4.3)
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where C, Is a positive constant depending on the size of the domain £, The space of applica-
tion A (£2,) can be actually extended to any subspace of f'(§;) for which the trace is specified
“somewhere’ on 341,,

The trace inequality 15 o direet congequence of the teace theorem; it states that there exists a
positive constant ('.-';' auch that

lejos, o0, < CF vl q Vue H'(5). (4.4)

Finally, the following a-priori estimate for the solution ¢ of homogeneous elliptic problems with
Dirichlet data holds (see ep, [2, 3)):

el = Edlvan, b oo, (4.0)

This establishes the continuous dependence of the solution on the boundary data and closes the
list of proporties,

4.2.2 Variational formulation

We propose to solve the following problem: find uy € Vi and ua € V5 such that

ay(uy, ) = (fovda, Yu € 'r"]“.
ot on Iy,
{ (4.6)
ag(ug, vg) = ([, va)a, Y € VY,
fﬁ.‘i(“ﬂl ¥ E:i,un] 4 {12{'“.-_\. E'E“'n} = {f! J:':{l”n}ﬂn + (er fg‘!”ll}”g v f"d =2 All'!

where ) denotes any possible extension operator, such that

Ei: Au — HY (),

TuEita = pa Y ita € Ay
Equations (4.6); and (4.6)y are the equations for the unknown in subdomains £ and Q3 respec-
tively: in fact, observe that both test functions vp and vz vanish on the whole boundaries of £
and §2a respectively, including on their interfaces, Equation (4.6)z 18 the condition which ensures

continuity of the primary variable across Ty, and levels the solution in both subdomainsg, Finally,
equation (4.6); is the equation for the primary variable on the interface I°,.

Theorem 4.1. Problems (4.6) and (4.1) are equivalent,

Proof., We firat show that the solution is the same in both subdomains inside the overlap zone
{1, Lo, that the two trangmission conditions on the interfaces are sufficient (o uniquely define the
golution, For any v € V!, construct

i { 0 infl,

wp o in f,

wy iy,
0 in §25.

gy
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Clearly, v € V) and vy € V) and therefore subtracting (4.6); and (4.6)3, we obtain
g1y — tg,uy) =0 Yoy € ﬁf:
together with the condition wy — up = 0 on [y, derived from (4.6)2. Now, we neod to derive a

boundary condition on I, in order to close the problen for the unknown ) —ug. For any p, € A,
define

o = 4 Bajta in Ry,
VUl Eagta in 82

Sinee vy € V), (41.6); gives
az (g, Eyp) + aa(ty, Bapea) = (, Bapa Yoy + {f, Eajta)ir, Yty € Ay
Substituting last expression into equation (4.6), we find
ag (g, Eapig) = ag(ug, Eipa) = (f EBapra)os = (F, Eapadan Y it € Ag. (4.7)
Now we define for all g, € A,

.”;' - E-l,“-q in ﬂ.h
! 0 in §2s.

Equation (4.7) can be rewritten as
ay (g, Eapig — vh) + talua, vh) — aq(uy, Eypy)
= (f, Bap = viya, + {Liva)ay — (F, Batta)ay Y i € A, (4.8)

According to the definition of v}, (Fypu, —vh) € Vi and consequently, applying (4.6)s, we obtain

ag(ua, Exprg = v4) = ([, Eajt = va)q,-
Equation (4.8) gives therefore

aa(us, Bapta) — ag(ug, Egpn) = ( Eapada, = Bapadas Yt € Aa,

which 15 equivalent io

agluy = vz, Fypi,) =0 Y jia € Ay

As aoresult, the complete system of equations for @ = wy = g is

ai(w,y) = 0 Yooy e VP,
w = [ on 1y,
aj(w, Byjp,) = 0 Yo, € Ay

From Lax-Milgram lemma, this problem has s unigue solution w = 0; this implies that vy = wy in
0.
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We now show that the solution of the original problem iz also solution of the domain decom-
position problem. Let w be solution of equation (4.1), and define w; = wujg, for i = 1,2, Clearly,
1y € V5 and therefore equations (4.6);, (L6)s and (4.6)3 are trivially satishied, Now forall 2, € A,
define v as

| Eapa in g,
Y=\ B, in 0y

We liave 5 € V7, which implies that
ﬂ‘{”‘l T) = (J’! T}ﬂ!

and substituting the definition of 5 into thig equation we recover equation (41.6),. We now prove
the reciproeal. Lot

e { tyfia, in 24,

thy in {2,

We proved that wy = us in §3; and in particular that wy = wy on Iy, This implies that « € V) as
a result, we have

ali, v) = aaley, v) + aa(ug,v) YueelV. (4.9

For each v € V', set 1, = Tyw € A, Let us deline

Ya = v, — Eajta,
T2 = Yy = Ezpla

and rewrite equation (4.9) as
alu, v) = agliey, ya) + aalug, Eyjig) + as(ua, v2) + as(ua, Eap,) V iy € Ay (4.10)

From its definition, 75 € Vi, Let us now define 5 as
_ o infdy,
n ‘{ 0 i
7 € V" and therefore, applying (4.6),
ay(uy,m) = {f, 1),
which gives

anty,ya) = (F, vadoy-

Knowing also that 5 € V9, we have
B ¢ 2

az(ua,v2) = ([, vaden,
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and from the latter two equations, equation (4.10) becomes

al, v) = (foyada, + ealur, Eapa) + (fo oy +ag(ug, Bapg) Vg € Ay
From equation (4.6), the last equakion reads

a(ie,v) = ([, va)ay + ( Bapaiy + {ovadoy + . Eapta)iy V¥ o € Ay,
which gives from the definitions of 5y and 5,

”‘[“‘l ”} = {f! H!Hn}ﬂn + (fr ""I'h‘u)u‘u!
= (f‘t!}n YeeV,

and hence the theorem follows, ]

Roemark 4.1, The variational formulation given by Equations (4.6) _4 provides a general setting
for an overlapping domain decomposition method. On the one hand, we have a Dirichlet condition
on I'y: on the other hand, the transmission condition (4.6)4 on 'y depends on the bilinear form
chosen to represent the oviginal differential operator in the weak formulation, For the particular
cage of the ADR problem, this condition ean be written in the more familiar form presented next.

4.2.3 Alternative formulation

We develop an alternative formulation for the domain deconiposition method given by Equations
(‘I.G)l -

Lemma 4.1. The selution of the domain decomposition problem salisfies

inco S R Lo
Et‘}nu g A T Hna

1 4
- 5{& ey )iy an Uy, in the sense af Ay,
where () /dng = ng « V(:), ny being the outward unit vector normal to §1y on I,

Proof. Note first that according to Green's formula, we have for all i, € A,

i 1 4
ag(uy;, Bapy) = — Eﬁ = i{ﬂ cng g padr, o (Lug, Eggtadag, (4.11)
n Hus |
aalua, Eapi,) = -‘5"9;; = E{a ma)ug, pa)i, + (Luz, Bapta)ig- (4.12)

In addition, from Equations (4.6); and (4.6)g, we have

Ly = f in §1y, andl (4.13)
Lus = [ inf, (4.14)
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in the sense of distributions. As a result, Eguations (4.11) and (4.12) become

o i 1 ;
aglty, Bapty) = — (fLﬁ = E{ﬂ'“h‘}""-l:f-‘u)f',. + (J, Eapra)sag, (4.15)
thin 1 .
tgluz, EBapta) = (Ezj;if - .:z'(ﬁ'ﬂ-z]u-.nﬁu)r.. + (s Eajia)nr,.

Adding up these two equations, and substituting the result into Equation (4.6)4, we find

T - 1
{—E%ﬁ 4 %(u S )i g%l—j - i{u CTha Vs, e, = 0. Y jia € Ay,
and thus the lemma holds, O

Theorem 4.2, System of equations (4.6), 4 ean be veformulated as follows: find v, € V; and
ty € Va such that

H-|(H.||-'.ﬂl) = (L'u]}“l Vo e i,-"]i!'

AT ki) (4.16)
du 1

az(ua, vy) = (f,vh)a, + (Eﬁ# r 5{# “ma)uy, vh)r, Yoy € Va,
g

Proof. We first substitute Equation (4.15) into Equation (4.6)4, and add the result to Equation

(4.6)4:

du 1 ;
tia (g, v + Eapiy) = ("ﬁ = E(ﬂr'ﬂu)'iﬁmfw?r'" + (v + Eapa ), Vg € V) € Ay

Lot us define v = vs + By, Cloarly, o5 € Vi and g, = T,05; consequently, the last equation is
equivalent to

’ i 1 ’ .

as(ug, vh) = (g — =(a - ma)uy, Vi), + {fivhda, Vuhe Vo

Ons. 2

The proof is completed by subatituting Equation (4.6)y and (4.6); of the gyatem of equations
{4.6)1—4 by the last equation. O

The interpretation of the domain decomposition method now appears clearly. On the one hand,
a Divichilet problem is solved in £y using as Dirichlet data on the interface Iy the solution in §1s,
On the other hand, a mixed Dirichlet/Robin problem is solved in £ using as Robin data on [,
the solution in Q. Thig formulation justifies the choice of the name overlapping Dirichlet /Robin
{(O-D/R) method to designate the DD method,
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Remark 4.2, The system of equations (4.16); _y could have been derived divectly from the fol-
lowing DD algorithm applied at the differential level:

Luy = f in 2,
iy =10 on 8 1AL,
Hy T g on Iy,
Y Lus=7 in 2, (4.17)
tip =0 on 8, 11 081,
{ rfi::: -:g-(urifl-u)'u-; = [:‘_’E:; é(urm)-m on 1.

The interface conditions on Iy and Ty aoe usually referred o as matching conditions ov transmission
conditions.  The fivst one is of Divichlet type while the second one is of Robin tyvpe. At the
variational level, we have just shown they correspond to esseniinl and natural boundary conditions
when choosing the bilinear form a = a'/?,

Remark 4.3, Although formulation (4.16); 5 was derived from formulation (4.6); 4, it should
be pointed out that the original formulation does not explicitly involve the normal derivatives on
the interfaces 'y, whose delinition can be ambiguous, e, al corners. In addition, we will see that
the variational formulation can be useful to derive a corresponding algebirale approach.

4.2.4 Interface equations

A convenient way to study domain decomposition methods is to derive equations for the interface
unknown(s). To do so, the domain decomposition problem is fivst rewritten into two purely Dirich-
let problems for which the Dirichlet data are the unknowns on the interfaces, The development of
the interface equations is first achieved at the differential level, starting form Equations (4.17); .
Then, the variational equivalent is derived divectly from Equations (il.ﬁ):. 1- Finally, we enunciate
the properties of the operators involved in the interface equations and siate the existence and
unicity of the solutions.

Differential interface equations

We propose to solve the [ollowing two problems:

Lwy, = f in £y,
wy o= 0 on @52 1M 82, (4.18)
wp o= N on Iy,
Lagy = [ in {1z,
ity = 0 on £, a8, (4.19)

s = A, on 1.



104 CHAFTI 4, AN OVERLAFFING BOMARY DRECOMNSPEON METHOD

€, Aus Laka|™ Q-
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h‘"n

Ll PN NG,

Figure 4.2: Extension operators.

Now let us decompose @y and ws into L-homogeneous and Dirichlet-homogeneous parts;

wy = u§ + uj, (4.20)

ws = ul) + ul, (.21)

where the L-homopeneous parts uf and u are the solutions of the following systems

Ln.? = 0 in {1y,
W= 0 an A0 109, (1.22)
uf = o on Iy,
Lu} = 0 in {1y,
g =0 on d{k N o5, (4.23)
u o= A on Iy,

and the Dirichlet-homogeneous parts w] and «5 are the solutions of the following systems

Lu; = [ in €2, s
{ up = 0 on 81y, (4.24)
Luy = f in {2a, .
{ 3 T =0 on 952,. (4.25)

uf is referved to as the L-homogeneous extension of Ay into @, and is denoted £;A,. Similarly,
uf is called the L-homogeneous extension of A, into 2, and is denoted L2, see Figure (4.2).
In the ease when L = A, £ ig ealled the harmonie extension and ig usually denoted . The
Dirichlet-homogeneous parts w) and uj ave rewritten as Gy f and Gy f, respectively, Comparing
syatems of equations (4.18) and (4.19) with system (4.17), we have w; = w; for i = 1,2 if and only
if the following two conditions are satisfied:

- 1 8 |
e'f,t-m-“ =(a sy = E—w—' — =(a - na )y on Iy,

iy 2 i 2 (4.26)
iy = it on 17y,

Using the previous definitions of the L-homogeneous extension operators and those of the L-
wmogencons components of the w 0 in LTt f =0, the o of equation 4
I i nponents of il e, and noting that Th6, /= 0, the system of equations (4.20
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can be rewriiten as

E”LW\'I (ﬂ'f ﬂ-t)ﬂ.n\u = Em"l'\u - l(n : ﬂ:g}ﬂ;).,,
Y o et
ﬂl_ﬁ::T z“‘ na)iif ~ e 0’!_ * 5 (ﬂ- T )Ga f on 'y,

M= LpLady + TG f on I'y.

Let us clean up the last gystem by introducing some definitions, In the first equation, we
recopnize the Steklov-Polneard operator S associated to subdomain O, and defined as

Sa i A — HVH(T,),

DLJ.AI'I

Syda i= E—m (’:ln,;

%(u cra ) Lad,.

We define .‘.;‘n, a Steklov-Poinearé-like operator acting on 'y as

Sy Ay — H-VHTD,

B ﬂLp\a 1
SpAn 1= 5”_ + i(ﬂ Tz ) L1 A

We also define Ty, the trace on Iy of the L-extension of A, into 023 by

:ﬁ! i Aq —p Al‘“
fﬁ,a\" = ITi':‘:-:ef\lul

v and ' arve defined as follows

il 1 0
X = Euu_:l{ - u{ﬂ'_ ﬂfl}‘:’lf ._,Egaiﬂ_uj_ -+ :}.(ﬂ ' ni)glfl
ins s 2

- T‘h‘:’ﬂ‘ f!

where we have y € H~'*(I',) and x' € Ay. Owing to the previous definitions, the system of two
equations for the interface unknowns reads

{ S,
-'\ b

Let us introduce the following operator

—5phi + X in H13(T,),

Tida + ¥’ in Ay, (4.27)

n

811 Aa — H™YA(DL),
S'I )‘n —— ‘qﬁj}.ﬂ\fn

and define § as

= S’| | SQ.
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After substituting Ay given by Equation (4.27)2 into Equation (4.27);, we finally obtain the fol-
lowing svatem of equations for the interface unknowns

G v (4.28)

A = ?-"g,.l" + ¥ in Ay

Onee A, and Ay, are obtained, we can solve the two Dirichlet problems (4.22) and (4.23) to obtain
the L-homogeneous parts «) and u3. The Dirichlet-homogeneous parts uf and uj are obtained by
solving Equations (4.24) and (4.25). Hence, the solutions wy and us are caleulated by adding up
their respective L and Divichlet homogeneous contributions.

Remark 4.4, Let us consider the limit of disjoint subdomains, and define A the unique interface
unknown, Le. A, = Ay = A, The operator 5 I8 precisely the Steklov-Poincaré operator given by

" il 1

BS o BN — S A 1.249

514 = 517 Enulﬁlf\ 5@ m)A (4.29)
where 11y, = —mns 18 the outward unit vector normal to €. We can eagily check that Equations

(4.28); simply reduce to the following equation for A:
(Si + 83)A = y.

As expected, this equation coincides with the Stekloy-Poincaré equation for the interface un-
known of digjoint subdomains using the classical Dirichlet/Robin method, or the classical Divich-
let/Neumann method if the equation is purely diffusive (see (58]).

Although Equation (4.28); has been derived ai the differential level, it should formally be
understood in a weak sense. Let us find a variational interpretation to the operators in play. From
Equation (4.28);, we have

{(52 + Sl)-’\usﬂu}l”.. = (y - Sih-h"tﬂ'fl)I‘u Y ita € Ay, (1.30)
Lemma 4.2, The variational counterpart of the Steklov-Pomneard operalors are

(.E!l] A“.ﬂ.")]"" (I-:}(.C[Tbﬂ\f” E{Jﬂ-a) v.“n E AHI {"31)
(Saduspa)r, = aa(Lada, Eypa) Y pa € Ay (4.42)

Jor any extension operators Ey and Ey.
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Proof. According to the definition of .‘3‘,. and using Green's formula, we have

. : acTeds 1 . .
(S1Aas fa)r, = / ( el L 5(«- 1) L h.a\.,) fo 1
Iy

I ﬂ'“.-_;

s

fn g [( EV(LaTida) + %(L;'ﬁ'&,.k,,)u) ,L,,] i

(—cV(L‘lﬂ,Au; 5 ;;(lehr\n)ta) fha * T dl’

= j V(L T) - (B jta) di2 + [ AL ToNa) Eajta d2
fy vily

2 Ewa- @@ a0~ 5 [ (@A) e V() a0

Sty 11]]
_%L (L1 Tihe) (Bsjta)V - adfd ¥ 1y € Ay, (4.33)

for any extension operators Fy. Knowing also that according to Equation (4.22) we have
AL Tid) = a - T(LaTida) + (8 + T - a) LTy M,
in the sense of distributions, Equation (4.33) simplifies to
(81 My ttadr, = as(LaTuMay Espta) Y pta € A

The first argument of the last bilinear form is represented in Figure (4.2).
Let us now consider S3. According to its definition and using Green's formula, we have

dLaA, 1 ]
(S'.EAH!“H)I',. = ‘/J:I. (P‘: H;':‘e — 5([15 4 ﬂag)L-jAn) i dl’

. f £V (LaNa) - T (Bajra) d2 + f eA(LaAa) Bapia dO
0 .

"
=2 / (Bapta) e V(Lara)d = 3 [ (Lada) e V( B}
B Sy 2 (85
_; (Lora)(Baa) V- ad) ¥ i € Aiy (4.34)
¥ i1y

for any extension operators Fy. Knowing also that according to Equation (4.23) we have
eA(Lady) = a V(L)) + (8 4+ TV -a)Lal,,

in the sense of distrbutions, Equation (4.34) simplifies to
(SaAaipta)r, = aa(Lada, Eajea) Y jia € Au,

which completes the prool of the lemma, EI
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As for the right hand-side of Equation (4.28),, we can show that

(.\:'l ﬂ'rl)l',. = (f! E:'..‘)'ﬂ*rr)l?-_} - ﬂ'i{G‘lfv Eﬂﬁu} + (fl EHJ"H)!JH T ﬂ"ﬁ{gl fl E:'.'p‘“cl)! v fa & An
(*":'Ifih“rﬂn)l'.. = (LT Gs f, E:lﬁrr) Y € Ay,

for any extension operators [ and [, This completes the definition of the variational form of
Squation (4.28):

”"l(c':if'\ﬂ ¥ Eﬂ“n) + ”‘H(Gl T:*u"\ﬂ ¥ I':HI-"M) = ‘.fr H‘.H-"u)“-]- ) ”'i(g:l‘ft }-;:'J“ﬂ)
0 Eapa )y — aalG s Eapa) — aa(L3 TG [, Eapra) Y i € Ay

Varintional interfnce equations

Equation (4.30) ean also be obtained by formulating Problems (4,18) and (4.19) in a variational
form as follows: And wy € V) and wy € Ve such that

ay(wi,vy) = f Vo, & VP

wy = 0 on 41 M 44, (4.35)
wy = Ay on [y,

as(tra, va) = f Yoy & VP

e = () on 8 1A, (1.36)
iy = A, on Iy,

As piven by Equations (4.20) and (4.21), we decompose wy and ws into L-homogeneous and
Dirichlet-homogeneous parts. The L-homogencous parts are solutions of the following equations

ap(ul,m) =0 Yo e VP
uf =0 on d§1 N an,
ul = Ay on [y,

aa (1l va) = 0

Yug € WP

wl =0 on 8 M1a8,
ug = A on Ly,
while the Divichlet-homogeneous paria satisfy the following equations with homogeneous data
ay(u,vg) =0 Vo, eV
U} = on 81,
ag(ug, va) =0 Vo ety
uh =0 on s,

We now procesd similarly to what has been done at the differential level, Comparing Equations
(4.35); 3 and (4.36); -5 with Equations (4.6); .4, we have w; = w; for i = 1,2 if and only if the
following two conditions are satisfied:

wy(Lodg, Bopiy) + 0Ly }\b: Eapg) =
{(f E:i.fffu}ﬂu = ”2{93;! Epta)
+(f| kﬂ‘ﬂﬂ'n)ﬂ:. = i3 [Qlf. k:ﬂ.f-‘ln} V M Aru (437}

o= Tida + %' in Ay
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By substituting Equation (4.37)2 into (4.37)1, we recover the weak form of Equation (4.28); de-
rived at the differential level,

Solution of the interface equations
Let us go back to system (4.28), We first state some useful properties of operators Ss and S,

Lemma 4.3, 5y aa both conbinuous und cogreive and Sy a8 continuwous and non-negative,

Proof. We have shown that Equations (4.32) and (4.31) hold for any extension operators Iy and
Ey. This leaves us the choice to find appropriate expressions for Sy and 5 to facilitate their
analysis. A straightforward choice consists in taking Ez = £a, and E, = £,T}. Thus, we have

{(S2da:iadr, = az(L3Aq, Lajia),
<.§'|A"|’.I-")|"" . {l:;(ﬁ[f},,&i“ Lti‘f‘h“n) V”u = AHl

Woe first show that Sg is both continuous and coevcive, Using the definition of as given by Equation
(4.2) and applying the Cauchy-Schwartz ineguality, we obtain

(Sanay v, < BollCamallioallCoptallie Y0y jta € Ay, (4.38)
where
Koy = £ + ||l 0, + [|50] o 04
According to the a-priorl estimate given by Equation (4.5}, we have that

[[£2pialli e = Calliallijar, ¥ pa € A
As o result, Equation (4.38) gives

(St o), = Magllmallize liallizzr, Y00 ba € Ay, (4.39)
which states that Sa is continuous, with

Mg, = £, C3
the continuity consfant,
We now show the coercivity of S-. Owing to the skew-symmetry of the convective term of as,

for any ji, € A, we have

(Sattas fadr, = az(Lapta, Lapta)

< €V Lapalldn + j“ s0(Lajta)? dO
2

= £|VLapallip, (50 = 0 almost everywhere). (4.40)
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From the trace inequality (see Equation (4.4)), we know that there exists a constant €5 = 0 such
that

| Laptajocrslli /2,000 < Collapallige Ve € Au,
Using the Polncardé-Friedrvichs inequality (4.3), Equation (1.40) yields
(Sattas fa) = N-‘Fu”“u”:f/'g,r‘,, Y g € Aa, (4.41)

where
g
Ng, 1= rar———trmy
" (G, + 1(C)?

is the coercivity constant,
Let us finally prove the continuity and non-negativeness of Sy, Applying the Cauchy-Schwarz
inequality to Equation (4.31), we obtain

(=5-'1 Pas Hadt, = Kol L1ThLanall1 0y 1 L1 To Laptall1 024
= kL Tlanalli o | L 0 Lapalliy (00 € $2)

for any ne, e € Ay and where kg, = £ ||a)leo, + ||%0]|les0,. From the a-priori estimate given
by Equation (4.5), we have that

{571 Hay fla)r, = K, Cﬂlﬂ%'ﬂﬂll/a,un. (175 Lz prall WERIIEY
r, CHITLanally 2,0, ITh Lz pra |y 2,0 (4.42)

Ry C'f“‘m.h Lanally Ja.081 || o8 Laptally [,

< wy CF O Lamalli | £atal e (trace inequality (4.4))

< way, CLCY | Lamall ol Laptallig - (25 € S22)

< ki CT O3 Cillnallijz,oaallitalli j2,00,  (a-priord estimate (4.5))

= Mg, |i7?u||l/:a.1‘,.||ﬂur||1/:!,1*,, (4.43)

which proves the continuity of S;. Finally, owing to the skew-symmetry of a;, for any p, € A, we
have

(-F:;l Hiy ”‘ﬂ)l"“ =6y (.CI, .!r'bl-f-" } x.:lfi},}.;")
= eIV L Topualli 0y + f so(L1 Topea)* Y
E 0 ('Hn :-Lh 0 ﬂllll":ﬂ, "v‘-‘r)’\vhl.‘f{-‘o'

ane the lemma holds. O

The following result 18 a divect consequence of the previous properties:
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T

Theorem 4.3. System (1.28) has o wnigue aolution {A,, Av}

Proof, We first prove that S is invertible, showing that it is bath continuous and coercive. We
have

(*E."I"J'-.nﬂ-n}l‘.. = <*‘-':"I Hﬂ-)'"-il})‘.. + (S'.Winﬂu)l'.. V”ﬂ-ﬂ'n € Aa:
Therefore, the continnity of 8 follows from that of Sy and 5, L.e.

{510 jta) = Ms|

T.h.l]|/2,|'..||Hn|||/2,r.. Y tas fta € Dasy
with continuity constant Mg given by
ﬂn’i, g A'!“-‘\m + u"lf:!{._,.

and where Mg, and Mg . We now show the coercivity of 5 without trying to obtain sharp
catimates. We have alveady shown the coercivity of S; and the non-negativeness of Sy, Therefore,
{lﬁ‘ﬂ-u.ﬁn)['.. o (S!l.u'ﬂl.“'u)l".. i (Slﬂﬂnﬁﬂ)['..
> (Sajta, fa)r,
2
Nsllptalli 2 r, Y o € Ag,

I

where Ny ls glven by

E -
3 (Cay + 1)

Ng = N,t;i = (4.44)

Thus & is a continuous and coercive operator. According to Lax-Milgram Lemma, it is therefore
invertible and Equation (4.28); has a unigque solution A,. The existence and uniqueness of A,
follows from that of Ay, by applying Equation (4.28):. Remember that we have

o =Thlady + X
L4, is the unigue solution of Problem (4.23). Since the trace operator T, is well defined, from

H'Y(£12) onto Ay, we know that Ay exists and is unique, Inverting S in Equation (4.28);, we find
thiat,

Ao = S7(x - S in A,
N o= TS '(x=8x)+x in Ay,
are the solutions of our interface problem. o

4.3 Iterative scheme

4.3.1 Relaxed sequential algorithm

In this section, we derive an iterative procedure to solve the domain decomposition problem (4.6).
The sequential version of the iterative overlapping D/R algorithm is defined as follows. Given an
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initial guess 1l on Iy, for each & = 0, find o/ & V) and ub*' € V3 such that

[ a(uf o) = (o), VeV,
ultt =k on [y,
3 nv..-('u.'j"" Jog) = {f,1m)q, Y e VY, (4.43)
ag(uh ™, Bapy) = —aa(uf™', Eyp,)
: +{[ Eajraary + (F Ezpia)ey Y f1q € Ay

for any extension operators g and B, IF this algorithm converges, the solutions on both subdo-

maing satisly Equations (4.6); -4, The corresponding algorithm for the differentinl problem reads:
given an initial guess 'Hfj on Iy, Tor each k& = 0, find ui"l' | anil -u..g'"'l such that

- It = ¢ in 0,
W =p on 98 \ Iy,
uft = uf on Iy,
 Lubtt =y in . (4.46)
ub™ =0 on 881y \ T,
| c‘ogi-:l = %{'n nglupt! = Ea;.:i:: - E(n g )uk ! on I'y.

If this algorithm converges, the solutions on both subdomaing satisfy Equations (4.17)y 4. For
the sake of clarity, we have omitted the relaxation of the transmission conditions; for example, the
Dirichlet condition (4.46)y could be replaced by

k=1 k k
ty = Ouy + (1= 8)uy,
where # = 0 is the relaxation parameter,

We now i:]\ft'r:tiy.'n.l,:: the interface lerates produced by this relaxed terative procedure. The sei
of equations for the w,’s is the following:

L'ﬂ;f"'i = in {1,

witl = P on 41 MO8,
'+ A on 'y,
Lttt = f in {23,

1 = on d83, 1 8L,

wz
m;,"'l = A on .
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Initial Initial
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Figure 4.3: Relaxed sequential algovithms for the interface unknowns, (Left) Dy /R (Right) D/Rg.

The cholee for taking as Divichlet conditions Ay at fteration k for m{” ' and A, at iteration

ke 1 for -m.f "1 s arbitrary, According to this choice, we have

gt = L2207 + 0

.”"'1
We have mf = uﬁ’ for ¢ = 1,2 il and only if the mf‘"a satisly the transmission conditions (4.46)5
and (4.46)4. By noting that the Dirichlet-homogeneous solutions G, f and G f do not ehange along
the iterative process, the Dirichlet-relaxed iterative scheme, denoted Dy /R, gives for any £ =0

thﬁ*'l =2 —5-';\.-‘\# F "Ll
(4]..:17)
M= 0T )+ (1= 0N,

The Robin transmission condition can be relaxed as well, by replacing Equation (4.46)g by

auktt f dubtt 3
39’-*3 - 5{'1..”2}?"!‘;” =i Eﬁu a E(“-m)hf* :

duk 1 o
+{1 - 3) (t M - E(u. : lﬁy)ﬂ.“ :

In terms of the interface unknowns, the Robin-relaxed iterative scheme, denoted D/Rg, produces
the following lterates for any k& = 0

g ARt B{—SpAf 4 x) + (1 = 8)5:2A,
(4.48)

)L:';'l = T},Aﬁ""-l—,\:'.

The dependence of A¥*!' and A,“f“ on the values at previous iterations is sketched in Figure
4.3, given two initial values A and AD; note that the value of A} is only needed when using the
/Ry method,

The continuity and coercivity of Sy has been proven in last section. According to Lax-Milgram
Lenima, Sy is therefore invertible,  We can therefore reformulate the system for the interface
unknowns (4,27) as follows;

€ada = Xas
4.49
{ A = X, :49)
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where we have defined €2, Gy, xo 8nd yy 08
Qo = Iy + 5575, T (= I, + 87'5)),
Qy = I+ 1355,
Xa = 93 "% — 87 Soxs

v = TSy '+ ¥

and where 1, 18 the identity on A, and [y 8 the ldentity on Ay,
By solving the Divichlet-relaxed and Robin-relaxed systems for A¥*! and A, we can show
that both schemes lead to the same ['ullnwim_a; iterates for any k= 1;

k41
’\uf

B(xa — QuAk) + AK,
(4.50)

1]

bt . i i

Af_l U(*\b =, Qb‘hh) + 'h'lll'

W recognize here two stationary Richardson procedures for solving Equations (4.49); and (4.49)s.
The Richardson procedure for solving A, is similar to that produced by the classical Dirich-
let/Neumann method; in fact, by multiplying Equation (4.50); by Sz we obtain the following
equivalent iterate

Matt = 657" [(x = Six') = SAL] + AL,

which is a preconditioned Richardson method for solving Equation (4.28);, using 53 as precondi-
tioner for 5.

Remark 4.5, As pointed out above, the Richardson procedures (1.50) are valid only for k = 1.
The Dy /R and D/Ry are therefore not completely equivalent, as the first iterative values Al and
.3.:‘ may differ, although AY and A} are chosen to be equal.

4.3.2 Convergence

This section studies the convergence of the Dy /R and D/Ry iterative schemes given by Equa-
tions (4.46); ¢ at the differential level, or (4.45);_4 at the variational level, Rather than divectly
studying the whole system of equations for u; and us, we base our analysis on the interface equa-
tion systems, Le. Equations (4.47); _a for the Dy /I method and Equations (4.48); _a for the D/R,
method. The result we can prove is

Theorem 4.4, Assume that £ is large enough so thal

My + Mg,
K* i= 2N, = 2lallon.r, OF == > 0, (4.51)
ot

where the constants Ng,, Mg and Mg, have been introduced in Equations (4.41), (4.43) and (4.39),
respectively,  Then, there exisls O such that for any given A e A, and M) € Ay, and for all

B € (0,0uax), the sequences {AE} and {A}} given by (4.50) converge in Ao and As, respectively.
The wpper bound of the relazation parameter Oy can be estimated by

w*N Ea

(ﬂnmx = _ﬂ.{_.;:(flﬁ"g-‘ 4 fl-f_f-:-,)* .

{4.52)
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Proof. The prool is split into two steps. We first show the Richardson procedure for the sequence
{.\;‘,’} piven by Equation (.50} convergesd. The prool ia based on the abstract Theorem 3.1, of
[73], or Theorem 4.2.2, of [58]. Secondly, we show that if the sequence {AX} converges, then {A})
does ns well,
Let us start with the first step and define i, the Richardson iteration operator as
Ro i Ao — H-YYT,
Rﬂ Hy 1= {lu e gc\.’n)ﬂ-" - (.’" - fi.fl'y'i.g)jt,..

If we dofine e = A < A, as the error with respect to A, at iteration k, A, being solution of problem

(449}, the error equation reads
t::‘;"" = H,,rrﬁ.

The Richardson procedure (.50} i8 therefore convergent if the operator [, 8 a contraction with
respect to some norm. Let us introduce the following applieation:

('!')Hg . Ih"n x A“ —p M«,
- 1
(las pta)ss 1= 5 ((Satlay v + (S2pta, Ma)r, ).

It is easy to checl that this application 18 a sealar praduct, and that it induces the following
Sa-ti01m

llsalls 2= (Sapta, padi?,

which, owing to both the coercivity and continuity of Sa, is equivalent to the natural norm on A,
L

N litally o, < allsy € M lliallijae, Y pa € A (1.53)
By definition we have
"”nﬁ‘n”?’\'g - ””n“arg, “"9“(3#‘"'5:}_'3”")1".
~ ((Sm.-,,.5'{'.5';.f.,,)1~“ e (S;an.p“)r“) A (4.54)
Using the same strategy as in [68], it can be checked that
(.Sg-;}.,h.ﬁ'g"l'.ﬁ']:“)|-" + (Stas o), 2 “'--”H-u”-f/-a,r,, Y s € Ay, (41.55)

with &% defined in Equation (4.51); this point will be studied just after this proof. Since the norm
=l E ) it ¥ v y

of S, s 1/Ng,, and owing to the continuity of 82 and &) and to the assumption of the theorem,

Equation (4.54) yields

“R«“« ”:E\‘; = Kf?"f‘ﬂ"i‘-, ;
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with Ky glven by

e PP L -
Ky=1 +(39M .
Ng, Mg,
The Richardson procedure is a contraction in the Sy-norm if Ko < 1, e, if 0 < 8 < .., with
Oy given by Equation (4.52).

Let ng now go on to the second step of the proof, ie, the convergence of the sequence (A}
implies that of the sequence {Af}. Although the Dirichlet and Robin-relaxed methods lead to the
game Richardson procedure for Ay (Equation (4.50)s) for & = 1, we have to treat their wuvt-'l‘ht‘hn‘
geparately, We define ef = A — Ay Since the converged solution satisfies A, = Thda + X',
Equation (4.48)s for the Robin-relaxed scheme gives for any &k = 1,

k ok
ey = They:

Therefore, we have

|.|ﬂf lijar, = ||-Tfs53"-£||l/u.t‘n
< OF ||Laed | s (trace inequality (1.4))
= €30, ]ir.'.f‘”j,/-;‘p“ (a-priori estimate (4.5))
< v er [le [ 5 (norm equivalence (4.53))
{'“ [#1
< K¥ d vt

0= ;ﬁj‘ leallizar.

which shows that the sequence {Af} converges whenever Ky < 1.
Now we study the convergence of the Dirichlet-relaxed algorithm (for @ # 1), From Equa-
tion (4.47)2, we have that, for any & = 1,

ef = 0Thel 4 (1= 0)ef .

According to this equation, we can generate the following sequence

ef = 0 Toet 4+  (1=0) e,
=8 * = 00— Tk b (10 o,
(1-07 = = 8(1-0) Tiek? +  (1-0)" 4™,

T

(L—0)=2 e =01 -6 The?  + (1=0)%" ¢},
7

(1=0)F1 e} =g(L—0)" Thel + (1-0) ¢
Adding up all the terms, we find the following equality
K
ef = (1= 0)"e) + 001 = 0)" 3" (1=0)"Tyep,
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which gives

;
ekl jar, < 10 =0 lleglljar, + 611 — 6] }: |1 = 87" |y Lol far,

n=1

. 0 01 C; —~(_Ko \"
< |1 =01 |lehllipar, + el o+ Ny 7 llealls, 21 (]l - ﬂi) '

The geometyic progression is

i ( Ko )rr —L(A +1) if Ko =14,
= Ko |1—d" K} .
Ly = ; —“:9!* lll _ﬁI‘| L otherwise,

and thus we find the following two expressions for the norm of the error

1 f.-. (%
|1 —8)* (""h”l/au + )-'b (k+1)8 NI/; ||‘-’-2||3—:)
&y
lleills o, < ot — i G if Ky = |18,
11 = 0 lledlls o, + 0B =8 le0lls; otherwise,

[1- b'l Ko Nm

Owing to these inequalities and since # < 2 (see Equations (4.51)-(41.52)), we conclude that if
Kg = 1 the sequence {Af} converges. O

Note that once A, = limp_.c A¥ and Ay = limg 0 .,\f;' are found, the solutions in £ and {2y
are obtained by solving the two Dirichlet pmhlunns given by Equations (4.19). As a consequence,
the convergences of sequences {A*} and {A¥} imply the convergence of the whole algorithm.

We show how Equation (4.55) and Equation (4.51) for &* are equivalent. Onee again, we follow

the authors of [58]. Let us split operator ay into a symmetric part and a skew-symmetric part as
follows:

iy, ve) = af(wa, va) + af' (wa, va), Vg, wa € Va,
with

ay(wy,va) 1= e(Vwy, Voglg, + (sows, v2)p,

1 1
ay (g, vg), 1= a—(u Vi, va)a, — E{w;. i Vg,
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Let 1, = 55 'S, We have

(I-‘-";Eﬂ'u ¥ S"gllisﬂ'uh'.. - (S“n ¥ Plrr}f'.. - {SIHHQ Uu)i'.. 3 (S“:nﬂﬂ)l',. 4 E(Sﬂut “‘n)l"..
<*5.2”u ' T,"u}l',. - <S'2Tfn 1 H’l?l)l'., + 2<Surr| ﬂ'rl)l',,

i (Lapty, Lot)y) + @ (Lajrg, Latjg)
~an(Latpa, Lapta) = a3 (Lo, Lapa) + 208 pta, pa)r,
208 (Lapra, £255 ' Spa) + 2054, pa)re, -

We have shown in Section 4.2 that S is coercive with coercivity constant Ng given by Equation
(4.44). Henece, last equations yields

<'S'2“m"-'l“;-¢“15“rl)l'.. + (S.”rilﬂ‘rr>l" = 2NH||F‘H|H/:!.[‘., : 21”?1"{52“mCES'J_ISHH}I ('I'Eﬁ)

Lot us try to bound the last term. From Cauchy-Schwartz inequality and the a-priori estimate
(4.5}, and using the continuity of 5§ and .'5'.2'", we abtain the [ollowing (coarse) estimale

|u5,'1"(ﬂ:s#mﬂ-.e~‘?u ]Sﬂu” = “u"w.l‘u “‘C.lc-",]_ lSI-"'ft”I.97\‘-:”!-::!”"“!.9-.1
< ||also.r, C:I'at ”S.’e_lS;“"”|/4‘p‘“h"“ﬂ”1/'-'--'3“'1’

< llallo.r, €3S NS all -1 /20, Mitalli 2.r,

o Mg
< llallo.r, €3 T-;,'“"Mﬁ/ﬂ.rn :

Therefore, Equation (4.56) boecomes:
<S:E|”'|||S-_I_IS.”'")I',. - <S“u|“|'l>l'ﬁ :2 ""f‘ll.”n“"it[:!,l“,.'

wi'l.l:
5° = 2Ns - 2allw,r, CF 2, (1.57)

or equivalently ©* given by Equation (4.51).

Remark 4.6. Let us examine closer the continnity of $;. If the subdomains are disjoint, we
have already shown that fl is precisely the Steklov-Poincaré operator neting on I, associated to
subdomain §y, ie. 8y = 8 and T, = Thla = I, (see Equation (4.29)). In the proof of the
continuity assumption, Equation (4.42) is thus the bifurcation point between the overlapping and
digjoint Divichlet/Robin methods. So what does the overlapping method tell us morve? ThLopy, i3
the value on [y of the extension of p, in 3. If the norm appearing in Equation (4.42) were the
infinite norm, i.e. [|7Lapiy ||, we could apply the maximnm principle and state that

”T:‘Jr-'.l,“n“m,l';; = kl”ﬂ-n“m.l'.,

where &y € (0,1) (see [1]) (see the graphical representation of operator 7, £ in Figure 4.2), There-
fore, in addition to constant ' already present in the continuity constant My of 5y for the classienl
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i

D/R method, the present method would include the factor &y < 1. According to the well-known es-
timates for ky (see e, [1, 77]), we would expect &y to decrease with increasing overlapping length.
In particular, the smaller the continuity constant My, the greater the maximum authorized relax-
ation parameter O, a8 confirmed by Equation (4.52). Unfortunately, the infinite norm cannot
be bounded by the #'/? norm in which we are measuring the continuity of §;. The extrapolation
of the previous comment to our situation is here only intuitive.

Remark 4.7. We have shown that the convergenee of the Dy /R and D /Ry schemes was conditioned
by the smallness assumption on the skew-symmetric part of Sy, given by Equation (4.57), When
the subdomaing are digjoint, there 4 a way o cireumvent this unpleasant condition; the resulting
nu_*l.'lu,u,l i:t q:nlh‘tl i.lu' 'y-Dﬂ'l. imethod devised in [73].

4.4 Generalization to other mixed DD methods

When we showed the equivalence between the onesdomain and two-domain variational formula-
tions, L.e. the equivalence between Problems (4.6) and (4.1), we did not restrict ourselves to any
particular bilinear form. We could have chosen identically any of the three bilinear forms derived
in Chapter 1, namely ", a'/* and o', The important point in the choice of a bilinear form only
appears when we write down the interface equation. As an example, let us consider the bilinear
form a = a", which natural condition 15 a Neumann condition.

Proposition 4.1. System of Equations (4.6) _y can be reformulated as follows: find uy, € Vy and
s € Vi such that

ag(ug,v) = (f,u)a, Vo e VY,

) = gy on Iy,
hiy

aa(ua, vh) = (f,v4)q, + E}E'”&}r" Vvl € Va.

Proof. The proposition is easily shown following the steps of the proof of the corresponding
proposition for the Dirichlet /Robin method in Section 4.2.3, ]

The DD method is therefore an overlapping Dirvichlet /Neunann method.

Let us go back to the derivation of the interface equations, as done in Section 4,24 for (he
Dirichlet/Robin method, We redefine some of the operators in play in the interface equation. We
first define S, as

S‘I i Au — J.‘(_”“l“-‘il}r

: B[-:J‘ FMr
iy

Syl =8

and the operator S, ns

Syt Ay — H-YYT,),
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The right-hand side y is

L V.

" na s

Thaen, we can show that the syatem of two equations for the interface unknowns reads

{ Sﬂ'r\" = _51I+Ah + A i“ 'H ”2(]-‘“)' (-153)

M o= T +y in Ap.

We also introduce the operator 8, defined as

Syt Ay — H=YAL),
5']-;\". H rl;lhi\?-‘i'fl'\n!

and defineg 5 ay
5 =8 + 8.

After substituting A, given by Equation (4.58): Into Equation (4.58);, we finally obtain the fol-
lowing system of equations for the interface unknowns

{S.\ﬂ = )g'-.';'bx’ in M ”!U‘ﬂ):
MW o= Dhatx ks

We now look for a solution to the last system, ie. we want to be able to invert S. Let us
consider the properties of the operator 5. As for the D]t‘lt‘.llh“.'l.f Robin method, we can show that
Lemma 4.2 holds, Moreover, we can easily show that both 5; and Sy arve continuous, and so is 5.
We are now left with the coercivity of §. Chaosing Ey = £a, and B3 = £,Ty in Equations (4.31)
and (4.32), we have

<-I§"1f"-u \ﬂ-er}l‘.. + (S‘l.”fm f"-u)l‘.,
ﬂ*:i{zi -Fll-lhﬂ'n ¥ L:l '-f‘h“u] 4 fia (C:E.”n ¥ E'.E.“’u)‘

(S, pa)r,

Applying equation (1.14) for b = 0, the last equation gives

. g = 1 e g
(St tidr, > T g 6Tl oy = 5 K (@ ma)( Ly Tysua)? oD
£ g 1 5 i o
+milﬂuﬂnllf.m +3 [: (@ my)(Lapa)” di. (4.59)

Before going any further, let us recast last equation in the case of non-overlapping subdomains.
The two contour integrals cancel each other as we have LTy, = Loyt = ji, on Uy In addition,
we can apply the PoincaréFriedrichs inequality (4.3) to bound [rom below the fivst and third terms
in terms of the trace norm. Thevelore, S 18 coercive. In the overlapping ense the contour integrals
do not cancel each other, and some estimates are to bo found to be able to proceed; for example,
by assuming £ large enough, it is possible to prove the coercivity of 5 in the same way Equation
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s

(1.15) was derived. If the coercivity is assumed, then the interface problem has a unique solution.

Now let us study the iterative procedures for solving the interface problem presented in Section
4.3. We consider the Dirichlet and Neumann-relaxed versions given by Equations (4.47); .2 and
(4.48)} _a, respectively, which both lead to the same stationary Richardson procedure (.1 511 ) P
In order to prove the convergence of the relaxed scheme, we need the continuities of S and t‘:'}..
and the coevcivity of the preconditioner S, Applying equation (1.14) for b = 0 to our ease, we
have

('E;'H-"-mf'*rt}r. ? ”‘L"‘“l"”l ”J 2 / a@: 'll-r- (L'IJ"’"} “'

1+ Cq
In addition, we showed in Section 1,13 that if I'; is an outflow or if
£ > C'la-ngllwr,

where €' is a constant independent of a and £, then 82 is coercive. If this s the case, then we can
apply Theorem 4.4 to prove the convergence of the Richardson procedure.

I this section, we have shown that the extension of the overlapping DD method derived for
the Dirichlet/Robin algorithm is in principle possible, although additional assumptions on the
data have to be made. In particular, we showed that the solution to the interface equation,
which depends on the coercivity of S, 18 not as straightforward as in the non-overlapping case (see
Equation (4.59)). The iterative procedure was established and its convergence is submitted to the
same condition ag in the non-overlapping case. However, we hope that in general the overlapping
helps convergence, as has been already intuited fn Remark 4.6. This will be confirmed by the
numerical experiments af the end of this chapter,

Note finally that if we consider the bilinear form a', we are faced we the same problems
than those encountered in the study of the overlapping Dirichlet/Neumann method. The 1/2-
weak formulation is therefore the most appropriate for solving the scalar ADR equation using the
overlapping mixed method.

4.5 Finite element approximation

In order to get further insight on the overlapping DD method introduced in this chapter, we will
derive an algebrale system for the interface unknowns and see how the overlapping method solves
the Schur complement system of the interface unknowns, The derivation of the Schur system does
not depend on any particular choice of the original bilinear form, and therefore it can be applied
to the overlapping [')i;i(l;l;hlfﬂn'l';in as woll as to the overlapping Dirichlet/Neumann methods.
Before developing this algebraic system, we need to introduce the finite eloment partition and set
up the finite element overlapping DD method. The numerical setting is valid for any arbitrary
triangulation as long as the grids mateh in the overlapping zone and on the interfaces,

4.5.1 Discrete problem

Let ug diseretize the complete geometrical domain {2 into finite clements, such that the interfaces
I'y and T, lye on some elements segments of the triangulation 7y, and define V), the associated
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"'";“f“ O ~<1"|:
. T - A
L[~ AR
AN

Figure d.d4: Finite element iriangulation of the subdomains £ and £,
finite dimensional subspace of V. From the definition of V', we construct the finite dimensional
subspaces Vi 4 and Vap, V", and V2 of Vg sueh that
th = {'“h €V 1 Uh|, = 0},
"":J.h

{"'-’h E V:'l 1 Upliy = OL

0},

'(-’llf y = {u €V, |uh|ﬁa

"':.!u,lh {Uh & ":‘. 1 l'hmﬁi’ = U}.

Lot Ty be the discrete counterpart of T,. We define A, the linite element subspace of T, vy,
Au.h = {Tru,h'”h & ""H }l

Clearly, i.-'}f,l and 1-’2‘:’“ are finite dimensional subspaces of (the extensions to {1 of) V" and V',
vespectively, and A, 4, 13 a finite dimensional subspace of I',. Figure 4.4 shows an example of finite
element triangulations of £2; and $3:. The requirement that both Vi, and Vo are constructed
from V5, is necessary in order to make sure that nodes inside the overlapping zone coincide; thia
simplifies further analysis of the model problem.

The finite elemont formulation of the overlapping D/R method veads: find wy p, € V), and
g € Vo such that

( ”t.h('“l,m'”l.hJ = (ftl'l.h>ﬂ| VUU' £ Vltfh‘
= ey on I'y,
{ i (g g, van) = (i), Vs € Vi, (4.60)
atg (g gy Eaoppian) + ao (i n, Ea g pian)
| s (F, By ngta )y (F) B pjta,n )i, Y pan € Aans

where I, denotes any possible extension operator, from the finite dimensional trace space it
applies to, to V.

Remark 4.8, Contrary to the continuous ease, we cannot derive an alternative formulation for
the finite dimensional ease, Remember that in the continuous case, the aliernabive Tormulation
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was derived by using Equations (4.13) and (4.14). However, in the discrete case we have in general

Ly # f in 1, anel
Ligy £ [ it {2,

This is an important point as in principle we are not allowed to use the alternative formulation
at the diserete level, In the next Chapter we will present a numerical scheme that enables us to
deal with this formulation in order to preserve the ovder of convergence in i of the finite element
method,

4.5.2 Tterative procedure

We now derive an iterative procedure to solve the domain decomposition problem (4.60), The
original formulation was preferred to the alternative formulation for the corresponding algebraic
scheme 15 much eagier to set up. The sequential version of the lerative overlapping D(“. :-ngm'il.ln'n
iz defined as follows. Given an initial guess "‘fz].h on 'y, for each k& = 0, find “T,F. & Vi, and

R
”'.E.Ih & V4, sueh that

[ a(ufh v) = (oo, Vus € V),
'”‘t..ll-".al = ""‘j‘.h on Iy,
< az(ubh van) = (frvan)a Vouan € Vi, (6
”"‘-'(”"W B nptan) = —as(uis' Banjian)
L A B nttanhay + U Eaptto n)ns V pan € Ao

Note that all the results concerning the eonvergence of the algorithm dervived in the continuous case
are valid here and if this algorithim converges, the solutions on both subdomains satisfy Equations
(1.60); 4. For the sake of clarity, we have omitted the relaxation of the transmission conditions,

Wo now g0 on with the siudy of the nll.{nhrﬂit'. systems resulting from the three formulations
of the ADR problem studied up to now, Le. the onesdomain formulation (fl.l), the two-domain
lormulation (4.60), _4, and the iterative two-domain formulation (4.61),_4. In a first step, we con-
struct the algebraic equation of the original one-domain problem, We then reorder the unknowns
according to the geomoetrical decomposition used in the earlier section, and derive an exaet equation
for the unknown on the interfaces of the domain decomposition. We will recognize the m':]nrhlg
explicitly introdueed by the domain decomposition algovithm (4.60). Alterwards, we construct the
algebraic system of equations deriving from the iterative overlapping D/R method, and this system
is solved for the unknowns on the interfaces, We show how the resulting iterative scheme can be
related to the exaet equations for the unknowng on the interfaces,

4.5.3  Schur complement equations

At this point, we nead to define precigely the finite dimensional gpace V. Let us choose the apace
of linear piecewise polynomials, We denote @, the coordinate of the node x, of the triangulation
of domain £, and ny, the total number of nodes. We define N as the shape lunction associated
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Lo node @ oand sueh that chat N("‘(m,‘j = Oy, for each ria = 1,--+ n,. Then we construct the
vector N of components N for r=1,...,n,, ie

N =[N .. NI
At any point of coordinates @ inside the triangulation, the approximated solution uy, is
uy(x) = N'ua,

where the shape functions are evaluated at @ and u is the vector of nodal unknowns. According
to these definitions, we define the vector of forces as

£ =(f, N,
and the matrix A such that

A = a(N', N),
or equivalently in terms of there respective coeflicients

(fi N Yr=1,...0p
u(Nm.N"") Yra=1,...,M

f
A,

Hence, the finite dimensional variational form of the ADR equation leads to the following system:
Au=f, (4.62)

We now decompose the matrix geometrically, according to the decomposition introduced in
Section 4.2.1 and sketched in Figure 4.1, Let us define the matrices Ay; for i, 7 = 3,4, 5,a,b whose
coeflicients are

(Ag)pa = a(N NEYY Wpml.. ng, ands= R T
where ny, is the number of nodes of the interior of the partition of £ when ¢ = 3,4,5 and the

number of nodes of the partition of T'; when § = a,b. By performing a simple reordering of the
unknowns, the system of equations (4.62) can be equivalently written as

Ay {1 {) Ay, { 1y £y

{ A 4] A A iig £y

{) () Ans 0 Ay i, = £ i (4.63)
Asz Aai 0 Aga 0 U, fy

i) Ay A 0 A 1y, fy

System (4.63) can be obtained as well by deriving the algebraic form of system (4.60); .4 using
apecial extension operators, Let ug set the operators By, (i = 3,2) for all p, n € Ay as follows:

Einjtap(®s) = pan(ey)  when x, is on [y,
= 0 otherwise.
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Ei iy n equals to zero on internal nodes and takes the value of its arpgiment on the interfoce T,
Let us define ;40 it takes the value of w;, on internal nodes and is zevo on Iy; we define 95 in
the smne way, Consequently, we have the following equalities

Wn = ﬂi.h + Ei.th”f.h:

vin = O+ BoaLavin,

which enable ug to decompose the unknowns and test functions into internal and inerface com-
ponents. We are now able to construet the algebrale system givun by Equation {-1.[3”). Lt 1y,
be the unknown belonging to subdomain ¢ = 3,4, 5, a, b and computed solving the finite element
problem in §2; with j = 1,2, Quantities withoui superscript refer to the non-iterative algorithm,
The following algebraic equations show the contribution of each one of the equations of system
("']ﬁ“)l i}

Contribution of Equation (4.60);:

Ags 0 Az, 0 ::3,1 f;
0 Auw A Ag u"‘l =| £ |. (4.64)
Auﬂ A-n--l. Arm 0 il f.;.
up,‘-‘

Contribution of Equation (4.60)y:

Ay 0 A Ay ::;j - £y i
{ A.r,:. i Am, s = fﬁ. ' (‘l .ﬁd)
Ap A 0 Ay, “:'“ £

Contribution of Equation (1.60),:

g |
( Auﬁ Acrll AEI:P A-mr’ ) :.:‘:I:: y ( fu )' [‘fl'b"")
uih“

We observe that the global systom induced by the three previous systems of equations leads to the
algebraie system (4.63) derived from the original problem, whenever the unknowns in §3; and 4
are tho same in the overlapping zone,

Remark 4.9, Matrix A, was expliclily split into two components AS,;,!,) anil Af;hl. The lirst
component corcesponds o the contribution of the firat term of the lefi-hand side of Equation
(4.60)4, while the second contribution eorresponds to the second term of the left-hand side of
Equation {4.60),.

Remark 4.10. In practical implementations for which the solution on each subdomains s per-
formed by separate finite element golvers, the Robin type condition 18 caleulated using the normal
derivatives. This means that Equation (4.66) iz not assembled, but instead, Equation (4.65) is
maodified.
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We now look for the solution u, and wy, on the interfaces by eliminating the inferior unknowns
of Equation (4.63), The resulting system is the Sehur complement system:

Mn pb u, . Ba ABT
( P, M, ) ( i ) = ( L) ) \eo7)

M = Mg = A.,,;,A;;,‘A;;,. . A—n-lA.i_q‘A-lm (41.68)
My = A~ AuAT) Ay — A Ay Ags,

o = —ApALl Ada,

Py = —AaATL Ag,

= £, = AaAzl s — AuAGl

£y — AwAg l — ApAsfs.

where

= ®
] I

This gives the following exact equations for u, and uy:

Q!‘i u-‘r = xi:-
Qh‘lh

1|

X

whire

Q.u Mn - PhMb_ll',nl
Qh - M.‘J = IbnM:IPer
x.-ri
Xy = 8 — PuM g,

“,II = PbMﬁ. l“bv

Let us now identify the algebraic syatem resulting from the iterative algorithm (4.61); 4. We
define uf ; as the unknown belonging to subdomain i = 3,4,5,a, b and computed solving the finite
clement [IH't‘lhlm'u in £2; with j = 1,2, at iteration k. For the sake of clarity, we congider the first
cycle, e, we set k = 0. By remembering the contributions of each equations, explicitly given by
Equatlons (4.64), (4.656) and (4.66), we construct the following iterative algebraie algorithm:

Ay 0 Asy u ;1;‘ 1 [ £y
0 Au A uly, | = fi=Apul, |, (4.69)
Aaa Aa A “.!..l %
A 0 Ay Ap ul, ( £y
0 Asn 0 Am uls | _ [ fs (4.70)
Au 0 AW o wy || fi—Auub, - A wl, '
Ay A 0 Ap uw, \ fy

The first equation is the Dirichlet step on subdomain 2y, using “2.2 as Dirichlet condition on Iy
(as Initial guess). The second equation is the Neumann step, the Neumann condition on I being
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piven by the right-hand side of the third row of the sysiem. During one complete iteration, we
obtain thevelore two estimates of the unknowns on the overlap 2one “~|¢.| anil u_',_x, It also on
the Neumann interface, u} ; and u,l 4. Note that the unknown on I'y never appears as belonging
to subdomain 1, but always like “a.'.s: ginee thig unknown ig lixed ag a Divichlet condition when
solving the algebraic problem on subdomain 1,

We now derive the equations for the three interface iterates involved in one iterative evele,
beo u) oy, ug g, and uy . Before going further, we need to introduce some additional definitions.
We aplit matrvix M,,, given by Equation (4.68), into two components, each one coming from the
contribution of the two adjacent subdomains of I';:

M, = ML“} + ME:”i with
Ms:” L A‘;‘::‘;} Ai’lﬂA.’Tﬂj Aﬂu '
M!:” = A};L‘ — A A--ml A

By eliminating the interior unknowns, we can show that the algebraic iterative system represented
by Equations (4.69) and (4.70) leads to the following system for the unknowns on the interfaces:

M, 0 0 ul Ba — Pyul)
M MY P, Moy | = | Ba : (4.71)
i} l}u Ml'r "fl),ﬂ Kb

Let us take a breath and look closer at the lnst system, In reference [87], the anthors showed
hat the multiplicative version of the Schwarz algorithm can be viewed as a preconditioned Richard-
son iteration for the Sehur complement of the interface unknowns, ag stated by Equation (4.67).
According to the geometrical decomposition and nomenclature used in this section, a Schwarz
iteration produces the following sequence for ul | and uj ,:

M"“rll,l = Ka r !!“hl
Mh“llp.ﬂ = B = Pn"iula,l'

Wa recognize here the il.mnlt‘s that would !w [nmluu'd by our algorithm by iynmiug the intermes
dinte iteration step for u" 2 and letting u' g = u" i to compute the update of ‘.lhq in Equation
(4.71), As a vesult, we intuit that the nwah]:plnp; D/R algorithm gives move information than the
multiplicative Schwarz method during one eyele. Let us now go back to Equation (4.71). We find
that the algorithm produces the following iterates:

(q M(di}uu g = x M(I{)“" 11
u-'lj,g ten Mf, ; (Gh T Pn “'!lh.".!}'

We note that the first iterate is equivalent to a Richardson iteration using as preconditioner matrix

(Q. = MM, ie,
“n g - (q M{‘”)_it’ﬁu = Q“u:‘rl] + ";I\.l'

This equation i similar to the Richardson iteration produced by the classical (disjoint) D/R
preconditioner, as devised in (98], In fact, in the limit of non-overlapping subdomains, we recover
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exactly the same Richardson iteration, This result is obtained by collapsing the interface unknowns,
ie. by choosing "!5.2 = "rli.'-i' My=1,P,=0,P,=0and g, = ”rl;.i' As noresult,

u'flr,' - Mt‘rl} I[“H - M"“rll,i} + “rll.i'
Nevertheless, the present algorithm gives additional information, provided by the second iterate,
In fact, we observe that the iteration for uj , is a block Gauss-Seidel iteration of the Schur comple
ment gystem (1.67). This Gauss-Seidel iteration is the same iteration than that produced by the
multiplicative Schwarz algorithm, as shown in [87], In the view of the iterates produced for the
interface unknowns, we can therefore expect the overlapping D/R method inherits some properties
of the classical D/R method (independence on the mesh size) together with that of the Schwarz
method (convergence can be improved with the overlapping length for a given mesh size). In the
limit of zero overlapping length, the classical D/R method is recovered,

We can also develop a Richardson procedure for solving uy, as well. Simple algebraie ealeulations
give

)y = (M) = P,MY Py (x, = Quul) + ul,

4.6 Numerical examples

We present four numerical examples to test the overlapping D/R method in the diffusion as well
a5 in the advection limits, In addition, several How configurations arve considercd: skew advection,
normal and tangential advections, curved advection and, finally, a rotating advection field.

4.6.1 Skew advection

Through this example, which was used as a fivst test case of the claggical -D/R method in [73], we
wilnt to compare the t'tiﬂjuilll- and u-w.:l']n|11.1ing versions of the D/R method, for a skew advection
field. As an additional indication when using overlapping grids, we will systematically give the
results of the Schwarz method (D/D) for overlapping subdomains, and that of the adaptive D/N
method (A-1D/N) for both digjoint and overlapping subdomaing, The overlapping version of the
A<D/N method uses 1 Neumann interface at outfow and a Diviehlet interface at inflow, as in the
classical digjoint case. We propose to solve the equation

—sAu+a-Vu=f in1=(0,1)x(0,1),

with a skew advection field a = [1,1]%, and look for the exact solution u = u(z, y) = & + 5y, which
belongs to the finite element space of work, According to this choice, we impose f = 6, and exact
Divichlet eonditions on the boundary; see Figure 4,5,

Wa define three diferent meshes, with o = 1/10, A = 1/20 and h = 1/40. In addition, we
define three different partitionings,  The splitting of the two subdomains 13 alwavs performed
vertically and symmetrically with vespect to the ling @ = 0.5, The first partition splits € into
two disjoint subdomains, the second into two overlapping subdomains with horizontal overlapping
length 8 = 0.2, and the third one with 4 = 0.4, The numerical stratepy is classical. We nse the
Q1 element together with the variational subgrid seale model (indispensable for small £). In order
to introduce as few extrinsie errors to the DI methods themselves as possible, all the matrices



4., RUMBINCAL BEXAMPLER

131

Flgure 4.6: Computational domain and boundary conditions,

(0,1) u=x+5y (1,0
il g 7 g
A A A A A A A
s A F F £ 5§ IF
F £ g £ 7 F #
# £ 2 2 & £ 2 |#
FA A B B A A A
CHE A A A T
& & & 7 g #F & |#
(0,0 (1,0)

involved In the Schur complement system are inverted il:-;iug a direct solver. When r:urmith_‘!rilu._;
digjoint subdomains, the convergence criterion is the interface Ly residual

while for overlapping subdomains it is given by

100 -

100 ﬂ?ﬁi,'.:,,}fﬂﬂi
[[1af[]2
[+ = kgl

< 102,

[Juak I.IH|2

—ufllz o gm0,

Tables 4.1 and 4.2 present the alveady known results of the disjoint D/R and adaptive D/N meth-
ods, The former confirms the mesh independence of both methods, while the Iatter gives the
optimum relaxation parameter fg,; and the corresponding numbers of iterations needed 1o achieve
convergence. Posgible values of @ have been limited to two decimal figures. As expected, we note
that f,p,, for the D/R method is always 0.5, while that of the A-D/N method is somewhere between

0,5 and 1, and depends on &,

Df['(. A-D/N
A\ b TH/I0 1780 740 10 1/% 1710
10! 2 2 2 3 8 8
1n° b 4 2 15 15 15
1! 7 i 5 31 31 31
10n-* 8 8 7 30 39 39
102 # 8 8 40 40 40
104 9 B 8 11 41 11
1o 9 8 8 1 11 1

Table 4.1: Number of iterations (# = 0.5, § = 0)

Tables 4.3, 4.4, 4.5 and 4.6 present the same vesults ag the former ones, but this time for the
overlapping methods, The tables show that the overlapping D/R method behaves like the olassical
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D/R AD/N
£ tope W o
10! 050 2 (.50
10° 0.50 4 0nod 11

! 050 6 0.65 19
10~ 0.50 8 0.81 17
10-* 0.50 8 0.90 17
101 0,50 9 0,93 18
10" 0.50 9 093 18

Table 4,2: fy, and number of jterations (4 = 0)

D/N method for ¢ high, and like the D/D method for £ small, We observe that when ¢ < 1,
the convergence of the D/R, will improve with decreasing b, and that the number of iterations is
bounded as £ goes to zera. We also note that for all the DD methods teated, the optimuam & 18
cloge to unity in the diffusion-dominated range, while it is exactly one in the advection-dominated
range, This contrasts completely with the disjoint counterparts of the DD methods,

D/R A-D/N D/D
s\ h /10 1720 1/10 1710 1720 1740 /10 1720 1740
107 23 23 23 23 23 23 21 21 2]
109 23 23 23 19 19 19 21 21 21
1o~ 10 11 1 7 8 8 10 11 11
1072 10 i 3 T 4 3 10 G 3
103 12 7 5 7 5 4 11 7 5
10~ 12 7 5 7 h 4 12 7 b
1" 12 7 5 7 5 4 12 7 5

Table 4.3: Number of iterations (8 = 1.0, § = 0.2)

D/k —ADN D/

) 1!' Ba 7 u-gom- # éum #
10! 0.87 14 0.87 14 114 16
109 0.87 14 0.90 13 1.14 15
10! 008 0 .00 8 .02 9

1o—* LO0 6 Loo 4 .00 6
- Lon 7 .00 & Loo 7
-1 Loo 7 .00 5 Loo 7
10" 100 7 100 5 100 7

Table 4.4: fup and number of Herations (8 = 0.2)

Table 4.7 gives the number of itorations needed to achieve convergence for the diffevent methods,
as a function of the overlapping length, and for the second finest mesh h = 1/2(}. Wer abaerve that
for £ = 10" and £ = 10°, the overlapping does not improve the convergence. This is rather a
colncidence than a rule. For example, locating the interface at @ = 0.75, the disjoint D/R method
converges in 14 iterations at least in both cases!
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D/R A-D/N D/D
b 110 120 1740 /1o 17200 1740 /107 1720 1740
107 12 02 12 12 12 12 11 11 11
109 12 12 12 11 11 11 11 11 11
10! il 6 fi 5 b . G i G
102 G 4 2 5 3 2 § 1 2
w0t 7 1 2 b - 3 7 1 3
101 7 1 3 b 1 3 7 1 3
10" 7 4 3 5 3 7 | 3
Tuble 4.5: Number of iterations (ﬂ =10 = lll.*l)
N .D/.llf; A-D/N D/D
3 I ﬁo_-]_n # 'qupl # apt #
10! 0.06 10 0.06 10 1.03 9
1" 0.07 10 007 9 .01 10
10! L.on 6 .00 5 1.00 6
102 .00 4 .00 3 Lo 4
1-® L.o0 4 oo 4 oo 4
101 .00 4 LoD 4 L.oo 4
10-% oo 4 .00 4 1.00 4
Tahle 4.6: Number of iterations and #,, (6 = 0.4)
D/it AD/N D/D
e\d 0 02 04 0 02 04 0 02 04
107 2 14 10 8 14 10 - 16 10
10° 4 14 10 11 13 0 - 16 10
101 i ] ] 19 8 b - 9 6
10°% & 6 4 17 4 3 6 d
10-* 8 7 4 17 5 4 74
- 8 7 4 18 5 4 7 4
108 8 7 4 18 ] 1 - 7 4

Tabla 4,7: Number of iterations (8 = f,0)

Finally, Figure 4.6 eompares the behaviors of the DD methods around their respective optimum
relaxation parameters,

Before closing the analysis of this example, let us examine how the error is reduced by the
disgjoint and overlapping /R methods (§ = 0.2), for high advection (£ = 10~1). We choose # sich
that the rate of convergence of each method s more or less the same, to be able to compare the
error reduction nsing the same scale; this choice corresponds to # = 0.44 in the case of the digjoint
D/R method, and @ = 0.9 in the case of the overlapping D/R method. The initial solution is the
exact solution, on which we superimpose an ervor with respect to the analytical solution somewhere
on the interface, In the case of the disjoint D/R method, we introduce the errar at point (0.5,0.5),
while for the overlapping version, we introduce the ervor at point (0.4,0.5). The magnitude of the
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MNumber of de=ztions:

Mumber of keratons
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Flgure 4.6: Number of iterations. (Left) £ = 10", (Right) « = 1077,

error in both cases is 0.5, normalized by the maximim exact valie over the domain, Le. 6. On
the one hand, Figures 4.7 (Top Left) and (Top Right) show how the ervor is advected along the
streamlines of the flow, at ierations 2 and 4, respectively, On the other hand, Figures 4.7 (Bot.,
Left) and (Bot. Right) show how the error is mostly confined between the interfaces, located at
@ =04 and # = 0.6.

Figure 4.7: Error. (Top) (Left) Disjoint D/R, iteration 2, (Top) (Right) Disjoint D/R, iteration 4. (Bot.)
(Left) Overlapping D/R, iteration 2. (Bot.) (Right) Overlapping D/R, iteration 4,
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4.6.2 Normal and tangential advections

This example studies the solution of & thermal boundary layer, also presented in (73],
—cAu+ta-Vu=10 in 2= (0,1) = (0,0.5),
with an horizontal advection field a = [2y,0]" and the following boundary conditions:

wo= abt w = 0, and y=0.5,
=2y ate=1,
=0 clsewhere,
The geometry as well as the boundary conditions are shown in Figure 4.8 (Left). Let us mention

that the solution to this problem exhibits a1 parabolic layer near y = 0 and an exponential layer at
x = 1 for small diffusion coeflicients, as shown in Figure 4.8 (Right) for & = 1077,

(0,0.5) =1 {1,0.5)
=1 el B el e :Fiy
(0,0) u=0 (1,0)

Figure 4.8: (Left) Computational domain and boundary conditions, (Right) Solution for £ = 107,

Thiz example is solved using the same numerical strategy as that of the previous example,
The mesh convergence shares sensibly the same characteristics as that of the first example so only
the results rin with & mesh size of h = 1/20 ave reported here. Two different partitionings are
performed. First we consider a symmetrie vertical pavtitioning ol the domain, Le. the interface
is placed normal to the advection field, Tables 4.8 and 4.9 compare the optimum relaxation
parameters and the associated number of iterations of the disjoint and overlapping versions of the
diflferent. DD methods,  As was already observed in last example, we note that the fyp of the
digjoint D/R method iz 0.5, while that of the overlapping D/R i 1. The resulta of the A-D/N
method are more mitigated. On the one hand, the f,, of the disjoint version tends to unity very
slowly for decreasing £, On the other hand, the f,, of the overlapping version is, ns in the case of
the overlapping D/R, unity for £ < 107, As in the previsous example, the number of iterations is
bounded as £ goes (o zero.

We now partition §2 horizontally, In this case, the Neumann and Robin conditions coineide as
a-n = 0, Table 4.10 gives the results obtain for the classical D/N method, As in the case of
the Normal advection, we obgerve that the optimum relaxation parameter of all methods tends to
unity rapidly when £ < 10°%, while that of the disjoint D/N method vemaing around 0.5,
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D/R A-D/N
B 'qulhl it 0&}11 #
107 050 5 050 7
10° 0,50 6 051 9

10-1 0,50 9 0.61 15
102 0.50 10 074 21
- 050 7 092 12
-4 0,60 4 099 8
108 0,50 3 1.00 6

Table 4.8: Normal advection, #ap and mumber of ilerations (8 = 0)

D/R A-D/N D/D
£ \Qn'pt # ﬂnpl # E)upl. !#
107 0.96 10 0.96 10 1.04 10
10" 0.06 10 0.96 10 1.04 10
10! 0.07 10 0.8 8 1.03 10
17 1.0 5 1.00 5 1.0 6
10-# Lo 4 1.00 3 1.0 4
10+ 1L.00 5 .00 3 .00 5
10" 100 5 100 3 100 5

Table 4.9 Normal advection, #,p and number of iterations (8 = 0.2)

T D/N /N D/N D/D D/D
CSZU fs=ﬂl d =02 & =10.1 ﬁ:(].ﬂ
£ I_f{upr 1 ﬂnpl.‘_ _?g_ ﬂlml # Bupt # Hupt #___
10! 0.50 & 0.79 18 0.80 14 124 20 1.08 12
107 050 6 0.79 18 0.80 14 1.24 20 1.07 12
10! 049 10 0.80 18 091 13 1.21 19 1.06 11
10-* 047 10 0,99 10 .00 6 1.01 9 L0 6
10-# n48 8 100 6 .00 4 1.00 6 1L.oo 4
101 047 & oo 7 L.on 4 1.00 6 .00 4
1n-® 047 7 1007 .00 4 100 7 .00 4

Table 4.10: Tangential advection. f and number of iterations

4.6.3 Curved advection

We increase a bit the difficulty. We consider a curved advection field and impose a discontinuity
in the Dirichlet condition. This example was proposed by Toselli in [99] and consists in solving

—cAuta -Vu+su=0 in0=(-1,1)x(-11),
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where the advection field and the souree term are given by

it

| . 3

'El“ —a”) {1 +y), —x(4 = (1 +y)*)]',
& = [U_'I,

and the Dirichlet boundary conditions for u are

o= | aty==1,0<x<0.5

=1 olaowhoro,

See Figure 4.9 (Left) for a skeieh of the problem. We present here the results obtained on three
meshes composed of constant element length A such that = 1/10 for the coarse mesh, 4 = 1/20
for the medium mesh and h = 1/40 for the fine mesh, Figure 4.9 (Right) shows the solution
obtained on the medium mesh for £ = 1072,

¢10) =0 (1,1
B o am i owm oy "
: I % 4
F'id & w e s v
w=0 : : : : o T N T =0
VI o
Vi pin go Y
SRR
9 i | - } . : #
(1-1) u=l u=0' ¥ ({1-1)

Figurs 4.9: (Left) Computational domain and boundary conditions. (Right) Solution for 2 = 14)~%,

In this example, we want to compare the results of the overlapping and disjoint D/R method
without trying to adjust the relaxation parameter. For the disjoint versions, we take # = 0.5 and
for the overlapping versions we fake # = 1.0, We consider symmetrical horizontal and vertical
partitionings, with an overlap of § = 0.4 for the overlapping partitions, As different results have
been found (in the digjoint vm*.-,alm;) depending on where the Diviehlet and Robin interfaces arve
imposed, the Dirichlet/Robin method is referred to as D/R method when the Dirichlet condition is
imposed on the top and left subdomain interfaces in the case of horizontal and vertieal partitionings,
respectively, On the contrary, the Dirichet/Robin methid is veferred to as R/D method,

Tables 4,11, 4,12 and 4.13 gives the numbers of iterations needed to achieve convergence for all
the methods, We notice that in the diffusion range, the digjoint versions converge better than the
overlap versiona. The tendency 8 inverted as soon ag the advection ¢onipensates and overcomed
the diffusion, Le. when £ < 101 In addition, the mrt-!rlnpping virsion shows much less sensitivity
Lo thae ptmil:itmiu“ of the interface when the mesh is coarse. In all cases, the number of iterations

i5 bounded as the diffusion decreases.
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Disjoint Overlapping,
I)j It R/D b/R R/D
g “horiz. verti. horlz.  verti. hoviz,  verti. horiz.  verti.
101 i 7 [ 7 23 23 23 23
1n" 10 10 10 10 23 22 23 23
1! 16 18 16 18 13 15 12 15
10-# 23 16 17 16 8 6 8 G
-4 40 16 21 16 0 il il 0
101 A6G 18 22 17 9 10 9 10
10-"0 A7 18 22 18 0 10 9 10

Table 4,11 Number of iterations, Coarse mosh: b = 1/10

Disjoint Overlapping
b/k /D D/R R/D
g “horlz. verti. horiz.  verti. horiz.,  verti, horiz,  verti,
10! (i 7 i T 24 23 24 23
1n° 10 10 10 10 23 23 23 23
! 17 18 17 18 11 14 12 14
10— 15 17 14 17 5 5 h b
104 23 16 17 16 6 i ] 5
101 26 16 18 16 6 7 it 7
10=6 27 17 18 17 ¥ 7 5 7
Table 4.12: Number of iterations. Mediom medls o= 1/20
Disjoint Overlapping
0O/R R’/D “D/R R/D
£ horiz.  vertl, horiz.  verti. hoviz,  verti. horiz.  verti,
107 6 7 7 7 24 23 24 23
10° 10 10 10 10 23 23 23 23
10! 17 19 17 19 11 14 12 14
10 16 18 12 18 4 [ q G
10-# 16 16 14 16 1 3 1 3
101 18 16 15 16 1 b 4 5
108 18 17 15 17 4 b q 5

Table 4.138: Number of iterations, Fine mesh: = 1/10

4.6.4 Rotating advection

Now let us tey to solve a move challenging problem, We consider once more the exact linear
solution u = (e, y) = « + by of the first test case, but this time using a rotating advection field
centered in (0.6,0.6) such that a = [—y + 0.6, 2 — 0.6].

This choice leads us to choose the following force term: [ = ba — . We have chosen this
case because of its complicated local behavior. Around the center of the rotating advection filed,
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Figure 4,10: Computaiional domain and boundary conditions,

diffugion dominates. In addition, the interfaces considered ave both inflow and outflow. The vesults
presented here have been obtained on a 20 % 20 element mesh, and the interfaces are the same as
those of the first test case,

Table 4.14 gliows the number of iterationg needed to achieve convergence for the optimum

relaxation parameter.

D/R R/D D/R R/D

d=10 d=0 d=102 d=02
£ "anl # ﬂ|.'|-pl '# ﬂi:l'ﬂ. # 0I}il|. #
1! 0.50 5 0.50 5 (87 14 0.87 14
10" 01,50 B .50 8 0.87 14 0.87 14
107! 0.50 14 050 13 088 14 0.88 14
10-? 0.49 40 0.560 58| 097 11 Lo7 13
1w 046 243 048 200 L43 a7 L6449
101 047 1864 0.49 1493 L.&G 221 L.B7 242
16=R 047 #2460 051 G257 1.894 753 1.95 816

Table 4.14: o and number of iterations (8 =0, 4§ = 0.2)

In this example, we have observed notable differences in the results depending on which in-
terfaces the Robin and Dirichlet conditions are imposed; we denote them D/R when the first
subdomain is assigned a Dirichlet condition and R/D when it is assigned o Robin condition, We
observe that for the digjoint and overlapping versions with 4 = 0.2 the number of iterations blows
i when £ decreased. However, the overlapping decreases this figure by approximately one ordear of
magnitude. In addition, we have considered the eage of § = 0.4, The compared results ave shown
in Figure Figures 4.11 (Left) and (Right). They confirm the improvement in convergence when
using overlapping,

As in the first test case, we now introduce a perturbation (an ervor peak) on the interface, of
magnitude 0,5, The difficulty of solving this case lies in the fact that, for small diffusion coefficients,
the ervor is advected around and around, Howing along the streamlines. If the ervor is introduced
near the center of the vortex, it can remain for a long time within the domain before being diffused
and absorbed by the boundary conditions. On the contrary, if the perturbation is put sufficiently



140 CHAFTRID G AN (VERLAPPING DURTA TN BECOMDP{SUTIN AR 0

10000 - + - - s g —— 1000
L'\"-\._ ,“ﬂ';m‘ e H"\-\. H'ﬂ
T R 10} —eem - -
b '-.____ rE }ﬁé - 5-‘14 ——
oo | =Y o AN e s
- e e——palh]) —s— -
- b 10A —e Ry
e g O, —— -~
] 100 e 5 100 -
g — —— ] g \\\-\ -
B = e .
Wi ————= =g a= R 16 H""\-E“'_—_:'_\-'_‘-\-'!.'__
1 | ) —
O 008 01 045 0R 026 00 005 04 18-06 00007 0000 0 o1 1 10
& ¥

Figure 4.11: Number of iterations as a function of § and =,

far from the center of rotation, the eveor will be advected rapidly away from the domain and
absorbed by the boundary conditions. We consider here the case £ = 1077, As an illustration,
we have also solved the unpreconditioned Richardson procedure for the interface unknowna, using
disjoint. subdomaing; in this case, the error is introduced at point (0.5,0.5). The error magnitude
i5 0.5 (normalized by the maximum value, e, 6). Figure 4,12 shows the ervor obtained after
1000 and 4000 iterations, using # = 0.50. After 1000 iterations, we still recognize the error pealk

Figuru 4,12: Error. U1:|prt-.t:umﬁt.itmt!'tl Richardson procedure. (Left) [teration 1000, (Right) Iteration
4000,

introduced at point (0.5, 0.5); we also note that the ervor hag been totally advected around. Alter
4000 iterations, the error has been diffused inside and outside the advection cirele. Lel us now go
back to the analysis of the disjoint and overlapping (8 = 0.2) D/R methods. In the ease of the
digjoint D/R method, we introduce the ervor at point (0.5,0,5), while for the overlapping version,
we introduce the ervor at point (0.6,0.5), Figure 4.13 compares the convergence histories of both
versions, using # = 0.5 and & = 1.0 respectively. We obaserve that the convergence of the digjoint
D/R method is far from monotone.

Figure 4.14 represents the error with respect to the exaet solutlon and normalized by the
maximum exact solution at iteration 1,6,11,16,21,26,31 and 36, These iterations are labeled in
Figure 4.13. We notice that after few iterations the error of the disjoint D/R exhibits more or
less the same ervor profile ag the unpreconditioned Richavdson procedure, although the ervor is
diffused mineh more rapidly (in terms of iterations). However, after having decreased one order
of magnitude, the error bounces up, before decrensing once again, and so on, until convergence.
This phenomenon can be clearly identified in the convergence history of the method, The error
profiles of the overlapping versions at iterations 1,6,11,16,21,26,31 and 36 are shown in Figure 4.15
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Figure 4.13: Convergence histories of the digjoint and overlapping D/R methods,

(Bot.). They confirm the improvemerts achieved by the overlapping method. We conclude that
the overlapping can be useful when a vortex passes near the interface,

Itaration 1 Ieration 6 Heratian 11 leraticn 16
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Figure 4.14; Error, Disjoint D/R.
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Figure 4.16: Error, Overlapping D/R.
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4.7 Summary

From a geometrical decomposition of the domain 2 into two overlapping subdomains €2, and 2,
we split the variational formulation of the ADR equation, The resulting variational formulation
consists in solving three loeal equations together with a matehing condition on interface 1y, These
throe equations are two equations for the intevior of 2 and Qy, and one equation for the interface
I'y. We showed that this varintional formulation was equivalent to the original one. Then, we
observed thai the formulation implied the continuity of the fluxes on I,; this observation justified
the name overlapping Divichlet/Robin domain decomposition method, We also reexpressed the
domain decomposition method as a method for solving the interface unknowns. Then we presented
a relaxed iterative scheme for solving the decoupled problem. We fivst noticed that relaxation
of the Dirichlet condition or that of the Robin condition had the same effects on the interface
iterates. We identified these iterates as Richavdson methods for solving the interface unknowns.
From the finite element formulation of the DD method, we set up a sequential iterative scheme
to decouple the solution on {3 and £ into two subproblems: a Divichlet problem on §24 and a
Robin problem on 5, The derivation of the Schur complement system brought to light the link
between the iterative strategy and two common approaches, namely the classical D/R method and
the multiplicative Schwarz method. Finally we presented four numerical examples, They outlined
the ambivalent nature of the overlapping D/R method which behaves sometimes like the classical
Divichlet/Neumann method and sometimes like the Schwarz method. In any case, the overlapping
can be very usefull to accelerate the convergence, in particular in the presence of a vortex in the
vicinity of the interface.

4.7.1 Parallel version and algorithm for many subdomains

The extengion of the sequential overlapping mixed methods to a paralle]l version, as well s the
case of many subdomains (for example in the view of parallel implementation via a multicoloring
technigque) can be treated exactly as for non-overlapping methods. However, this does not fall
i-'-'ll-hllllf.lli' seope of this work and we refer the reader to the survey papera (85, 55] or the hooks
83, h8|.

4.8 Extension to the Stokes and Navier-Stokes equations

We want. to apply the overlapping mixed domain decomposition method to the following stationary
Stokes problem in ong dimensions

=2 e(u)+Vp = f in {2,
Viu=1l in §1,
=10 on (41,
Let ug introduee the following funetional spaces

lfFH

H)($)™,
Q = L),

P={pe L}0)] [;um -0},
J 12
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l'{un]ﬁ“ﬂl' in mind the notation used in Section 125, this weoniled t‘:t‘:i't‘t’:u|mm] Lo the case l",_) = ¢

and Py =y = 0. Let U = [u,p|' be the unknowns and ¥V = [v, g]' the associated test functions.

The weak formulation of the stationary Stokes equations consists in finding & € V% x 2 such that
WU, V) =1(V) VYVeV'xq,

whore

all/,V) = 2#/ e(u) : e(v)di? I/ gV udl) - X p ¥V udfl,
Q Q Ji

(V) = f £ wdS.
o
Let ua introduce for each subdomain 4 = 1,2 the following bilinear and linear forms

gV udfd —/ pVwdil,
iy

a(U, V) = 2.';]- e(u) e{v)d + /
\th

Yy

vy = [ fovan.
111

as well as the following functional spaces

FI:“ e H&(ﬂl)nd‘

l';i - ‘{1.’ € j’!l(”‘.)“d 1”[””,1»“‘ U}I

G = L“Lﬂj). ford= 12

P = {p S L*(H.)|[ pdf =0},
i

Py = L),

The domain decomposition method presented here is a generalization of the classical Dirich-
let/Neumann method [90, 89, 58] applied to uw,e]-]nm;iu{.; subdomaing. The algorithm reads: given
ull € Vs, for each k = 0, find UF™ € Vi x P and UL € V4 % P such that

a (U V) =1(Vy) VVieW xR,
ui‘"" = uf on [y, (4.72)
ax (U Vo) = 1a(Va) + (@] - ma, w2y, YV, eV x By,

where the stress tensor is for i = 1,2
rr:"‘ = —-pf""‘! + Eus(uf“).

The reason for choosing ul € V3 is due to the need of satisfying the incompressibility constraint
in subdomain 1, at least at the first iteration. In the ease of the approximate problem (for example
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using finite elements) and if during the iterative process it happens that
/ uk ondl # 0,
o 1M

then the incompressibility constraint is violated and n conservative alporithm must be used. This
point will be discussed in Section 5.4,

Latter iterative scheme may need relaxation of one (or both) of the transmission conditions,
By introducing two relaxation parameters #; = 0 and & = 0, we gubstitute Equations (1.72)e and
(4.72)3 by the following updates

uf™ = Bl + (1 - 8)ut,
n:»(Uf"". Va) = l(Va) 4 ([faai™ 4 (1 = B)ah | ng, va)dr, .

witht u!j = 0on [’y s0 that u; = 0 on Iy, This iteration-by-subdomain method is elearly of Dirich-
lot /Neumann type.

Finally we consider the following stationary Navier-Stokes problem
=26V ce(u) (. Viu+Vp = f in £,

Vou=10 in {2,
1w =10 on 41,

Applying the Picard linearization schemo to linearize the convective term, we obtain the fol-
lowing weak formulation. Given an initial guess w” € V9, find 7 € V® x P for m = 0, such
that

umfurrr-l--|1v) . ’{v) v v e ‘._.IIJ w Q

until convergence, where

a™(Umtt V) = ',au/ elu™t) : e(v) d) + ./ [(u™ - V)u™"1] . vd
i 1]
+ f 0w - f P Y del,
0 7

vy = [ 7 vd.
{1

We now apply the lt.e-l'al;inn-l':y-ml'n'lmlm]n methad to this problem, The algovithm reads as

follows: given -u’l”""‘“ =uj" € Vj and u:‘"'""" = uf" € Vi, for each m = 0, find until convergence

Uttt e Viox P and UMY e Wy x Py for k=10,1,2,... such that
r:.j"(U*;' i--i.k-l-l' Vl) - I!l“‘"l) i Vl e Vlu % P,
{;!H' b1 LH+I.A' ait T, (4.73)

u =

ﬂE;'{U‘::#-I--i.k-P-lI V@) - "‘J(V,'J} + (lrrln+1.#+l n ”"31"‘"'6)[‘,. VVB & VE w }'J'a_
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where the bilinear form ia lor ¢ = 1,2

af (UMt vy = Euf

E{um-p 1k I} . E(‘!}j r’!_! +_ / [(.u,” : V]“?u-’rjnl"*"] v :ﬂ!
37 &

+ [ gV oumthE g - [ prtidtl g wdq,
AT PETH

add the gtress tensor 18 lor ¢ = 1,2

41 k41 -1, k4 F 1A
d;”+ g 77 S _H:"II-HJ‘-'-+l_,-_l__zh,_!(_“:;rl}t.l.l-l)r

This Herative procedure is an overlapping Dirichlet/Neumann DD, which can be relaxed as in the
cage of the Stokes problem, Note that integrating by parts the convective term, we would obtain
an overlapping Diriehlet/Robin type coupling. The Dirichlet/Robin coupling will be considered
briefly in Chapter 6, by integrating one-half of the convective term, as was done for the ADR
equations in Section 1.1.3, In this iterative procedure, we have chosen 1o nest the lnearization and
DD iterative loops, the inner loop being the DD one, Letting w™ = w™*'* in the convective term,
we couple both loops. In the diserete finite element problem, it s computationally preferable to
choose the DD loop as the inner loop; if it were the outer loop, the matrix of the diserete system
would have to be computed at each iteration. All the details concerning the implementation of
this algorithm and the results are presented in the next chapter.






Chapter 5

Implementation aspects

In thiz chapter, we derive a possible Oolte element implementation of two overlapping domain de-
composition methods, namely the classical Schwarz method and an overlapping Dirichlet /Neumann
method, with particular attention on the latter., The chapter is organized like a recipe, with each
section constituting a new ingredient, The final dishes are two conservative Chimera methods,
based on [,]irit:hlr_'.!,fI_)irit;.l'.ll,'.l. anl [)irit:hlul.j NMenmann couplings and able to deal with moving sub-
domains,

We first identify the transmission conditions from the alternative formulations of the DD derived
in the last r.lul.pl.ur. Then we set an iteration=by-subdomain method applied to the solution of the
ADR and Navier-Stokes based on a Master/Slave strategy, We briefly deseribe an element search
algorithm, which consists in looking for the host elements (in the underlying mesh) of the nodes
involved in the iterative process. This operation i one of the first operations to be performed by
the Master, At this stage we are ready to interpolate the transmission conditions, We present the
interpolation of the Dirichlet data and two interpolation schemes for the Nenmann (or Robin) data
involved in the natural transimission conditions. We then explain the need for using a conservative
interpolation and present two algorithms: an interface constraining and a conservative interpolator,
In order to be able to deal with complex geometry, we introduce a Chimera method, using all the
ingredients presented previously, Finally, the domain decomposition method s applied to moving
subdomains by the way of tensorial transformations.

5.1 Iteration-by-subdomain algorithm

5.1.1 Introduction

The domain decompaosition methods presented in the previous chapter have been applied at the
algebraic level. According to a geometrical partitioning of the computational subdomain, we set
up a Richardson procedure to solve the Schur complement system for the interface unknowns,
In this chapter, we want to take advantage of the variational equivalent of the DD method to
define a geometrical DD algorithm based on the iterative updates of the boundary conditions on
the subdomains. More precisely, we want to use the alternative formulation given by Equation
(4.16);_y for the sealar ADR equation and its extension to the solution of the Navier-Stokes
equations (1.73) 3. The solution of a transient problem s straightforward as it consiats in applying
the DD algorithim at each tlime step.

In the previous chapter, we studied three different types of transmission conditions that we can

116
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deal with, at the continuous and variational level, namely:

e the Dirichlet condition, corresponding to the essentinl boundary condition of the wealk for-
mulations;

# the Neumann and Robin conditions, both corresponding to the natural boundary condition
of the weak formulations.

We now go to the discrete level and assume that we have a precise way to compute all the trans-
misgion conditions introduced previously, although we have already commented in Remark 4.8 that
the use of the alternative formulation is not possible at the digerete level, This issue will be treated
in Section 5.3.2.

5.1.2 A Master/Slave-coupling algorithm

In this section, we will treat the domain decomposition algorithm as generally as possible, so that
we allow for any type of coupling between subdomaing, namely 7 and §, with transmission conditions
of Dirichlet, Neumann and Robin types, involving overlapping and non-overlapping meshes. For
the sake of clarity, we assume that the subdomains are steady; the case of moving subdomains will
be treated in Section 5.6.2. The iterative domain decomposition algorithm consists of three steps:
the presprocess, the process and the post-process.

e Pre-process. The pro-process consists in dividing the computational domain into overlapping
and for non-overlapping subdomains. The interface of a subdomain with another is defined
ag the part of the boundary of the formoer lying inside the Iatter. Along with the peoinetri:
cal coupling of the subdmomains, some coupling variables must be carefully chosen in order
to obtain a global solution from the local solutions on each subdomain. This global solu-
tion will be obtained iteratively, by exchanging variables between subdomains, according to
some transmission conditions, The nodes involved in the transmission process nre called the
interface nodes or ransmission nodes.

s Process. The control of the iterative process is performed by a master code, Communica-
tion between the master code and the slave codes (ADR or Navier-Stokes solver on each
subdomain) can be achieved by any of the communication libraries like PVM or MPL Each
subproblem runs on different processes of the ADR or Navier-Stolkes solver., The master code
controls the iterative process by imposing successive updates of the interface boundary condi-
tions (transmission conditions), using the information of the others. The required operations
of the master code ave:

— find the host elements of the interface nodes in the adjacent subdomain;
interpalate the variables from one gubdommn to another;
npdate of the houndary condition of sach one;
= pags the data (the new boundary condition) back and forth to the slaves (the processes

of the finite element code),

s Post-process. Eventually, the post-process defines the global solution. For example, in the
case of overlapping grids, one has to define the solution in the reglong in common,

We now describe the specific tasks to be carvied out by the Master and the Slaves, Within a
standard implicit Navier-Stokes solver, the DD algorithm loop fits within a multi-loop algorithm
ng shown by Algorithm 5.3. Each loop 18 controlled by a tolerance and a maximum number of
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Algorithm 5.3 Slave's point of view
for time steps do
for linearization steps do
for DD ateps do
Import. trangmission condition update from Masier
for solver steps do
Solve Algebraic system
end for
end for
Export new solution to Master
end for
I.'.I'“."l f(lr

steps, For the ease of time iterations, the tolerance is needed only when a steady state is required.
With respect to a classical solver, ag shown by Algorithm 5.3, the DD algorithm is just an additive
loop that can be coupled with the others, For example, it may be convenient to couple it with the
linearization loop (Nt!wt‘.nu or Pieard lnearization); in all the examples p:‘:'ﬂt,l.ul'.q:r] in this work, this
is the technigue employed. When dealing with explicit codes, the DD loop can also bhe coupled
with the time loop,

As mentioned earlier, the master code is in clhiarge of controlling the iterative process and
performing all the necessary operations to leave the slaves unworried, Let us agsume we want to
couple n, subdomaing. We denote by 'y the interface of subdomain ¢ with subdomain 7. The n,
alave processes are distributed via a multicoloring technigque: each subxlomain s assigned a color
olor(i) so that subdomaing of the same color have no common interface. The colors are ordered
from 1 to n., where e is the total numiber of colors vsed. Subdomaing of smaller eolor are run
first,

The algorithm as seen from the master code is shown in Algorithm 5.4, The first task is to
find the host elements of all the interface nodes to enable further nterpolation of the bransmission
conditions, When the subdomaing are dteady, this opevation mush be performed only once, as a
pre-process work. The seaveh technique used in this work will be deseribed in detail in Section
5.2, The stopping eriterion is based on some norm of the interface unknown changes between two
successive ilerates, & and &+ 1, We define the inferface Lo residual of variable [ as the following
guintity

Ty 1 v o ¢ i/
1] = T
=T\l fr”(f‘ e
Tty |
S5 (L[ gy
im] j IFJJI./I:U(fr )f'

where |I'y;| is the measure of Ty and ff 15 the approximate solution on 'y obtained in solving
subdomaln ¢ at Heration &, The sum in § is extended to all subdomaing connected to ¢,
5.2 Search algorithm

We have seen that once the domain decomposition has been performed, one of the first tasks of
the Master is to find host elements for all the interface nodes, In addition, if the subdomains
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Algorithm 5.4 Master's point of view
Limpose initial condltions
for thine steps do
Set, iteration number & = 0
Find the host elements of all the ' interface nodes of subdomain i in subdomain j
while ztopping criterion not reached do
for color=1 to n. do
Export transmission conditions to subdomaing i such that color(i)=color
Run subdomains i in parallel
Import solutions fron subdomaing ¢
for subdomaing j connected to subdomain @ do
Interpolate and compute transmission conditions for subdomaing j
end for
ond for
k=k+1
Check convergence of the DD scheme
end while
end for

are moving, the element gearch strategy (ESS) must be performed at each time step, The ESS
used in this work is based on a quad-tree strategy (in 2D, and oet-tree in 3D). The strategy
can be decomposed in two steps, the pre-process (which constructs the tree-like atructure) and
the process (range searching). In the pre-process, the computational domain is first emboedded
in & box, taking the minimum and maximum of the node coordinates to define its corners. The
algorithm recursively partitions the box(es) into smaller boxes, until each box contains less than
a preseribed number of nodes. A box is divided into 4 boxes in two dimensions (quad-tree) and
into 8 boxes in three dimensions (oct-tree). If a box is not divided further because it containg too
few nodes, we start filling it with elements. To get the list of elements located inside a box, the
node/element connectivity is used; all the elements connected to the node of a box belong to this
hox. Note that this criterion does not requive any caleulation of the intersoctions of the faces of
elements and boxes. Figure 5.1 shows a two-dimensional example of a quad-tree subdivision of a
mesh of o NACAQ0L2.

The process step is known as range searching. Knowing the coordinates @ of the test point
ipoin, we procecd down through the tres until we find a hox containing elements where the test
point must be, Now we perform a loop over the elements jelem belonging to the box. Let ny b
the number of nodes of each element and &(" the node coordinates for r = 1,... 0, We define
N,‘” as the loenl shape funetion of node 7 and € the local coordinate of 2, We solve the following

ainl
equation for £ using a Newton-Raphson scheme

T

L= E 1‘:::,“|(E)T'“l}

il ]

If £ is inside the local domain (master element), then the test point belongs to jelem.

The condition for an element to belong to a box (hased on the connectivity) can seem restrictive;
in fact, an element can intersect a box without having any node in it. Nevertheless, it has proved to
be sufficient for most cases and the search alimost never fails, In case a point has no host element,
a new search ls performed uging a less restrictive method,
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Figure 6.1: A quad-troe division of a mesh (NACA0012). (Left) Mesh. (Right) Quad-tree structure.
5.3 Interpolation of the transmission conditions

Up to now we have studied how the transmission conditions are passed from one subdomain to
another to set up the iterative algorithm. We now study the interpolation technigque performed at
the finite element level, In the following, subscripts ¢ and j refer to values computed in subdomains
i and j, reapectively, and we assume we want to update the solution of subdomain ¢ knowing the
solution of subdomain j. Remember that [, is the interface of subdomain ¢ in the adjacent
subdomain j. The notation we use in the following was introduced at the beginning of Section
4.5.3.

5.3.1 Interpolation of Dirichlet data

The primary variables congidered here can be the unknowns of the ADR equations or all the
velocity components in the case of the Navier-Stokes equations. For the sake of clarity, we drop
the h subscript to identify finite element solutions. Although we are still going to deal with
continious solittions, the distinetion will always be obvious,

Let ny be the number of transmission nodes on Iy, We define uyp as the vector containing
the n, nodal unknowns, of coordinates @y, ..., an,, that have to be updated. The interpolation
of primary variables is carvied out using the classical Lagrange interpolation. We define '/ as the
continuous interpolation operator from mesh j to mesh i, and 1 its discrete counterpart, made of
plobal Lagrange interpolation functions. The operator 17 is given by

N'(ay)
=
Nr(iﬁ‘m]
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Figure 5.2: Interpolation. (Left) Dirichlet data, {Right) Neumann/Hobin data,

and we have
Wiy, = lu“.ﬂ" (ﬁ.l)

The last equation is only symbolic as in practice we work at the element level. In fact, from the
element search steategy, we have identified the host elements jelem of each interface node ipoin,
as sketehed in Figure 5.2 (Left). Therefore, only the natural coordinates of the node ipoin inside
jelem are needed to perform the interpolation of the primary variables.

Let us Anally mention that this interpolation is Siffusive” ny some information can be missed
during the interpolation. For example, this may be the case when the mesh of subdomain @ ix
conrser than the mesh of subdomain j; this point is known as conservation and will be treated in
Section H.A.

5.3.2 Interpolation of Neumann/Robin data

The Neumann or Robin data are involved in the natural transmission conditions. They are the Hux
in the case of the ADR equation and the traction in the case of the Navier-Stokes equations. In the
last chapter, we mentioned in Remark 4.8 that the alternative formulation of the DD method that
we uge here cannot be directly extended to the discrete case. So what can we do? Through the
following one-dimensional example we are going to explain where the key is for deriving a “correct”
digerete alternative formulation.

Discrele normal derivatives

We propose to solve the following one-dimensional problem

{HM = f Ve el=(-1,1), (5.2)

] at = —=1,1.

ks

with f a given function of @, and Au = d*u/da®. We divide the domain into two three digjoint
subdomaing Qg = [~1, =a), 4y = [~a,a] and {25 = [a, 1], with @ = 0. These sulilomalns are
partitioned into linear elements of constant length h. We define £ = Q3 UQ; = (-1,a) and
0y = U0y, = (=a,1). As shown in Figure 5.3, we only number five nodes on both subdomains,
around the position # = —a: three nodes on 2y, namely (1,1), (a,1) and (2, 1); two nodes on {1,
namely (a,2) and (2,2). The threo clements we are going to refer to are element 1, with nodes
(1,1) and (a, 1), element 2, with nodes (a. 1) and (2, 1), and element 3, with nodes (a, 2) and (2,2).

Problem (5.2) is solved uging the overlapping Dirichlet /Neumann method, by imposing a Dirich-
let transmission condition on the last node of 2 at # = a, and a Nenmann transmission condition
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Figure 6.3: Overlapping subdmomaing with colnciding nodes,

on §2; at node (a,2), at & = —a.

In the following, a superseript without parenthesis refers to an elemental value while a super-
seript with parenthesis vefers to a nodal value; subscript ¢ for i = 1, 2 refers to values considered in
aubdomain i. In addition, let ¢! be the shape function of node (a, 1) evaluated in element 1, and
get to zero elsewhere, and @2 be the shape function of node (a, 2) evaluated in element 3, and set
to zero elsewhoere, According to the notation used for this example, Equation (4.60), reads:

ag(en, #3) = (f,da)as + (Fodh)a, — aalnn, ¢,). (5.3)

From this equation, we are going to derive the discrete counterpart of the Neumann condition
(4.16)y of the 3-equation formulation. By integrating the last term of the last equation by parts,
we obtain;

dy

de le=-d' (5.4)

(s = astun ) = [ okt [ dul el
(s 024

where the derivative hag to be caleulated in element 3, How do we go on and get vid of the first two
terms of the right-hand side? Remember that at the continous level, by using Equation (4.13)
to substitute the Laplacian by minus the foree term, we would be left only with the derivative
on the right hand side. At the discrete level, however, this substitution is not straightforward, as
the Laplacian must be understood in the sense of distributions, Within the elements we have, in
general

Au!.h ;é _ur'

Indeed, when using linear interpolation the Laplacian is zero inside each element but it is undefined
at # = a. Lot us find the formal expression of the Laplacian; wo introduce the Heavidide funetion
H(x):

0 form=10
h"(:l‘.) = { 1 f{“' i E u

By restricting ourselves to the region consisting of elements 1 and 2, the derivative of u; , with
respect to @ at ¢ = —a can be expressed as a function of H(z + a) na:

i 1 .{iul ; ili 4 A ,h 1
duih _ i +( et~ =t | Bz +a) 5:8)

i il il i
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where dul , fdx and du? , fdv ave the derivatives caleulated in elements 1 and 2, respectively. They
e

du},  led) - 1)
r!-ri - h ' (5.6}
fhl.lf‘h -Mtﬂ.ll . Hln.l)

dr h

(5.7)

We introduce the jump in velocity derivatives across node (a, 1):

[ff-u,:"l"’ B l"f'l.‘.lf‘h d“:.h
i ]_ de  dr )’

By deriving Equation (5.5) with respect to @, we find the following expression for the Laplacian

{'ipﬂrl\r-(}l'
d feluyy
ﬁu'l.fl e .u.u...-ru
o\ i
(l'l )

= Aujy + (Auf = Bug ) H(x +a) + [--“‘&'-']5['!: +a). (5.8)

where, with obvious meaning, we have defined

1
Kb d*tn
L et T
A :Fu'f.n
i) = i,

A el?

Note that in the case of linear interpolation, the first two terms of Equation (5.8) are identically
zero; we have left them to he able to follow their trace along the following ealeulations. Now, we
multiply Equation (5.8) by ¢! and integrate the result in Qy; we find

Naiy gy b dS2

FRTH

[ A b elS2 + / (Auf ), = Aul ) H (2 + a)phdsd
P i1y

w0 dﬁi’—]ﬁ(.r‘+r‘n)¢ﬂdﬁ
{1a

(a)
i
f &“'l h“ﬁud”'l' ['ﬁﬂ']

The left-hand side term of the last equation is precisely the Laplacian in the sense of distribu-
tions. We can therefore apply Equation (4.13) to substitute Auy, by = f in the last equation and
wir obibaln

()
el + [ Au bt = ~3 [2h],

t 0
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which, together with Egquation (5.1) gives:

du} , |l
(frbidan = st dy) = =t | = 55T,

Finally, the Newmann condition we have been looking for is simply obtained by substituting
the last equation into Equation (5.3), and by using the values of the derivatives given by Equations
(5.6) and (5.7):

aldit) — ol

aa(uzn, #) = (fydi)as = = 0T :

For this simple example, we conclude that the correct way to use the discrete counterpart of
the 3-equation formulation (4.16); -y 1s to compute the normal derivative al @ = —a using a second
arider centered scheme.

A one-dimensional example

As an illustration, let us consider a special case of the one-dimensional problem intraduced previ-
ously. We want to solve the following problem: (5.2); -2 with f = 2 — 32 + 1. We decompose {2
into two overlapping subdomaing §2; = (=1,a) and Qs = (—a, 1) with @ = 0.2 that we mesh with
a constant mesh size fi such that the nodes in the overlapping zone eoincide, The subdomains are
coupled using the overlapping Divichlet/Neumann method. We impose a Dirichlet transmission
condition on §} at o = 0.2 and a Newmann condition on §2: at & = —0.2, We use the nomenclature
shown in Figure 5.3,

Wi take advantage of the simple one-dimensional geometry to compute the Neumann condition

uging a finite difference scheme around the point @ = <0.2, We approximate the derivative at
2 = ~0.2 necording to the following three finite difference schomes:
. slaad) (L)
: i -1
Lesft e
h
ity i _ al2) o gylad)
5 - = 4 Right : -— (5.9)
L L h
. 1) gt}
Centerod ; ————,
g 2h

where the superseript denotes the node at which the solution is considered.

Figure 5.4 shows the results obtained on both subdomains using the three approximations as
well ag the solution obtained on one subdomain of the same mesh size h = 0,01, The disjoint
D/N method is the non-overlapping Dirichlet/Neumann method computing the derivative using
the Left scheme, as only information on the left of node (¢, 2) is available on subdomain 1. Wo
ohserve that hoth the left and right finite difference schemes exhibit a strong jump in the the
golution at the transmission node, whereas the centered scheme gives results much closer to those
of the one-domain solution, We guess that this could be explained by the fact that the centered
scheme is of second order in space while the other two are only of firat order. This fact is actually
confirmed by Figure 5.5 which shows the mesh convergence for three mesh sizes, where the error
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Figure B.4: Poisson Eguation, Solution using different approximation schemes of the derivative,

s defined as

1
g (L3 il
s INIAX ([u-‘ ) - Mdllllll |“( ) = h"ﬁh“l) 1
Hinn

and g i the solution of the one-domain solution obtained at @ = —0.2.

Although the diserete counterpart of the alternative formulation of the DD methods cannot be
justified, we have in hand a numerical tool for solving the problem and conserving the space order
of convergence of the finite element method. We now present two interpolation schemes of firat
and second order Lo compute general transmission conditions,

il Left and Right —
0.1 ¢ Cantered = |
. _é‘n?é_g_tggr--': ..........
p— order
0.01 | e :
W 00001 | :
10:05 :
1006 | _.
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h

Figure 5.6: Poisson Equation, Mesh convergence of the approximation schemos of the derivative.
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Classicnl interpolation

For the sake of clarity, we consider the Neumann transmission condition involved in the DD method
for the ADR problem, by considering the simple O-weak formulation. The diserete counterpart of
the Neumann condition of the alternative formulation of the DD method (Equation (4.16)s) consists
in ealeulating the following eontour integral on the interface Ty

/ L ] eV i, vy dT (5.10)
iy U”‘ iy

where u; is known from the previous solution on 2. We now present the frst order interpolation
seheme for the first order derivatives of u; involved in the contour integral. The extension to
the calenlation of the sivess tensor involved in the DD method for the Navier-Stokes equations i
straightlorward.

We note that the fux is needed at the integration points of the boundaries in order to perform
the numerical integration of the Newmann condition. Let us consider the element boundary iboun
and define igaub as an integration point on this boundary. Onee the host element jelem of igaub
in subdomain j is found, we obtain the first order interpolation by direct inferpolation of the
derivatives from the node to the boundary integration points, The strategy to compute the force
erm (5.10) is shown in Algoritlim 5.5

Algorithm 5.5 First order interpolation
for all boundary elements iboun do
for all integration points igaub do
Find host element jelem of igaub
Interpolate derivatives Vi, from nodes inede to integration point igaub
Caleulate outward unit novmal 72 at igaub
Caleulate test funetion vy at igaub
Caleulate product (£Vuy « n)y; at igaub and multiply the vesult by the weight of the
numerical integration
Assemble reault
end for
and for

Note that if the subdomains are steady, the host elements jelem of the boundary integration
points igaub must be calenlated only once.

Least=square interpolation

In the one dimensional example presented at the beginning of this section, we showed that using
a centered fnite difference scheme we could obtain a second order convergence in space for the
Dirichlet/Neumann algorithm, From the notation used in Equation (5.9), we observe that the
centered scheme uses the unknowns of the background mesh on both sides of the node (2), in the
gonse that

2h 2

T3 fi

pl3d) — () ('u["'” — 1) ) u""-”)
e e
h

One way of applying this result to a general finite element problem is to perform a least-squares
smoothing to compuie the derivatives of the unknown at the nodes of subdomain j. By doing so,
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the values of the derivatives at a node jnode will depend on the derivatives calenlated on all its
neighboring element, Le. on the values of the funetion at all the nodes of the elements connected
to jnode. Remember that the first order interpolation only considers the derivative ingide the hoat
element of the boundary integration point. The previous example showed that we could obitain a
second order convergence in one dimension: we expect the method to be presented here for two
and three dimensions will be of second order as well,

The least-squares smoothing used here is standard. Let ¢y be a discontinuous function across
elements, in our case known at the element integration points. Then, the continuous function g
is computed by minimizing the following functional:

= el [* = j‘;rqs.. ~ ).

The function ¢y represents any component of Vu caleulated at the integration pointa. Let Nj
be the vector of Lagrange interpolation functions of subdomain j and € the nodal vector which
componetts are the nodal values " of ¢, at this point such that

()
4 = [@L”l”' Id’l" o ]fr

Re-expressed in a matrix form, our problem consiats in minimizing
L(®) = f (hg — Njl) df2.
i1

The solution of this minimization problem consists in finding a stationary point of L, which satisfies

dL(®) [,
Tl = [ﬂ IN, (g — Ni®) df2 = 0,

il
The latter equation leads to the following system:
M® =1, (5.11)

where the mass matrix M and the vight-hand side v are given by

M= | N;Njdn,
1,

= [ iha ™ alf .
ALY

Equation (5.11) ean be solved efficiently using a closed quadrature rule to compute the coofficients
of the mass matrix, A elosed quadrature rule is an integration rule for which the integration points
are located on the nodes. By noting that N (a,) = d,,, the resulting mass matrix is diagonal
and M is trivially Inverted,

Once the derivatives are obtained at the nodes of the background mesh, we proceed ag in the
ense of the fivst order interpolation, as shown in Algorithm 5.6,



158 CHAITEN & INMPLEMENTATION ANPECTH

Algorithm 5.6 Lenst-square interpolation =
~ Porform least-squares smoothing for the derivatives
for all boundary elements iboun do
for all integration points igaub do
Interpolate derivatives Vuy from nodes jnoda to integration point igaub
“aleulate outward unit normal 7o at igaub
Caleulate test function v; at igaub
Caleulate product (#Vu; - n)e; ab igaub and multiply the result by the weight of the
nurnerical integration
Adaenible reault
end for
and for

- —

Remark 6.1, In the case of non-overlapping subdomains, for which we only have information
on one side of the underlying mesh, the classical and least-square interpolations are equivalent
and are hoth of first order, The overlapping seems therefore necessary to obtain a second order
Convergence,

Remark 5.2, The first order strategy leads to discontinuous derivatives across the elements, since
they are divectly obtained from those inside the elements. On the other hand, the least-squares
smoothing used in the second order scheme leads to continuous derivatives,

Navier-Stokes equations: note on the pressure

Up to now, we have dervived algorithms for caleulating the devivatives of a function at the integration
points of the interface. We are therefore able to compute the velocity strain rates present in the
Neumann transmission condition, as given by the discrete counterpart of Equation (4.72);. In
order to complete the approximation of the transmission condition, we need the pressure. On the
one hand, when using continuous pressure spaces, the pressure is interpolated at the boundary
integration points in a classical way, i.e. like the velocity using Equation (5.1). On the other
hand, when using discontinuous pressure spaces the pressure is firet smoothed using the least-
sequares smoothing deseribed previously, before being interpolated from the nodes to the boundary
integration points,

Example

We present a simple example of application of the classical and least-square interpolations to the
solution of the Stokes equations. We solve the following system

At + 2w xu+Vp = f, (6.12)
V:.u=0,

in a two-dimensional domain £ made of two concentrie circles, as shown in Figure (5.6), and where
the force f is chosen so that the exact solution of the problem is

ug = 2y[r-1/2
ve == 2ulr—1/2],

Po = T
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Figure 5.6: Concentrie civcles. Geometry and boundary conditions,

with 1, = [ue, ve]' and ¢ = (2% + y*)"/*. We construct subdomain 1 of Inner diameter 0.5 and
outer rading 1, and subdomain 2 of inner radiug 0.5 and outer radiug 2. In order to test the
interpolation technique of the secondary variables, we feat solve the problem in subdomain 2 using
exact Dirichlet boundary conditions on {ta boundary, and then update the Nenmann condition on
the outer cirele of subdmomain 1. The solution is a radial Poisenille-like flow and does not depend
on the rotation, although we are going to show that the ervor of the finite element solution does,
The rotation ia firat chosen to be sufficiently small as we want to avoid any possible instahility due
to the Coriolis term, so we take w = |w|[0,0,1)" with |w| = 0.1, Figure (5.7) (Top) (Left) shows
the rate of convergence of the error in subdomain 1 computed for the classical and least-square
interpolations, and confirms the resulis obtained with the one-dimensional example presented at
the beginning of the Section. Now what happens if we increase the rotation? Let us denote u and
p as an approximate solution, tor example a finite element solution or the solution at a certain
iteration of a DD method, From the BB condition, and using the notation introduced in Section
1.2.5, we know that
v)

1 g,V
llgllpn < = sup {2, ¥.19) Vged@.
vev |lvllva

Taking g = p — pe, and from Equation (5.12) knowing that
(p=pe, Vo) = (V(u—u,), Vo) = (2w x (u - u,),v),

we ohitain

l V o iy " y — 4
llp = pollpse < = sup (V(u = uy), Vo) + (2w x (4 = t), )
.IH vEy “”IIl",ﬂ'

1 (V(w —u,), Vo) )
7 AU e s 2 [ U = 1L i :
A (;th1 [[e]|v5 Jw! |l all<1.0

Fa

When w is high, the second term dominates, e,

2w
Ilp = pell g ~ % ||t = wy]| 1,0, (5.13)

s0 we expect that the pressure becomes oul of control when we have an error in the velocity.
Hopefully, when passing Neumann transmission conditions, the error in pressure remains and does
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not affect the velocity, The mesh convergence for |w| = 10% is shown in Figure 5.7 (Bot.) (Left).
We gee that the pressure convergence is entively dominated by the rotation term. In addition,
Figure 5.7 (‘Top) (Right) gives the dependence of the ervors with respect to |w|. The velocity is not
negatively affected by the rotation while the ervor in pressuve goes linearly with |w|, as predicted by
Equation (5.13). Finally, Figure 5.7 (Bot.) (Right) gives the mesh convergence of the least-square
interpolation for the pressure and velocity, We observe that the velocity ervor for [w| = 107 is
always below the velocity error for |w| = 107! for the range of mesh sizes studied, while that of
the pressure is our orders of magnitude greater,
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Pragguie, 161 ofder —+ 1606 Proiiyia, 16l drdaf - =
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Figure 5.7: Concentric cireles, Ly evrors, (Top) (Left) |w| = 107", (Top) (Right) h = 1/60. (Bot.)

(Left) |w| = 10%, (Bot,) (Right) Least-square interpolation,

5.4 Conservation

This section addresses an important aspect of the implementation of DD method: conservation.
We first present the shorteomings of the classical interpolation. Then we propose an interface
constraining method to enable us to have control on some well-chosen conservation properties,
The method is illustrated by three examples. Then, we present an interpolation operator, This
operator is tested for the Dirichlet/Neumann method as applied to a simple cavity flow,
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5.4.1 Classical Interpolation

The interpolation atrategy of a variable, as given by Equation (5.1), Is simple and easy to implement
but it is non-conservative, Figure 5.8 illustrates the importance of using a conservative algorithm
when interpolating a variable from a fine grid to a coarse grid; note that the same oceurs when
interpolating between grids whose nodes do not coincide, In this simple illustration, although the

A
coarse grid = 4 s s .
Fal Fa
interpolation ] T l zr
&
fine grid & ~ .

Figure 5.8: [nterpolation from a fine grid to a coarse grid.

continuity of the interpolated variable is guaranieed on each node of the coarse grid, the global
information 18 not necessarily well eaptured, High fraquency modes may be filtered out if the
variable exhibits strong variations along the interpolation domain. Several technigues are available
to overcome the lack of conservation of classical interpolations; e.g., Cebral and Lohner [100] apply
a weighted residual method to conserve the force when solving coupled fluid-structure problems,
Different grid sizes are not the only reason for applying a conservative scheme it can also be needed
if the interpolated data are not compatible with the numerical formulation, as will be illustrated
with the second and third numerical examples of this section. The interface constraining presented
here enables one to make a compromise between the continuity of the variable (if the nodes coincide)
and the global information it carries,

At the end of this section, we also devise n “conservative” operator to interpolate the variables
from a fine mesh to a coarse mesh,

5.4.2 Constrained transmission conditions

The idea of the interface constraining technique [101, 102] is to impose the continuity of a variable
in a woak sense via s classical interpolation and to velax it by the conservation of a global quantity,
Let us assume we want to update the variable u; of subdomain ¢ knowing the variable u; of the
adjacent subdomain 7. Remember that we denoted I the eontinuous interpolation operator from
subdomain § to subdomain i. We propose to find w; from uy by solving the following system:

minimize [ty — T (uy))* AL,
T

uneler the constraint Jlug) =10,
where f(uy) is a linear function of the unknown u; that determines the quantity to be conserved,

For example, one can conserve the lux of u; across the interface by choosing

Jlug) = Vi nydl = Yy omdll,

|'u ['i.l
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where 7 i3 the outward unit veetor normal to subdomain ¢ Let Ny be the vector of classieal
Lagrange interpolation functions for the houndary elements. We can re-express the latter system
in & matrix form as:

minimize / IN\:udII‘” — N'TYw)* dT,
Iy,

ineler the constraint l"u,“-u e 7

where v and » are the veetor and sealar representing the function f, respectively, This system can
be solved by introducing the Lagrange multiplier A of the constraint. The Lagrangian is:

Llujp,,, A) = /r [Njuyp,, — NI w P dl = Aoy, = 7).
i

Searching for the optimal point of the Lagrangian, i.e. the point which satisfies

"”:(_EHL.'_M =0, —m'(“"”q'-"m =0,
Hu”y” t)i\
and defining pg = A/2, leads to solving the following system:
M =r II”r} MI”[IJ
i - 5,14
[ I.I' {) ] [ Jio P 1 {‘J J
where M is the mass matrix
M = N; Nl
Uiy
Solving (5.14) for g, , we finally find:
Wiy, = Ty + (M~ ') (e'M~ )~ = r'I“'uJ-). (5.15)

The first term of the last equation represents the classical interpolation, while the second term
is due to the constraint, Using a closed quadrature rule to compute M, this equation iz trivial
since the resulting approximation to M is diagonal. Obviously, if instead of only having one sealar
congtraint there are . of them, exactly the same procedure can be applied. Matrix oM~ 'r will
then have 7, = 0. components,

We now present three examples to illustrate the interface constraining technique, The second
numerical example shows show that this conservation scheme not only enables to treat conservation
problems due to different grids sizes but it can be necessary to conserve the mass when one of the
sitbdomaing ia confined.

Example 1: analytical solution

We prosent o simple two-dimensional domain decomposition problem involving two disjoint sub-
domains, Figure 5.9 shows the nomenelature of both meshes on the interface, a one-dimensional
line. The letters identify the coarse mesh nodes while the fgures identify the fine mesh nodes,
and the capital letters refer to the coarse mesh solution while the small letters refer to the fine
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[ | coarse mesh
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1 2 3 4 5 < fine mesh

Figure 5.9 Analytical solution, Coarae and Ane mashes,

mesh solution, We propose to update the solution {7 of the coarse mesh, knowing the solution
of the fine mesh and Imposing as a constraint the conservation of the integral of the solution. The
corresponding problem is to

sah
minimize j (U — I{u)]? du,
4 (5.16)

Wi h
indey the constraint, j Udy = / el
il S0

We introduce U and u as the discrete vectors of unknowns of {7 and wu, respectively. Using
linear interpolation, the solution of the system, is

U=Tu+ (M 'e)(e'Mr) ! (r = rllu),
with
In = [uf" u® o™,
M = diag(h/2,h, h/2),
r = [h/2,h, /2],
w2tV 24+ 0 4 o u®/2),

All the integrals have been computed using a closed quadrature rule. Further caleulations give

Ut.‘” ”(” . “] ”“ ].
Ul | = | 4@ | 4 l(_“T @ o g ) “‘T) 1
Ui ul® W 1

Now let us compare these results with those obtained with the classical interpolation for the
three triangle solutions shown in Figure 5,10,

The solutions using the classical and constrained interpolations are drawn together with the
fine mesh triangle solutions, Table 5.1 gives the results for the Integration of the function along
the interface. Obvionsly, only the constrained interpolation gives the right integral of the solution,
the quantity conserved by solving system (5.16). Observe that in this case the nodal quadrature
rule is exact, and therefore the integral of the unknown is exactly conserved.

Example 2: mass conservation, cavity

The second example presented involves mass conservation for an incompressible flow problem when
one of the iransmission conditions s of Divichlet type and the Dirichlet subdomain is confined,
Let us Arst tackle the origin of the need for conserving mass. We want to solve the stationary
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fine mesh solution

clussion] interpolation
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Figure 5.10: Analytical solution. Interpolation of three triangle solutions.

Solution  Fine mesh Classical — Constrained

u' = 1 h/?2 Th hi2
ult) =1 hf2 0 hi2
W™ =1 hj4 hj2 /4

Table 5.1: Analytical solution. Integration of triangle solutions.

Stokes equation in a domain . The weak form of the continuity equation using the stabilized
finite element method is devived taking vy, = 0in l::qlmtiml (1.31):

Ty

/ 71 Vi - [=nduy +Vr:.f,]r1ﬂ+j GV« iy, dlf) =
{1,

l-"l

which must hold for all g, € €. Taking g, = 1 in 2, which is an admissible pressure test function,
and integrating by parts, we obtain the ln“nwing comipatibility equation

f tp ndl =0, (5.17)
[414]

which is the same as for the continuous problem. Consider two overlapping subdomains @ and j. We
want to update the interface I'y; boundary condition of ¢ using a Dirichlet transmission condition.
We assume equation (5.17) is satisfied for subdomain j across the whole domain; however, zero
mags flow rate across any interior section, and therefore across the interface 1), is not gl.mmnt.n'.t'.tl.
Therelore, we have that

j () ngdl #0, generally, (5.18)
iy

Furthermore, if subdomain ¢ i confined, the non-zero mass How rate passing through the interfaco
I i remaing inside the subdomain and, Lhm efore, the boundary condition of i does not satisly the
compatibility equation. This is illustrated by Figure 5.11. Note that for discontinuous pressure
gpaces, g, can be taken piecowise conatant and if T'j; coincides with some element boundaries of
subdomain j, the net flux across ' is zero,
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Figure 5,11: Mass conservation, cavity, A confined subdomain with Dirichlet condition on its interface.

A solution to cireumvent the incompatibility of the transmission houndary condition and the
wenk formiulation is to decrease the mass Aux in subdomain 4 by means of the constraining tech-
nigue. We propose to obtain the boundary data «; by solving the problem:

minimize f ey — T4 {u;)]* dl',
Tij

under the constraint f g g dl = 0.
ey

The system is solved using the strategy defined previously, with the constraint re-expressed as:

/ w ngdl = = / i dl (=0 in the ease of Figure 5,11).
4Ty AT

Note that the integral on the right-hand side of the constraint only involves the solution of ¢ on
AL, which is known; the integral can therefore be ealeulated accurately using the same closed
quadrature than that used to compute the boundary mass matrix M. In the next example, a spo-
cial integration rule will have to be designed ag the right-hand side of the constraint will depend
on the golution of the fAne mesh.

We solve the Stokes cavity flow using the Q1/Q1 element (piccewise bilinear velocities and
pressures) on two subdomains. The DD method used to couple the subdomains is the Schwarz
method. Figure 5.12 shows the pressure contours obtained. The contours are only shown for the
right-hand side subdomain, Figure 5.12 (Top) (Left) shows the inconsistency in the pressure field
induced by the non-conservation of mass in the two subdomains, The wriggles appear precisely
where the pressure is prescribed, Le. at the top left corner. Figure 5.12 (Top) (Right) shows
the pressure contours obtained using the zero mass flow rate constraint on the Interface. The
lnst solution corvects the zone of pressure instabilities in the upper left corner, where the value of
the pressure is imposed (remember that the flow is confined and therefore, the pressire mnst b
prescribed at one point in the subdomain). This is directly related to the fact that the algorithm
enables ug to reduce the masa flow rate, This is confirmed by table 5.0.2 which gives the net masg
flow rates in the two parts of the cavity, They are normalized by the velocity at the top wall times
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Figure 6,12 Mass conservation, cavity, Pressure contours of the right-hand side subdomain.  (Top)

Pressure contours. (Bot.) Veloclty module contours, (Left) Classical interpolation. (Right) Constrained
interpolation.

the length of the interface, The residual mass flow rate obtained for the constrained method is the
mass Aow rate passing through the top and bottom first elements, over which we have na contral,

Subdomain Classical  Conatrained
Lefi-hand side 1.5 0.1
Right-hand side =30 0.1

Tabla 6.2: Mass conservation, eavity, Mass flow rates (=10~ ™).

Finally, Figure 5.12 (Bot.) (Left)-(Right) shows details of the velocity module in the center
of the cavity. In the overlapping region, the mass flow rate constraining method gives the best
resulta. It should also be pointed out that the convergence of the problem is not affected by the
constraint,

The mass conservation was illustrated for a simple ow because it enables us to clearly estimate
the effects of the constraining, However, the problem of incompatibility of the data is very likely
to ocenr when using a Chimera method because it uses a Dirichlet transmission condition for the
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Figure 5.13: Force conservation. (Left) Components of the force on the interface, (Right) Integration
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interface of patch meshes with the background mesh.

Exnmple 3: foree consorvabion

We will now present a strategy to conserve the components of the force (or traction) acting on
the interface; see Figure 5,13 (Left). This algorithm can be applied only to the least-square
interpolation, once the stress is obtained at the nodes of the interface. We propose to update the
stress o, from the known stress o) by solving the following problem in two dimensions:

minimize [ori -7y — T (e - my)]* dI,
|I'|,

under the constraints

[(m--n,}-n,:ﬂ"
Iy
/ (e my) i dl
Jry

fi (s - i) -y T,

‘“
(o) i) g} T

Fij

By introducing two Lagrange multipliers for the constraints, this problem leads to the solution of
a matrix system of the form

M -r —4 t, MIHt,
! 0 ] i | =| 7 :
s 0 0 It &

where t is the nodal vector of the traction compenents, ¥ and r are the vector and sealar represent-
ing the normal force constraint, and s and & are the vector and scalar representing the tangential
foree constraint. The caleulations of v and 8 are straightforward, However, the success of the con-
sorvation stems from aceurately caleulating the total foree contribution of the adjacent subdomain
4. In the example discussed previously, the constraint depended only on the golution in subdomain
i. In the present problem, the foree is known from j and If the mesh of 7 is too conrse with respect
to the mesh in j, a special integration strategy has to be found to integrate » and s In order to
take into account the possible loss of conservation, the caleulation of # and s will be performed
by injecting a sufficient number of integration points on T';;. The strategy is illustrated in Figure
5.13 (Right). Note that an efficient element search strategy is therefore necessary in order to find
a host element for each of these integration points. For example, the number of integration points
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to be chosen on each element boundary could be related to the ratio of the local density of nodes
of ¢ Lo that of 7.

Coneclusion

We have developed a method for constraining the interface boundary conditions in the framework
of domain decomposition methods, As a fest application, we have constrained Divichlet interfaces
with the zero mass flow rate equation and good results have been obtained. The method is general
and can be applied to the conservation of any quantity involving the variable of the transmission
condition,

5.4.3 An interpolation operator

We now present a “conservative” interpolation operator specially designed for interpolating variable
from a fine mesh to a coarse mesh, As a frst and stmple approach, the transmission vaviables at
the interpolation and interface nodes are obtained using the Lagrange interpolation functions, ag
given by Equation (5.1), The interface constraining technique presented previously enables one to
conserve some properties across the interface, We propose here to work directly on the interpolation
operntor, When Lagrange interpolation functions are used, the method will be referved to as
classical interpolation (Class.). Let us denote ny, as the number of nodes of subdomain i and n,,,
the number of nodes of subdomain j from which we want to interpolate the solution. The classical
imethod gives:

u = I"-"u_,-.

where this time we denote IV as the operator I is the interpolation operator to the whole mesh
i from mesh j, and it is a ny,, * iy matriz, Obviously, only the interpolation nodes are updated
with this formula, and the matrix coefficients corvesponding to the other nodes are meaningless.

One way to avoid losing information when interpolating from one mesh to another, and partic-
ularly from a fine to a coarse mesh, is to take into account the values of the interpolated function
not just locally, but using a cloud of nodes, The idea is llustrated in Figure 5.14. On the upper
part, a sharp stencil uses only the value of the interpolated function on one node of the fine grid,
while on the lower part, the dense stencil uses the values of all its neighbors. Dense stencils are the
key for developing conservative interpolation. In some sense, the interface constraining method
can be viewed as a general method for devising conservative dense stencils,

Inspired by transfer operators of multigrid methods (see for instance [103] or [104]), we suggest
an alternative method to the classieal Lagrange interpolation to obtain u;. We seek for a kind of
transfer operator which is conservative in the sense that the mean of a sealar field computed from
its integral in both domains is equal. As a guideline, we want our operator to satisfy the following
requireTnents:

1. a8 in the elassical interpolation, a constant field must be transferred as constant field of the
same value;

2. for identical meshes, identical fields should be obtained;

4. additionally, the information contained in high frequency oscillations in the fine mesh should
Le partially present in the coarse one.



R4 CONSERVATION 160

—t

sharp stencil |
0 e e e

dense stencil &Lv JEZ \Q,
' I

l
| I

Figure 5.14: Interpolation stencils,

Let ug define the interpolation matrix 140 of the interpolation coeflicients from mesh @ to mesh j.
Then
pi s |

uy = Fluy,

The idea is to nse the information contained in ', which transfers variables from background to
pateh 1o improve transferring from patch to background taking into account conservation prop-
erties. This is something normally considered in multigrid methods when vight hand sides are
passed from finer to coarser meshes. In that case, the transpose of matrix I/ can be plainly used,
even though that the local different characteristic element sizes introduces a seale factor. It can
be shown that although this seale factor is helpful in RHS' multigrid transferring, it leads to a
violation of conservation when passing variables [104], as in the case of DD methods. For that
reason, we propose the following

= (1), (5.19)

whers T i the column-wise normalized interpolation matrix defined as

i ¥ iy
1 g (11 T 1 1 Do i1 Tt W, ) -

This method will be referred to as the normalized transpose interpolation, denoted NTL To show
the positive effect of the normalization, we will also momentarily consider the plain transpose
interpolation which uses directly (l-”)‘. denoted PTTL

Example: analytical solution

As an illustration, the three interpolations defined previously are analyzed for a very simple one-
dimensional example. We use the meshes sketched in Figure 5.9, Let us denoto w'" for r =
1,2, 3,4, 06 the solution on the fine (pateh) mesh and U™ for r = A, B, C the solution on the conrse
(]"N?kl.&l ound) mesh. The node spacing on the coarse mesh 18 h while that on the fine mesh mesh
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raTTE

is twice as small, We obtain the following interpolation matrices:

uill
{7t 1 00 00 ut?
Class: | U8 | =0 0 1 0 0 ud® |,
ue) 00001 u'
n15‘
H-“'J
A 1 1/2 0 0 0 ul®
PTL | UW | = (0 1/2 1 1/2 O ul® |
[en 0 0 0 1/2 1 ull
w6
i
IRt 2/8 1/8 0 0 D ul®
NTL | ™ | =| 0 1/4 1/2 1/4 0 wtd
e 0 0 0 1/3 2/3 ulh)
uf®

The problem of the elassical interpolation is obvious: the solution on the coarse mesh does not
explicitly depend on «'*! and «'". In physical terms, this means that the operator filters out the
high frequencies, We will now consider some triangle solutions on the fine mesh and examine how
such solutions are interpolated on the coarse mesh for the three interpolation methods desceribed
previously. Figure 5.15 sketches the solution obtained using the NTT and PTI operators. It is
interesting to check how well those three methods integrate the function in the interval. Consider
three different triangle functions defined on the figure; table 5.3 shows the result of the integration
of the function as ealeulated for each inethod.  As expected, the Class, method gives the wrong

Solution  Fine mesh  Class, P11 NTT

W =1 h/2 h h hj2
) =1 hf2 0 3h/d4 5hj12
w® =1 h/d hi2  hj2 I3

Table 5.3 Integration of a triangle solution for different interpolations.

vesults for the integrals of the three triangles solutions. The integral is either underpredicted or
overpredieted. The PT1 always overpredicis these integrala. Finally, only the NTI approximately
captures the area of the three triangles solutions.

Apart from ita conservation property, the normalized transposed interpolation has one more
advantage, The interpolation matrix involves only the interpolation coeflicients of the patch mesh
nodes of the corresponding host elements of the background mesh, 1f the background mesh is
structured (Q1 elements), the search for host elements is therefore trivial. This could be an
important property if the pateh is moving with time; in this case, the interpolation aperator would
have Lo be caleulated at each time step,

The NTT operator has been suecessfully applied to multigrid techniques by Viequez ef al. in
[105] and to the present DD methods applied to an explicit flow solver [106].
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Figure 6.16: Interpolations of triangle solutions on the fine mesh,

Example 2: a conservative mesh refinement technique, cavity How

*I']"'-uu#l-h this p:{an‘]p[u We Propose tor teat the conservative t_lpt.'t'-"l.l.‘.fll' for '_.Ilt:! D/N I'IH.'!'.-I]U(I |||'-'“"!(i ash
loeal refinement technique, We solve the cavity flow on a domain (0,1) % (0,1) at a relatively high
Reynolds number Re = 5000, based on the cavity length and the velocity at the eavity top. The
geometry is shown in Figure 1.4 (Left), The results are going to be compared to the results of the
atandard reference for this How by Ghia et al. [107].

We first solve the flow on an adapted mesh of 900 Q1/Q1 elements shown in Figure 5.16 (Top)
(Mid.) and use its solution for the sake of comparisons. Figure 5.16 (Bot.) (Mid.) gives the
velocity field while Figures 5.17 (Left) or (Right) show the horizontal velocity along a vertical cut
at the middle of the cavity. We also generate a very coarse mesh of 400 wniformly distributed
Q1/Q1 elements, shown in Figure 5.16 (Top) (Left). Figures 5.16 (Bot.) (Left) 5.17 (Left) or
(Right) show thai the momentum imposed at the cavity top is not transmitted at all at lower
parts of the cavity, where the velocity s almost zero. Can we obtain a satisfactory solution by way
of local refinement? Let us oversel a fine mesh on the top of the very coarse mesh, The fine mesh
oceupies the first top quarter of the cavity and has 450 @1/€1 elements; this is the Neumann
subdomain, The Dirvichlet subdomain is the eoarse mesh: the first three element layers of this
coarse mesh are cut so that the resulting Dirichlet subdomain is composed of 340 elements. The
fine mesh is refined near the top of the cavity so that it looks more or less like the adapted mesh of
the one-domain solution; the resulting composite mesh is shown in Figure 5,16 (Top) (Right). We
hope the fine mesh will help the low enter the cavity and will be sufficient to eapture the leading
flow scales on the top of the cavity,

W tested the D/N method using the classical interpolation as well as the normalized transpose
interpolation (N'TT), using an overlap of two layers of elements. Figure 5.17 compares the horizontal
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Figure 5.16: Cavity flow. (Top) Meshes, (Bot.) Velocity vectors. (Left) Coarse mesh, (Mid.) One

domain. (Right) D/N4+NTL
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Figure 5,17: Cavity flow, Horizontal velocity at z = 0.5, D/N mothod,

velocity profile at = 0.5 obtained by the D/N couplings together with the solution on the refined
mesh, the very coarse mesh, and with Ghia’s results. We observe that the NTT improves the
vesults obtained with the D/N and the classical interpolation. Figure 516 (Bot.) (Right) shows
the velocity vectors in the cavity, We have also tested the D/D method with the same overlap:

the D/D method does not converge to a stationary state.
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5.5 Chimera Method

This section studies a Chimera method intended to solve incompressible flows on complex geome-
bries. We first deseribe the purpose of the Chimera approach by giving an insight of the possibilities
“f “I.{' metlicd. I.I..‘I“*“ Wi i'l”"l"-'“l”'-fl' HOHLE |"1'1r“'|i||nlngy ;\],lui l'?.‘i'.ph'lill Lhie why I.]u,l.l. the Chimera I'lﬂ“-ll“(l
can be implemented as an iteration-hy-subdomain DD technique, In particular, we build a Chimera
method based on overlapping Dirichlet/Divichlet and Dirvichlet/Neumann couplings,

5.5.1 Motivation

W‘.‘ want Lo set ip A ﬁi"]plu ﬂl,]':l’_[!“y Lo solve a ”lﬁ(l pl'{lll]t‘ln an A gi\'l?ll Ht‘”ﬂlt"f.i'y. ili(flll{“llg
the possibility of easily adding, removing and modifying some components, without the need for
remeshing the global mesh. The DD algorithm to account, for these requirements is based on the
Chimera method. A background mesh is first defined. It can contain some objects whose geametries
and positions should not change with time, and for which the grid can be easily generated. Then,
separate grids ate generated for the components to be patched onto the hackground mesh, This
defines a global geometry on which the relative positions of the objects can be changed easily.
From the geometrical coupling, an iterative strategy is set up to exchange transmission conditions
as in the case of iteration-hy-subdomain DD methods, in order to obtain a global solution.

The Chimera method was first envisaged as a tool for simplifying the mesh generation (95,
108, 109, Independent meshes are generated for each component of the ;omputational domain,
enabling a flexibility on the choice of the type of element as well as on their orientation that could
not be possible when meshing complex three dimensional geometries [110, 111]. See for example
[112] for the application of the Chimera method to the investigation of the aerodynamics of the
Space Shuttle lnunch vehicle, As a direct application, the Chimera method has also been used as
a mesh refinement technicue [1 |3]. In addition, if it is implemented efficiently, it is a very efficient
tool to treat flows with moving components [114]. This issue will be addressed later on in Section
4.0,

5.5.2 Geometrical coupling and terminology

For the sake of clarity, we assume that the flow we solve only involves one object. The generalization
io multi-component flows is straightforward. We first define a background mesh containing all the
computational domain, preferably structured. We also generate an independent. mesh around the
ahject and dispose it onto the background mesh, This is the patch mash. The set of all the overset
grids 1s called the composite grid, ov composite mesh. The idea of the Chimera method s to
remove some elements of the background located inside the pateh in order to define an apparent
interface, this task is called hole cutting. The domain decomposition method therefore will consist
in exchanging suitable transmission conditions hetween the outer boundary of the pateh and the
apparent interface just defined.

Some definitions

We introduce the following definitions to identify the nodes of the background mesh (see Figure
H.18 (Left)):

e guest node: node of the background having a host element in the patch;

e losl node: node of the background having no host element in the patch;
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o object node: lost node of the background located inside an object of the patch;
s interpolation node: guest node participating to the DD coupling;

o overlapping node; puest node explicitly freed to define a desired overlap, e, a minimum
distance (geomeirical distance or in terms of elements) between the outer boundary of the
pateh and the apparent interface of the background;

s free node: node containing free degrees of freedom to be updated by the flow solver;

e fringe node: interpolation node forming part of the apparent interface of the background
subidomalii,

A hole 18 defined as the set of elements which contain only object and interpolation nodes. By
definition, the boundary of the hole, i.e. the apparent interface of the background, is composed of
fringe nodes. When dealing with a stendy subdomain, only the fringe nodes of the hole participate
in the DD coupling. Therefore, all the ohject nodes as well as the non-fringe interpolation nodes can
be eliminated from the solution process. However, in the case of moving subdomains, information
at these nodes must be saved at each time step ag a hole node can become an interpolation node,
for which values at the previous time step are required; in the same way, an interpolation node
can become a free node, for which values at the previous time step are also requived. Figure 5.18
(Left) shows a simple example which illustrates all the definition introduced above,

The overlap

We now introduce the overlap. In Chapter 3, we showed the explicit dependence of the convergence
of overlapping methods upon the overlapping length of two adjacent subdomains; it s therefore
interesting to he able to control the geometrical length between interfaces. The algorithm used to
ensure a minimum overlap is trivial: if the distance of a guest node to the patch interface is lower
than the overlapping length desived, then state it as an overlapping node.

In addition, & certain number of elements of overlap may be required according to the type
of transmission conditions to be used in the DD coupling, The firat reason for this is that for
overlapping methods like the Dirichlet/Divichlet method, at least one element of overlap is needed
on each subdomain. This is a sufficient condition to ensure not only continuity of the velocity but
also of its derivatives, The second reason is that to achieve a second order n]l'lf.‘hll'!lquﬂllnN.\HIl
method, we need at least one element of the background mesh on each side of the Neumann
interface,

In order to ensure a layer of one-element overlap in the pateh mesh, we proceed as lollows. We
define the first layer of elements of the patch as the set of elements of the pateh mesh connected
to ita own outer boundary, Le. the interface. Then, all the interpolation nodes of the background
mesh having a host element belinging to the first layer are freed, Figure 5.18 (Left) illustrates
a Chimera coupling with a one-element overlap in the patch mesh, as indicated by the elements
painted in grey.

When interpolating the same variable on the pateh and on the background mesh (like the D/D
{:{';upﬁng)' wit st ensire that we hu\!{l il lﬂﬂ_l“_ Oe lﬂ.}'l’!l' l')f et ﬂf Cl\'l‘u']ﬂ,p in the hl‘l-l'kgru'-"l!i
mesh in addition to the overlap achieved with respect to the patch mesh. This is also necessary
when we want to achieve a second order scheme in space for the D/N coupling, or at least to
expeet it to be of second order. This is done by letting free some of the interpolation nodes of
the background mesh, We define the shadow of the pateh interface the set of elements of the
background mesh having both interpolation and free nodes. All the nodes belonging to the shadow
are freed and stated as overlapping nodes, as illustrated by Figure 5.18 (Right).
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The three operations to construet the overlap must be carried out in a precise order. In fact,
we must gtart by freeing the interpolation nodes located in the shadow of the interface. Then, free
the remaining interpolation nodes located in the freat layer of element of the pateh mesh. Finally,
proceed to the geometric averlap.

Node identification algorithm

The procedure to identify all the nodes of the background subdomain is shown in Algorithm 5.7.
We first define the bounding box of the patch mesh and perform an element search strategy for the
nodes 1poin of the background mesh located inside this bounding box. If ipein has a host element,
it ean be an interpolation or an overlapping node, In the first case, the node will participate to
the DD coupling: in the second ease, it must be freed, If ipoin has no host element, it means that
the node can be outside the patch or inside an object of the patch. A simple way to make short
work of the problem is to perform the following tesi. Let P be the orthogonal projection of ipoin
onto the object boundary of the pateh mesh, and let n be the outward unit vector normal to the
patch at £, as illusivated by Figure 5.19,

{ ! !
bnullwlinu by bagkground meih

Figure 6,19: Check if a lost node is inside an object.

S e e

If the scalar product (ipoin, I?S cqp < 0, then ipoin is an object node and can be eliminated
from the solution process. Otherwise, ipoin is outside the patch computational domain and must
be freed, This operation consists in identifying the hole and is a simple alternative to the classical
(but quite heavy) hole eutting technique, as prosented in [115].
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Algorithm 5.7 Chimera Method, Identify the actors of the background mesh
_I)Tm » the b Gl'l\i'{illli'ﬁﬁwllg ox of the pateh mesh
Set a minimum overlapping length &
for all nodes ipein of the background mesh inside the bounding box do
Perform an element search for ipein
if ipoin has o host element then
If necessary check if ipoin is inside the shadow of the patch interface
if' ipoin is inside an interface shadow element then
ipedn is an overlapping node and i5 freed
olse
ipoin s an interpolation node
end if
Find to which layer of elements of the patch ipoin belongs
If necessary check i ipoin I8 inside the first layer of slement of the patel
if ipoin belongs to the first layer of element of the pateh then
ipoin is an overlapping node and is freed
elae
ipoin is an interpolation node
end if
Compute the distance between ipoin and the pateh interface
il the distanee g lower than & then
ipein is an overlapping node and is freed
else
ipein is an interpolation node
end if
else if ipoin is lost then
Check if ipoin is an object node or a free node
end if

and for

5.5.3 Transmission conditions

[ the preceding chapters, we studied some overlapping versions of current mixed DD methods.
We now generalize the overlapping Dirichlet/Neumann method applied to the Chimera method,
and propose a new Chimera/Neumann coupling (C/N), We also propose to study the classical
Chimera method, referred to here as Chimera/Dirichlet coupling (C/D). The background mesh is
the “Chimera” subdomain for which the primary variable of the problem is interpolated at the
fringe nodes; the pateli mesh is either assigned a Dirichlet or a Neumann transmission condition
on its outer boundary, " Chimera” is not actually an appropriate term (o define an interface type
g it generally defines a complete DD method in the scientifie literature, but we hope its use in the
present context i clear. The C/D and C/N couplings are illustrated in Figure 5.20,

Some special attention must be paid to the pre-process part of the algorithm, which will de-
termine the convergence of the iterative procedure as well as its accuracy, The construction of
the C/D coupling requires special care, as a minimum overlap is required to avoid nodes from
coinciding. If this becomes the case, the interpolated variable would be [rozen at its initial value
on the coinciding nodes, In addition, as mentioned in Section 5.5.2, a minimum overlap of one
layer of element is needed on each mesh participating in the C/D coupling,

This i not the case in the C/N method beeause the variables interpolated at the interpolation
nodes are different from those interpolated at the interface nodes. However, we saw in Section
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Figure 5.20: Chimera method, Hole and variables transmitted, (Left) Chimera/Dirichlet,  (Right)
Clh'lrm'.mfl"\ie'um;um.

(5.3.2) that the overlapping Dirichlet/Neumann needs at least one element on each side of the
Neumann interface to expeet the least-square smoothing of the dervivatives to lead to a second
orider scheme,

5.5.4 The algorithm

The Chimera/Dirichlet and Chimera/Neumman methads it perfectly nto the framework of the
Master/Slave-coupling described at the beginning of this chapter. When dealing with various
unconnected patch grids, the solution on each of these subdomaing ean be obtained in parallel,
while keeping the sequential coupling with the background. The Chimera based iteration-by-
subdomain method is llusteated by Algorithm 5.8 for the Master's point of view, while the Slave
point of view is the same as that presented by Algorithm 5.3.

Algorithm 5.8 Chimera method. Master’s point of view
Find the host clements of all the interface nodes of the patches
Identify the actors of the background as shown in Algorithm 5.7
while stopping eriterion not reached do
Run background
Import solution from background
[nterpolate and compite transmisgion conditions for patches
Export transmission conditions to patches
Run patches in pm'allu]
Wait for all patch processes to be done
[mport. solutions from patches
Interpolate and compute fransmission condition at fringe nodes for background
Export transmission conditions to background;
end while
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5.5.5 Example: flow past two cylinders

We now illustrate the Chimera method through a simple example. We consider a two-dimensional
flow past two eylinders of diameter 2 = 1. The bounding box of the computational domain is
(0,16) = (~6,6) and the center of the eylinders arve located at (4, <1.5) and (4,1.5). The inflow
velocity is U = 1, and the Reynolds number is

R 22 |,
I

We perform three simulations. First we solve the problem without domain decomposition and
using 8 mesh of 4414 P1/P1 elements, shown in Figure 521 (Top). We now decompose the
computational domain into three subdomaing, The first domain is the background subdomain and
containg 2400 (_21{(_1] elements, Then we define pateh subdomaing for each eylinder. The outer
boundary of the top subdomain is a circle of diameter 1 and the associated mesh is composed of
618 P1/P1 elements; Figure 5,21 (Top) shows the composite mesh around it, The outer boundary
ol the bottom subdomain i a eircle of diameter 2 and its associated mesh ag 2400 P1/P1 elements,
Figure 5.21 (Bot.) shows the composite mesh,

From this partition we perform two DD simulation with one element-layer overlapping, using
both the Chimera/Dirichlet method with mass conservation constraining (which will be presented
in the following section) and the Chimera/Neumann method with least-square smoothing. Figure
5.22 (Top) (Left) shows a zoom of the composite mesh of the top eylinder and Figure 5.22 (Top)
(Right) shows the vesulting hole cutting, Figures 5.22 (Bot.) presents the outline of the holes.

Figure 5.23 presents the solution obtained for the one-domain solution as well as for the C/D
and C/N methods, As the pressure of the pateh subdomain is unique up to an additive constant
(they are confined) when using the C/D, the pressures in the background and patch subdomains
have to be calibrated. This is done by adjusting the level of pressure using the difference of pressure
at one node of the pateh and its corvesponding value in the background.

The results of the C/D are far from convineing. The pressure exhibits some strong discontinu-
ities at the interface of the top cylinder; note that for the sake of clarity the maximum value of the
pressure contour fill is limited to the maximum value obtained for the one-domain solution. The
results obtained around the bottom eylinder, whose interface is farther to the cylinder wall than
the top eylinder does, are much better., This is attributed to the fact that Dirichlet conditions are
much gtiffer than Nenmann conditions, L.e. a small error on Divichlet conditions has much more
influence than a small error on the Neumann conditions, This is eonfirmed by the results of the
/N method which are in very good agresment with those of the one-domain solution.

Geometrical DD methods are not exact, if the nodes don't coincide. This example shows however
that the C/N seems to be more aceurate than the C/D method.
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Figurs 5.22: Flow past two eylinders. Hole cutting. (Top) (Left) Top eylinder before hole cutting, (Top)
(Right) Top eylinder after hole entting and apparent interface, (Bot.) Interfaces and hole.
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Figure 5.2%: Flow past two eylinders. (Top) One-domain solution. (Mid.) C/D solution, (Bot.) C/N
solution, (Left) Pressure. (Right) Velocity,
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5.5.6 Summary

In this section, we have presented a classical Chimera method (Chimera/Dirichlet), as well as
the extension of the Dirichlet/Neumann method in the Chimera context that we named the
Chimera/Neumann method. The simple example outlined the deficiencies of the classical method
and the possible advantages of the new method,

5.6 Moving subdomains

Inn this section, we apply the iteration-by-subdomain method and the Chimera method to the study
of flows involving moving components [116, 117, 118]. We first overview the existing methods for
tracking the relative movements of the different components of a mesh, These variables are only
the position, the velocity and the strain rates involved in Dirichlet and Neumann transmission
condition, as a scalar variable transfors into the same sealar, In particular, when the trajectories
of the components are not known a-priovi at any time, a second order integration scheme is derived
to track the rotation of the frome of reference.

5.6.1 Overview

When one wants to simulate flows with moving bodies and when there is no possible way of
preseribing simple boundary conditions in any frame of reference, four main alternatives to track
the body maotions are possible;

e the arbitrary-Lagragian-Bulerian (ALE) method together with an automatie remeshing tech-
nicque of the computational domain adapts the fluid mesh to the spatial configuration in time;

s the fictitious domain method tracks moving solid boundaries inslde a background mesh;

s {he sliding mesh technique couples different meshes which arve allowed to slide along their
common interfaces;

s the Chimera method couples the individual meshes of each moving component.

These techniques are Hlustrated in Figure 5.24.

When using the ALE description of the flow together with automatic remeshing, the mesh
accommodates the boundary displacements inside the computational domain (see for example
(119, 120, 121]). On the one hand, if the displacements are small, only nodal displacement may
be sufficient, and the nodal connectivity of the mesh remaing unchanged; on the other hand, if the
displacements are large, a complete remeshing is necessary, The main drawbacl of the method
is that the geometric parameters have to be computed at each time iteration. See [122] for an
example of application to the simulation of a mixed-flow pump. The ALE technique has also been
used for following free surfaces [123, 124] and to simulate fuid/structure internctions [125].

In the fictitions domain method [94, 126], a fixed mesh occupies the whole volume including
that oceupied by the bady. The method consists in including the boundary condition at the body
houndary into the set of flow equations for the whole velume by the way of Lagrange multipliers, In
the particular case of Divichlet conditions imposed on the bady, the Lagrange multiplier represents
the jump in traction obtained at the fuid-solid interface. This method enables one to nse simple
(structured) background meshes on which fast solvers can be implemented. In [127], a fictitions
domain method 18 presented to simulate two and threesdimensional flow problems with moving
boundarles. The authors apply the method o the solution of a Couette problem and a helical
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Figure 5.24: Ulustration of the most common methods to simulate fows around moving components,

ribbon mixer; in [128), the fictitious method is applied to the solution of the flow around a moving
digle. In fietitlous domain methods, the motion of the object needs not to be known a-priori, and
aerodynamic forces can be taken into account to couple the fluid dynamies and the kinematics of
the rigid body, Pan [129] prediets the path of a ball falling in a viscous fluid (at low Reynolds
nimbers); in [130], the authors solve the two-dimensional flow around an airfoil that is free to rotate
around its center of mass, the sedimentation of particles in a box, and a three-dimensional case
involving two spherical particles, Using the same method, Sudrez [131] simulates the sedimentation
of an elliptic body in a two-dimensional viscous fluid. This fictitious domain method is also well-
suited for shape optimization problems [132]. Although it has been shown that this method can
efficiently solve the flow over moving objects, it presents a serious drawback: at large Reynolds
numbers, we have no simple way to refine the mesh near the boundary without dropping the nice
chirncteriatic of the methaod,

The sliding mesh technigue regroups DD methods for which two adjacent subdomaing are
allowed to slide along their common interface. In this work, we generalize this technique to any
DD method involving possibly moving overlapping subdomains for which the interface topologies
do not change with time. As it can be a hard task to ensure that the nodes of two adjacent sliding
meshes coincide at each time step, the sliding mesh method is generally used as a direct application
of the martar method [93, 133] to moving subdomains [134]. The mortar element method is a non-
conforming domain decomposition method for coupling non-matehing grids. Instead of considering
the continnity of the transmisslon variables point by point by using a simple interpolation techuigue,
the mortar element method performs an interface Ly-projection of the transmission conditions,
When the mortar method is used together with a sliding mesh technicque, the subdomains are
allowed to slide along their common interface. They are therefore necessarily digjoint. See [135]
for the application of the sliding mesh technique to the simulation of stirred reactors. See [136]
for the simulation of a two-dimensional rotor-stator interactions in a centrifugal pump. We also
mention the Shear-Slip Mesh Update Method [137] (SSMUM) where regions in relative straight
line translation or rotation are Kh"“l 'hry the way of intermediate layers of elements, and where
the connecting nodes coincide. In order to avoid remeshing of the regions, only the elements of
intermediate layer ave allowed to be deformed and its computational domain to be remeshed when
necessary, The advantage of this method is that it is conservative ns the composite mesh is always
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conforming. The main drawback is that arbitrary motions are not possible.

The Chimera method appears to be the most flexible method to treat flow problems with
moving bodies [138, 115, 139]. In addition, it fits perfectly within the Chimera based iteration-hy-
subdomain method introduced along this chapter. Each moving body of the domain is assigned
a particular mesh, These meshes are allowed to move independently inside a background mesh,
while the coupling can be performed using the Chimera/Dirvichlet or Chimera/Neumann method.
The main drawback of the Chimern method is its lack of conservation.

All these methods have their advantages and drawbacks that may be important or not accord-
ing to the type of application we want to carry on. For example, conservation aspects are in general
much more important in compressible fluid dynamies than in incompressible fuid dynamics (al-
though we saw that mass conservation is erucial for the numerical seheme used in this work). If we
only work on domaing in relative rotational motion, the sliding mesh technique may bo the most
appropriate. However, the reliability (accuracy and robustness) of all these technicues is subjected
to crucial choices, In the fetitions domain method, one has to choose the number of mesh points
to diseretize the rigid boundary: in the mortar element method, one has to find aceurate quadra-
ture rules to compute the integral matching eondition [140); in the Chimera method, conservative
interpolation technigues may be expensive [141).

In both the sliding mesh technique and the Chimera method applied to moving subdomains,
each subdomain solves the poverning equations in its own frame of reference:  these methods
fall within the family of multiple frames of reference (MFR) technigues. They require tensorial
transformation when updating the transmission conditions, We now addvess this point.

5.6.2 Tensorial transformations

If subdomains ¢ and j are in relative motion, tensorial transformations must be performed each
time a variable 8 obtained in i from j and when a host element 18 to be found. Denote £y the
basis veetor In the k-th direction of an absolute frame of reference and X the coordinate vector of a
point measured in it. Assume we know or we have a way to caleulate the translation vector T and
the rotation matrix @; of subdomain ¢ as well as those of subdomain j (7'; and &, respectively),
ag shown in Figure 5.25.

Figure 5.26: Two mwoving rames of reference in the absolute one.
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Expressions for the position, velocity and strain rates

We want to express the position, the velocity and the strain rates in subdomain i in terms of the
variables measured in j. We have

a) = ©;(X ~1T),
o = (X - Ty).
Knowing that the rotation matrix is orthogonal, we easily get @; in terms of @
x = @Oz, + T~ T)). (5.20)
Differentiating this equation with vespect to time, we find the velocity wy in terms of the velocity
wy measured in g

w = & = O(@x; + Ti) + @, (E‘l @y + @uy + Ty —T)), (5.21)

where (:) = d(:)/dt and 'f‘_,- and T are the velocities of subdomaing j and i measured in the
abaolute frame of reference Ej.
We now derive the transformation of the strain rates. We Lhave

duy  duy dwy

ﬂ'_.]:, = Oay Oy
By substituting Equation (5.21), and knowing that
di
£l - 0,0,
L }

we obiain
iy

b o st e et oy U iy

Due to the orthogonality of the rotation matrices, @0, = I so the last equation gives

S 2 8y O +0,(0,0,)0] 10,6/ fl_i@,@,‘ ahd
day D
(i%) - 0,0 +0,(0/0,)0] 10,6 (aﬂ) CHCH

Now we add up the latter two equations and divide the result by twe to obtain the equation for

the strain rate:
Au, du '
r(u)_zl(a )+(EE)I

- ‘f‘.(c-),c-)i} + B;%(@j@;)ﬁi +(0,0))e(u,)(©,))’

! - o+ Df-“—ﬁ)’ + (0,0 )e(uy)(©,0')".
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The first two terms are zero so we finally fnd that the veloeity strain rate tensor transforms like:
i oy
e(uy) = (ﬂ;@j)c(u,,][(z).ﬂj)'. (5,22)

We observe that the velocity strain rate undergoes a rotation bul no scaling, contrary to the
velocity, We can also check that this expression is symmetric,

A second order scheme in time

I order to elose the transformation of the position, velocity and strain rates expressed by Equations
(5.20), (5.21) and (5.22), we need to compute the rotation matrices @5 and &; at each time. Il they
are known, then we are done, If for exnmple we only know the angular veloeliy (which is generally
the case) and if in addition no analytical expression for the rotation matrix can be obtained at
each time, then we may need to proceed. In some few cases we could obtain the rotation matrix,
ag illustrated by a simple example at the end of this subsection, Let us denote by @ the rotation
matrix of o frame of reference of basis vectors e)'s with respect (o the absoluie frame of reference

such that ;

i
o= a |, (5.23)
al
and assume we know the angular velocity veetor w of the frame, which is a [unction of time, At
each instant we have

e,(t) = w(t) = eylt) (5.24)
= W(t)e,u(l), (5.25)
where W, = =¢,,w, is given in the basis Ey; £,,, 8 the permutation (alternating) tensor with

value zero if two indices arve repeated, and with value 1 or -1 if p,g,r are in eyclic ovder or not,
respectively. Equation (5.24) has been already derived in Section 1.2.2; in the following, we use the
matrix form given by Equation (5.25). Let us consider a partition 0 =12 = ' < ... < (N = T of
the time interval [0, 7'] of interest. In order to integrate Equation (5.25), we propose the following
approximation:

1

Balt) = (WM 4 ﬁﬁ'f"ﬁr,]é;,.(n). for #" < ¢ < ¢+, (5.26)

where superscript n denotes variables considered at time ¢", the tilde indicates that the solution
is approximated and 8 = " — ", We are now going to show that the approximation given by
Equation (5.26) i of second order in time. By direct integration of Equation (5.26), we find that

|
ep(") = exp (WL + EW"O'L")&;,.,(!.”). (5.27)
Let us develop the exact solution of equation (5.25} in Taylor series around time "
: ny i 1 u ny gyl T
ep(t") = e (1) + € (17)6L + i"*’“ )8t? + 06t

= [I + W"4t + %-w"ﬁa'-’ + %(W")“Jt“lmt") + 060, (5.28)
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Performing the same expansion for the approximate solution given by equation (5.27), we got
g | p - g ;
&MYy = [T+ Wt + %w"az* + E(W"}“m* + O8] &™) + O(8t"), (5.29)

Lat,

A" = I+ W"St + %W“m“ + %(w'*)‘w“.

From equations (5.29) and (5.28), we have
en(t") = ATep (1) + O(1Y),
£, (1Y) = ATEL(1") 4 O8*).
Therefors

ék(ﬁn-t l) e Ek(tﬂ"l'l) - A”(ﬁ'k“ﬂj - ﬁk(i”}) + m{‘\w_“)
= .fl".fl“ Il(l’:k““-'lj . Eku*" 11}} + f'.}(t““] +- CJ(I,HH)

= ATAMY A8 (1) = en (1) + O(82%).

Assuming the basis vectors are given at ¢ = 0, we have &, (t%) = e, (t") = 0. Therefore, we have
that é,(211) — ey (1F1) = O1?).

In order to find the &,'s at t"*', we apply equation (5.27) recursively:

L 1 3
Ep (") = exp LE. (W”‘rﬁt 4 ;EW"'M.R)l E; (5.30)
= (@")'E, (by definition), (5.31)

where we have agsumed that &) = Ey, The last expression for the rotation matrix is not convenient,
80 we try to derive a nicer equation for the coefficients of @" at time t". By definition, we have

Wip = —€pgr)

rm — ; |1
lV\Jﬂ\f = TEpyrtp -

Let B be the argument matrix of the exponential function of Equation (5.30), that is,

it
B=Y (w"‘m i %W'“Jt") |

mis=il

whose coeflicients are

ey
By = —Epgr 3. (u;.”eﬂ + im;!'an‘) :

m=(
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We define the vector " and the unit vector ¢ as

Ly
; 1. "
o= E (w”'M + -,Ew"'ﬁt" .
=i
o rh
o 11.!1 1
s the coeflicients of matrix B become
By = —EW,-?",'.*|T"|.

Let us introduee a matrix € and a sealar @ such that

C"m,' = _E;Ji;i"f-':-]+ {5.32)
g = |p"

According to these definitions, Equation (5.30) can be re-written as
2 (") = exp (AC) By,

In addition, it can he shown that for a matrix © given by (5.32) with #" being a unit vector, we
have

et

(exp (0C)),, = Fpry + (8 — 757 ) cosd + Uy sin f

n
i

= Py + (8pg = 77y ) cos "] = £ F sin [r?.

By definition of the rotation matrix &@" we have
(@) = (exp (0C))",
so the eoeflicients of the previous exponential form ave given by:

{:’;:U = ']1}:?1:; 4 (15‘,.,' - ’-';j'?":; ) Cons |T'”l = t':,m’l'ﬁj.l ain |1""|. [5‘133}

We recognize here the well-known expression for the matrix coefficient of a rotation through an
angle || about an axis whose divection is given by the unit yector #. It is Interesting to note that
the time step contributions to the rotation add up in such a simple way...

The derivative of the rotation function 15 given by

Using (5.26) evaluated at time " Fand (5.31) it is found fhat

éfk(f-"“} . (W" I, %“}nm) {H!I}I’Ek'
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from where it follows that

ikl

t
" = @n (w" n %ww) ; (5.34)

A simple two-dimensional example

In order to get an insight on the meaning of the tensorinl formulation for the position and the
velocity as expressed by Eqguations (5.20) and (5.21), we consider a simple two-dimensional case,
Lot us assume that subdomain ¢ is rotating with a constant angular velocity w = [0,0,w]" while
subdomain 7 is fixed, and that their axes initially coincide. A simple caleulation gives at cach time
£ the following transformation for the position,

cod (wi)  sin (wl)

@ =By = [ ~sin (wt) cos(wt) |

From Equation (5.21) and deriving the last equation with respect to time, we obtain that the
veloeity tranaloring like

= @4“’.1 + Oy

—ain(wt)  cos(wl)
—cos (wt)  —sin (wt)

} wy + "-.'7;*1_;
= =iy X By E).I’H-_f.

The fivst term of the last equation is the sealing due to the relative rotations, while the second
term is the velocity measured in j, and rotated as seen in subdomain 1.

The algorithim

Algorithm 5.9 gives the steps to follow when updating the Dirichlet transmission condition of
subdomain 4, in relative motion with sibdomain 7. The dots hold for the usual ealenlations to
be performed by the Master, and are not repeated here for the sake of elarity. Note that if a
conservation algorithm is to be used, then we only have to replace ' (u;) by its conservative form,
using Equation (5.15) for the constrained interpolation or Equation (5.19) for the N'T1 operator.

Algorithm 5.10 gives the steps to follow when updating the Neumann transmission condition
of subdomain ¢, in relative motion with subdomain j. As in the cage of Dirvichlet transmission
conditions, the interpolation of the strain rates and the pressure can be constrained,

5.6.3 Examples

We now present two examples of applications, The first example is a clasgical iteration-by-
subdomain DD method applied to moving grids while the second example illustrates the Chimera
method applied to moving grids. The first example studies a section of a chemical reactor and the
second one studies the How past a eylinder submitted to rotational and translational velocities,
Before poing on to the examples, it should be pointed out that when coupling two siibdomains,
one steady and the other in an accelerated frame of reference, we must include all the aceeleration
torms of the Navier-Stokes equations; Le. we cannot couple the subdomains using the Stokes
cquations. This is due to the fact that the non-inertial effects accounted for in the accelerated
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Algorithm 5.9 Update of a Dirichlet transmission condition on s moving subdomain

for all time steps do S o
Compute &, @;, T, T, and their time devivatives, using Equations (5.33) and (5.34)

for all nterface nodes ipoin do
Find the host clement jelem of ipoin of coordinates m; in £y and a5 in O

lompute the interpolated veloeity 1Y () at @
Obtain the velocity at ipoin as:

w = @@ + T, —T) + (O, + O 1" (u) + T, - T)
end for

end for

Algorithm 5.10 Update of Neumann transmission condition on a moving aubdomain
For all time steps do o
Compite &, @, and their time derivatives, using Equations (5.33) and (5.34)
for all boundary elements iboun do
for all integration points igaub do
Find the host element jelem of igaub of coordinates @y in £ and @; in £

2 = 0)(@fw; + Ty - T))

Compute the velocity strain rates I (e(wu;)) at igaub using either the classical or least-
aguare interpolation

Compute the interpolated pressure I'(p;) at igaub

Obtain the pressure and sbrain rates al ipoin as:

po=1"(p))
£(u;) = (@j@:')f”(c:(u._;})(@_,-@lﬂ}'

end for
end for

end for

frame of reference come from the total derivative appearing in Galilean frame of reference. In each
stubdomain, there may be some dominant terms, but once we want to couple them; all the terms
have ta be considered 1o avold any physical inconsisteney.

As an illustration, consider the domain shown in Figure 5.6 rotating with angular velocity
w = [0,0,w]', and with ¥ = 10% We first solve the problem in the rotating frame of reference and
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look for the solution of zero velocity [w, v]' across the domain and eentrifugal pressure, by imposing
n zero velocity on the contour. In an excess of confidence, we neglect the convective terms; the
solution is exactly the same with and without the convective terms. In fact, both the Stokes and
Navier-Stokes equations in the Cartesian frame of reference give (with evident notation)

dp P
E?T = W,
dp |
By =wo,

so that we have p = Lw®(2? + y?). We now want to reproduce the same flow in a steady frame of
reference, i.e. we look for a velocity —w x @ = [~wy,wa]’, where & = [, 4]' is the position vector.
The steady Stokes equations yield

dp _
gy =
ap
By = 0,

which solution is constant pressure! Where the centrifugal foree effects have disappeared? Consider
now the full Navier-Stokes equations; we have

Ou Ou  dp
H‘;)—l + Uﬁ -+ m =
S i @

i e ol el

which upon substitution of [u, v]* = l—wy,um]" gives the correct answer for the pressure. We now
present two numerical examples,

Example 1: stirred tank

We solve n two-dimensional section of a stirred tank, used in the chemical industry, and is made
of six blades of width H, and radius Ry, The inner subdomain is shown in Figure 5.26 (Left) and
the onter subdomain is shown in Figure 5.26 (Right). It includes four baffles of width Ha. The
dimensions of the p:‘nble:‘u AT

Ry = 23.5, Hg = ddh, R-.’,l, = GDD| ll:!I = 20!
Ry = 54.0, Ry, = 8856, Hy = 4.0,
We solve the transient Navier-Stokes equations with the ASGS model, the time integration being
carried out using the backward Euler scheme with 8¢ = 0.5. The inner subdomain is meshed with

1575 P1/P1 elements, and the outer subdomain with 2105 P1/P1 elements. We choose |w| = 0.1
and # = 50 go that the Reynolds and Ekman numbers are

|| 123 i i p
B = e = .80, ok = ——— = 10.13,
Re y .06 Elk 2l
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Figura 6.26: Stiveed tank, (Left) Inner subdomain, (Right) Outer subdomiain,

where we have taken as characteristic velocity the tip velocity ie. |w|Hs. The inner subdomain
is solved in the non-inertial frame of veference, of angular velocity w = [0,0,0.1]f, while the outer
gtibdomain is solved in a fxed frame of velerence, The subdomaing are coupled using both the
Schwarz and the Dirichlet /Neumann methods with one element layer of overlap. In the ease of the
Dirichlet /Neumann method, the inner subdomain is assigned the Neumann condition ealeulated
with the least-square interplation scheme, The interfaces of Diriclilet type are constrained by the
mass conservabion equation.

As Initial conditions, we perforim a steady state caleulation using the MFR method, Le. we
perform the tensorial transformation but keep the subdomaing at their original position. Figuve
5.27 (Left) shows the vertical veloeity of point P located near a baffle; we first observe that the
pseudo steady state solutions of the two DD methods are different,

Figure 5,27 (Right) presents the power spectrim of a fast Fourier transform performed on the
time aignal. The spectra ave novmalized so that thelr integrals ave bhoth unity. Both solitions
exhibit a peak around the blade pagsing frequency, Le. 1047 time unite. We observe that the
D/N gives a more sharp pealk, and less high frequencies. Finally, Figure 5,28 shows a detail of the
mesh, the pressure distribution in the whole domain, as well as the velocity vector near point P
for different times ¢ = 5, 7.6, 10, 12,5, obtained by the D/N method, Note that the velocity vectors
are shown in the fixed frame of reference.
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Figure 6.27: Stirred tanl. (Lnﬁ:) Vertical velocity of point P, (Right) Power spectrum.
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Figure 5.28: Stirred tank. (Left) Detail of the composite mesh. (Mid.) Pressure contours. (Right)
Velocity. From top Lo bottom, £ = 5.0, t = 7.5, t = 10.0, ¢ = 12.5.

Example 2; moving disk

We simulate the example presented in [128], It is a two-dimensional How confined in a square
domain 2 = (—0.35,0.9) = (=0.5,0.5). A circle of radiug 0.125 i3 moving with a trajectory

i = %(1 — cos (7t/2)),
y = —018in (w(1 — cos (x1/2))),
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and is rotating counterclockwise with an angular velocity 2r. The center of the cirele ia traveling
back and forth from & = 0 to @ = 0.5 and oscillates svound the position y = 0. Knowing its
Lrajectory in time, we can ealeulate its linear and angular velocity as well as its linear aceeleration
exactly. The background mesh is meshed with 1600 Q1/Q1 elements while the patch mesh is
meshed with 400 Q1/Q1 elemenis. Note that in our case the background mesh is much coarser
than the numorical reference as thelr conrseat mesh has 20480 elements, This How is solved using
the Chimera/Neumann method with least-square smoothing and the Euler time integration scheme.
Ag boundary conditions, we impose a no-slip condition on the eylinder and zero velocity on the
boundary of the rectangle. Figure 5.29 shows the solution obtained at ¢ = 5, ¢ = 6, ¢ = 7 and
{ = & The left hand side column shows the hole and the interface of the patch mesh,

O

o

©

-l

Figure 5.201 Moving disk. From left o right, hole and intecfaces, pressure, vorticity, strenmlines, From
top to hottom, t =5, 1 =6, L =T, 1 =8§







Chapter 6

Numerical Applications

In this chapter we present numerical applications of mixed methods on overlapping subdomains,
In the first example, we compare the performances of some Chimera methods, namely the C/D,
C/N and C/R methods, by solving the vortex shedding behind a cylinder. In all the following
examples we drop the stidy of the C/R and C/D methods and only consider the C/N method. In
addition, the Neumann transmission conditions are calealated using the least-square smoothing,
In the second example, we solve a turbulent backward facing step 1o show the good convergence
of the D/N iteration-by-subdomain algorithm. The interfaces are deliberately located inside the
recireulation zone so that the interfaces have inflow and outflow parts, In the third example we
solve the flow avoind a moving missile using the C/N method: the results are compared to those
obtained with an ALE approach, In the fourth example we solve a transient and turbulent flow
in a two-dimensional section of a centrifugal fan. The last two examples are three-dimensional
transient applications. In the fifth one, we obtain the solution of the laminar flow in an axial
stirved tank. The last example is an axial fan,

6.1 Vortex shedding behind a cylinder

This example involves the flow past a eylinder, a widely solved benchmark problem. A circular
cylinder is immersed in a viscous fluid. The Reynolds number is based on the eylinder diameter
and the preseribed uniform inflow velocity /. The geometry and boundary conditions are shown
in Figure 6.1. The exterior domain is a rectangle (0, 16) = (0,8) and we set {7 = 1 and D = 1.
For Re approximately less thai 40, two symmetrical eddies develop behind the eylinder, These
eddies become unstable at higher Reynolds numbers and periodic vortex shedding oceurs, leading
to the so-called Von Karman vortex strect. We first consider the stationary siate at Re = 30.
As o reference solution, we solve the steady laminar flow on a relatively fine mesh composed of
5400 Q1/Q1 elements, shown in Figure 6.2 (Left). We want to compare here the results obtained
with three Chimera methods, the C/D, C/N and C/R methods, As a background mash, we use
a structured mesh composed of 1600 Q1/Q1 elements. The patch mesh containg the eylinder. Ita
outor boundary, i.e. the interface of the DD method, is a cirele of diameter 3. Its mesh is composed
of 400 Q1/Q1 elements. The vesulting composite mesh is shown in Figure 6.2 (Right). Figures 6.3
shows a close up of the composite mesh in the evlinder region and the results of the hole cufting
operation. The middle figure shows the hole created to obtain a one clement overlap one each
subdomain, This composite mesh is used for the C/D method as well as for the C/N and C/R
methods in order to achieve a second order method. The right figure shows the hole created with
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Figure 6.2: Vortex shedding. Meshes, (Lefli) Fine mesh used for one-domain solution. (Right) Composite
mesh of the Chimers method,

a zoro overlap, usefull for the C/R and C/N methods together with the classical interpolation.
To solve the stationary problem, we employ the Chimera method with one element overlap on

Figure 6.3: Vortex shedding. Zoom of meshes, (Left) Composite mesh. (Mid.) Hole cutting for one
element overlap. (Right) Hole eutting for zero overlap.

each subdomain, The Chimera method with zero overlap will be used only for the transient ease.
Note that when considering the C/D method, the pateh subdomain is confined. Therefore in order
to have a well-posed problem on the patch subdomain at each iteration, we apply the interface
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t:i,nmr.rn.':uing of the mass conservation [1[12].

The test we now carry out consists in determining the range of relaxation parameters for
which the algorithm converges, To do so, we vary the relaxation parameters of both transmission
conditions from 0.1 to 2, using a inereineit step of 0.1, The C/D turns out to be the mast robust
mothod, i.e. the method for which we have the greatest amplitude in the choice of relaxation
parameters to achieve convergence. The C/N does not converge at all, at least for the range of
parameters tested, The C/R method converges but for a restricted avea in the relaxation space, as
shown in Figure 6.4 (Left), where 8p refers to the relaxation parameter of the Dirichlet condition
and fy vefers to that of the Rebin condition, Figure 6.4 (Right) compares the convergence histories
obtained with the C/D and C/R methods, For the C/D method no relaxation is used while for the
C/R method, we use fp = iy = 0.2, The figure shows that the convergence of the C/D method
looks like monotone while that of the C/R s more unstable. However, the residuals of the Dirichlet
datn obtained with both methods ave of the same order after 30 iterations,

2.0
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L § N
08
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Figure 6.4: Vortex shedding, (Left) Stability curve of the C/R method. (Right) Convergence histories
of C/D withoit relaxation and C/R with 8p = g = 0.2,

Now, we have previously mentioned in Section 3.7 that a reaction type term in the ADR
equation can help mixed DD method to be siable; so maybe we have a way to make the C/N
method converpe. Let us solve the transient problem. In order to control as few parameters as
posaible in the iterative process, we couple the time, linearization and DD loops. Figures 6.5 (Left)
and (Right) shows the convergence histories obtained with the C/N method for different relaxation
parameters and time steps, We observe a very good convergence of the algorithm and a quite large
Aexibility in the choice of the parameters (relaxation and time step) to control the convergence of
the DD method.

Figures 6.6 compares the strenmwise velocity and pressure profiles along a horizontal eut and a
vertical ent, both passing by the center of the cylinder. We observe good agreements of the mixed
methods with the reference solution; on the contrary, the solution of the C/1) method differs no-
tably from that of the reference solution,

We now go on to the transient case and set Re = 100. Although the flow is unstable at this
Reynolds number, one can obtain a steady solution. This solution is used as initial condition of the
fransient simulation, on which we superimpose a small vortex near the eylinder, This is sufficient
to trigeer the unsteady state, The time integration is carried out with the backward Euler scheme
and & = 0.1,
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Figure 6.5: Vortex shedding, Veloeity convergence history of C/N, (Left) For different relaxation param-
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Figure 8.6: Vortes shedding, (Top) Hovizontal cut, (Bot.) Vertical cut, (Left) Veloeity, (Right) Pressure,

A comparison criterions, we calenlate the period and amplitude of the vertical prossure force
acting, on the cylinder, Numerical references roport values of the period between 5.6 and 6.0.
See for example [142]. We test the C/D method nsing the one element overlap and the mixed
methods using the one element and zero overlaps, The values of the amplitudes and frequencies
are reported in table 6,1, As a reference, we also indicate the results obtained with the fine mesh,
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The C/R method gives the best results. For this very coarse mesh, the C/N method does not
perform so well, and does not converge at all when using, only the fivst order interpolation with
overlap, This is due to the fact that at high Reynolds number, the weak continuity of the veloeity
devivatives looses weipght with vedpect o the weak continnity of the pressure when imposing a
natural (Neumann) condition. The discontinuity in velocity is corrected by the Robin condition
which provides additional weight to the continuity of the velocity components, in the form of & weak
Dirichlet condition, Remember that for Re = 30, we observed that the C/N and C/R methods
pives similar solutions. The C/D i much more diffusive than the mixed methods in amplitude,
while the time froquency g slightly hetter.

With overlap No overlap

[east-square classical elagsical

One-domain /D C/N C/R C/N  C/R C/N C/R

Amplitude 0,101 0,020 0060 0,074 - 0.074 0,075 0,074
Period 5,822 6,044 G444 GADD - 6400 G400 6.356

Table 8.1: Vortex shedding. Amplitude and perviod ol the vertical pressure foree,

6.2 Backward facing step

We solve the turbulent backward facing step alveady presented in Section 1,4.2, but this time using
thi n\rurhgppiug l')/N method, For the notation, refer to this section. We decompose vertieally the
domain into two overlapping subdomains, which interfaces fall inside the recirculation zone. The
meshes of each subdomain arve such that they approximately mimic the mesh used to compute the
one domain solution, namely Mesh 2, The left-hand side subdomain is meshed with 800 Q1/Q1
elements and the right-hand side subdomain with 1600 Q1/Q1 elements, Remember that Mesh 2
lias 2000 Q]/Q 1 elements, A zoom around the step eornoer of the composite mesh and Mesh 2 are
shown in Figures 6.8 (Top) (Left) and (Top) (Right), respectively. The problem is solved with the
following data: §/H = 4%, 1, /¥ = 100 and zero velocity at the step corner. This corresponds
to the thivd line of Table 1.2,

The interface of the left subdomain is of Neumann type while that of the right subdomain
is of Dirichlet type, Figures 6.7 (Left) and (Right) show the convergence histary obtained for
two combinations of relaxation parameters. Parameter & 18 the relaxation factor of the Dirichlet
conditiona, used to update the velocity and the eddy-viscosity, while 8y is that of the Neumann
condition, used to update the traction and flux of eddy-viseosity, Both combinations lead to
convergence of the D/N method, Figure 6.8 compares the contours of velocity module and eddy-
viscosity obtained with the DfN method and on the one domain solution. The profiles arve identical
and confirm the convergence of the D/N method,



200 CHAPTER § NUMERICAL AIPLICATITINA

1 . ! 1 . 100
o . valaclly ——
10 \ wactio, —— 1o
- Villug
it N | i
| = .
| o1} ) \‘. B | AR (i Y R
| \H‘_a . Y [ - s \ \I I“'.
g 0.01 R E 0.01 \\Jﬁ\ 1
CNOA
0,001 S 0.001 | | = e
0.0001 : i ' 4 . 0.0001 . -
o 8 10 18 20 25 a0 SERAY 5 10 15 20 25 a0
Mumbier of lterations Mumber of lertions

Figure 6.7: Backward facing step. Convergenee history. (Left) #p = 1.0, #n = 0.3. (Right) #p = 1.0,
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Figure 6.8: Backward facing step. (Left) D/N method. (Right) One domain. (Top) Mesh. (Mid.)
Velocity, (Bot.) Eddy-viscosity.
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6.3 Missile launch from a submarine

[n this example we propose to solve the transient and laminar flow around a moving missile [119],
using the Chimera D/N method. The missile is moving upward with a constant velocity /. The
Reynolds number based on the length H of the missile is

Re = ﬂ = 1000,
v

We are going to eompare our results to that of Foleh [121], obtained with an ALE approsch and an
explicit How solver deseribed in [143], The geometry is shown in Figure 6.9 (Lelt). Asa background
mesh we use o steuctured mesh of 4500 Ql/Ql elemoents, shown in Figure 6.9 (Right), while the
pateh mesh is composed of 4841 P1/P1 elemenis. According to the Chimera /N method deseribed
in the preceding chapter, the velocity of the background mesh is preseribed at the interpolation
nodes, while the patch mesh is assigned o Nemmann transmission condition on itg outer boundary.
Mote that the missile subdomain does not contain any information on its own velociiy as the foree
imposed as transmission condition would be the same in any Galilean frame of reference; all the
information on the velocity of the missile is passed through the transmission conditions imposed
on the background subdomain,

o.n=0

Figure 6.0 Missile launch. (Left) Geometry and boundary conditions, (Right) Background Mesh,

The transient simulation is carried out using the backward Euler scheme with a time step
St o= 2.2 % 1077 H/U. We perform 15 domain decomposition iterations at each time step and use
as relaxation parameters 8y = 0.0 and #y = 0.4, Each problem ig solved using a divect solver: the
total time used by the Master is 2.5 % of the total CPU time used to solve this problem. The sum
up of the computation time used by the Master to perform its different tasks is shown in Table
6.2, The update of the Neumann transmission conditions, which requires a least-square smoothing
at each iteration, 15 the most consuiming operation, while the communication between the Master
and the Slaves ig almost negligible,

The convergence of the problem is shown in Figure 6.10.

Figure 6,11 shows the composite mesh at time ¢ = 0.22 H/U, near the missile bottom right
corner and at the submarine exit corner.
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Figure 6.10: Missile launch, Convergence history,

Figure 6.11: Missile launch. Composite mesh at # = 022 H/U. (Left) Bottom rvight corner of missile,
(Right) Submaring corner.

Figure 6.12 presents the velocity vectors obtained at different time steps. They show the
development of the vortices created by the suction of air from both sides of the missile,

Figures 6.13 and 6.14 compare the results of the present simulation to that of Foleh [121] at
different time stops. The fivst figure shows the streamlines while the next figure shows the pressure,
We notice that both methods give very similar profiles,
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Figure 6,12: Missile launch, Velocity vectors, From top to bottom and left to right: ¢ = 0.22 H/U,
L= 033 H/U, ¢ = 0,44 N{U, to= 0565 M/t = 0.60 H’/U, b=09TH/U, t =088 /U, { =099 HJU.
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Figure 6.13: Misgile launch. Streamlines. (Left) Presont simulation, (Right) Foleh's results [121]. From
top to bottom, &= 022 H/U ¢ = 055 HfU, L= 088 H/U, | = 1.60 H/U,
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Flgure 6,14: Missile launch, Pressure, (Left) Present simulation, (Right) Foleh’s vesults [121], From top
to bottom, ¢ = 022 H/U, t = 055 H/U, t = 0.88 HJU  t = 165 H/U.
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6.4 Centrifugal fan

We propose to solve a twosdimensional section of a domestic centrifugal fan, The geometry as
wall ag the data are based on the CIK-40 fan of Soler-i-Palan, shown in Figure 6.15 (Left). The

Figure 6.156: Cl-40 fan. (Left) Pictares of the fan. (Right) Two dimensional section.

dimensions of the lmpeller and the easing of the fan ave

iy = Bmm, , fa = 40mm, Ky = 31 mm,
Li =126 mm, L; = B8mm, Ly = 50mm, L; =%, Ly = 106mm, Ly = 125 mm,

The role of & rotodynamie deviee i to transtorm the mechanical energy of its driving foree into
mechanical energy available for the fuid which traverses the votor, This energy is distributed into
two components: the static pressure and the kinetic energy. According to the user requirement,
the function of the device will be to provide high static pressuve rise or high volume flow rate,
The reasons for increasing the pressure of fluid are various and are proper to pumps. Fans, as
well as some types of pumps, can rather provide a high volume fow rate, The fan under study
was designed for domestic purpose and works as an extractor to eliminate smokes, bad smells and
preases rom kitchens, The high flow rate together with the high pressure it delivers enables 1o
expel contaminated aiv outside, even if the fan is connected to long and narrow conducts, where
pressure is lost by friction.

In brief, contrifugal fans operate as follows. The fluld is forced outward in the radial direction,
by way of a radial cascade of vanes. It is therefore aceelerated by the centrifugal foree and attains
its maximmun velocity at the impeller vane tips. Note that the potential energy furnished by the
rotation is available for the mechanical energy, Le. both pressure and Kinetio enorgics. When the
fluid leaves the tips of the vanes, it moves tangentially along the wallg of the casing. Due to the
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increasing cross-sectional avea of the casing along the flow passage, the fluid undergoes an expan-
sion as it Hows towards the outlet. This expansion is accompanied by a reduction of its velocity
anel an inerense of its static pressure. This faet is confirmed by the present simuilation, and in
particular in Figure 6.19 (Left) which show the pressure contours obtained at different time steps.
For information on fans and pumps see e.g, [144, 145, 146],

Now let us study how we ean simulate the How through our centrifugal fan. Fana usually operate
ab i fixed rotation speed caleulated to furnish optimally a given pressure (at low cost), so that the
alr has suflicient energy 1o flow through the conducts of the set up, According to this pressure rise,
the fan delivers a given flow rate. The eurve which expresses the relation between the pressure
rise and mass How rate is called the eharacteristic eurve of the fan. The characteristic curve of the
CR=40 15 shown in Figure 6,16, In open conditions, the fan delivers maximmm flow rate whereas
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Figure 8,106: ClK-40 fan, Characteristic cnrve (Soler @ Palau).

when pressure is lost due to the presence of conducts for example, the flow rate diminishes. Now
in the context of this simulation, nstead of imposing the pressuve both ot the inlet and outlet, we
impose the mass flow vate at the inflow, through the specification of the veloeity, and zero traction
at the outlow, i.e. zero pressure if the How is fully developed. The inflow velocity U s imposed
normal to the cireular inlet of radiug Ry, as sketehed in Figure 6,15 (Right). A similar approach
was used in [136] for the simulation of the rolor-stator inferactions in a centrifugal pump. The
Reynolds number baged on the inflow velocity |U| = 1.97 = 104 mm /s and the length of the inlet
0 = 2Ry = 200106 min is

u|D

Re = I— = 2.65 % 10°,
I

# being the kinematic viscosity of air, # = 15mm? /s This Reyoolds number corresponeds ape
proximately to n flow rate loeated at the middle of the eharacteristic curve of the fan. In this
example, the rotation is 2350 revolution per minute (rpan.)  which corresponds to an angular
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apeed |w| = 246,00 rad /s, and an Eckman number

— __..!l.._........ | I" T
Swl(D)? 7.54 = 1077,

Elk

Due to the high Reynolds number, the flow is solved using the Spalart-Allmaras turbulence
model together with the wall function approach, The inflow turbulence viscosity is . = 100w
and the distance from the computational wall to the real wall is set to 5/ = 2.1% for the iuner
subdomain and to 5/ D = 0.6% for the outer subdomain. Later on, the results will show that this
is o reasonable choice,

The impeller domain is meshed with 12782 P1/P1 elements and the casing subdomain is meshed
with 7345 P1/P1 elements, Figures 6,18 (Left) show a zoom of the composite mesh near the casing
corner at some time steps.

As for the domain decomposition problem, we assign the impeller 8 Neumann transmission
condition while the casing interface is of Dirichlet type. Choosing an overlapping of one element
layer and using the least-square smoothing interpolation to compute the Neumann transmission
condition, we expect the method to be of second order in space. An overlapping of one-element
layer enables the method to be of second order in space. The time integration is earried out by the
buckward Euler scheme, with 81 = 2.32 = 10715 50 that we impose approximately 10 times steps
between two blade passings. We set both the relaxation parameters of the Divichlet and Neumann
conditions to 0.3 and perform 20 iterations per time step, As initial conditions, the inner subdomain
is solved with zero traction and zevo eddy-viscosity flux, Then the outer subdomain is caleulated
by interpolating Divichlet conditions from the solution on the imner subdomain, Each problem is
solved using a direct solver: the total time used by the Master is 3.7 % of the total CPU time used
to solve this problem, Figure 6.17 (Top) (Left) shows the good convergence of the problemn.

Before presenting any result, let us check that the y* along the walls has reasonable values.
Figures 6.17 (Mid,) (Left) and (Mid.) (Right) show the distribution of y* along one blade of the
impeller and along the casing wall, obtained at time ¢ = 144 = 10?5, i.0. once the “periodic”
rogime is achieved.

Figure 6.17 (Top) (Right) gives the variation of the pressure coeflicient e, along the casing wall,
al time £ = 1,44 % 1077 5 where

e m il
" Pl

The starting point of the curve ig the casing corner, while the upper left part of the curve is
the outflow where the pressure is “weakly” zero. The fgure shows the static pressure exXpansion
undergone by the fuid as it Aows along the casing wall to the outlef.

As an indication, we compare the total pressure rise (called fan total pressure) obtained by
the simulation to the pressure rise indicated by the characteristic curve, This eomparison is
only qualitative as we are only simulating a two-dimensional section of the fan with approximate
geometry and data, By definition, the pressure rvise P of a fan i3 the difference of total pressures
Pron between the outflow and inflow

P = paalouiitow = Protal,inflow
where the total pressure pu i defined as

Piotal = Patasic + Pdynamie:
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Figure 6,17: CK-10 fan, (Top) (Lefi) Convergence history., (Top) (Right) Pressure along casing wall,
(Mid.) (Left) 4 along one blade, (Mid.) (Right) »* along the casing wall, (Bat.) (Left) Velocity at P
(Bot.) (Right) Power spectrum of the velocity at 1%,

As when the flow discharges in the atmosphere, the static pressure is the atmospheric pressure and
the dynamic pressure is zevo, the pressure rise is given by

P = P.llllll.l.ﬂ!’ll“ll'lt‘ = Protal,inflow

The present caleulation gives a total pressure rise between the inlet and outlet of approximately
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100 g/m 8. In terms of water columns, this gives

100
P= —— = 7.2mm we,

Pwarorff

where g is the gravitational acceleration and Pwnrer 18 the density of water, The experimental results
shown in Figure 6,16 give a pressure rvise of approximately 19 mm w.e.. It should be pointed ouf
that this result is only qualitative for two main reasons, Firstly, the geometry as well as the data
used in this simulation ave only based on the real geometry of the fan, Secondly, we must be aware
of the fact that the very coarse mesh used in the simulation makes the results overdiffusive, and
therefore the pressure gradient ig likely to be underestimated, We can only conelude that the order
of magnitude 15 pood!

Figure 6.17 (Bot.) (Left) shows the velocity obtained at a point P located near the easing,
corner, The vertical dotted lines stand for each complete rotation of the impeller. We observe that
the periodic regime is obtained after two rotations. Figure 6.17 (Bot.) (Right) shows the power
spectrum obtained from the velocity at P. Two main frequencies ave obtained: the blade passing
frequency and the complete rotation frequency.

Figures 6.18 and 6.19 give some results obtained at different times steps: the velocity vectors
near the corner of the casing, the pressure contours and the eddy-viscosity contours, Finally, Figure
6.20 presents the vorticity contours, We observe that when the vorticity contours almost mimic
the eddy-viscosity: in fact, vorticity is the essence of eddy-viscosity production.
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Figura 6,18: CK-40 fan. (Loft) Composite mesh. (Right) Velocity vectors near casing corner. From top
to bottom: £ =575 % 107 %8, £ =5.82 % 10778,/ = 5,88 x 10778, { = 5,06 = 1077 &,
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Figure 6,19 Cl-40 fan. (Left) Presure contours, (Right) Bddy-viscosity contours, From top to bottom:
=670 % 107 t =682 %1078, t=588 %107 %s, t =005 %1071,
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Figure 0.20: CK-10 fan. Vorticity. From top to bottom: § = 5.75 x 10728, t = 582 x 10778 L =
5.88 % 10778, = 5.05 x 10775,
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6.5 Stirred tank

In this example, we apply the Divichlet/Nenmann method to the solution of a stirred tank. Stirred
tanks are frequently used in industrial processes for the preparation of plastic, rubber, pharma-
ceutical products, food ete, They can act simply as a blending device of miscible liquids, as for
example for the blending of petroleum produets, but can also be required to produce ehemical re-
actions; in this eage, the main task of the chemical reactor is to provide sufficlent blending #o that
all the reagents meet and the reaction can oceur. It is therefore important (o know and study the
thermodynamic and kinetic data of the chemical process as well as the mass and thermodynamic
transfers, Whether the tank is requived for blending only or for providing a suitable mediun for
chemicil reactions, the hydrodynamie charaeteristic of the low is of primary importance. This is
what we propose Lo study in this example,

The stivred tank we consider s made of an axial fow impeller and four wall-welded baftles in
the tank, The impeller has four pitched blades at a 45% angle designed to draw in the liguid from
above and direct it downwards to the botiom of the tank, ag shown in Figure 6,21 (Left), Actually,
the How is discharged both axially and radially depending on the angle and Reynolds number:
for exanmple at low Reynolds numbers the flow is principally radial, as will show the simulations.
They are in general very efficient for blending miscible materials and solids suspension,  As an
example of other type of impellers, let us mention the radial flow impellers, which work as follows:
they discharge the fow radially before the fluid leaves the blade tips upwards and downwards in
similar proportions, ag shown in Figure 6.21 (Right). Radial flow impellers, sueh as the Rushton
turbine, are loss efficient for mixing but generate more shear at the blade tips and are therefore
guitable for gas-liguid applications, For example, they are used in the generation of bioproducts
via gasification, through bubble breale up in the region of high shear.

AA A
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Figure 6.21: Stivred tanle (Left) Axial low impeller, (Right) Radial How impellor.

Ouly laminar simulations are presented here. Contrary to usual aerodynamic and hydraulic
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applications, the laminar state in stirred tank reactors is not exceptional. In fact, the Ly pical
fluid in play may be highly viscous (like the case of polymerization reactors), and, in addition,
high characteristic shears of turbulent flows may not be desivable when dealing with sensitive
materials, The impeller we study here is suitable for achieving high cirenlation rates in low o
medinm viscosity lieuids.

In order 1o increase the vertical mixing, break up the civeular flow around the tank, and possibly
to generate turbulence more rapidly, four baflles are disposed around the tank. The baffles are
welded to the wall althongh off-set baffles may be preferable to avoid stagnation zones in the
cormers,

The geometry is based on the stivred tank described in [135], and is shown in Figure 6.22. The
tank has a diameter 7 = 0.3 m, while the inpeller diameter is D = 7'/3. The blades have a width
W = D/5, and the impeller to bottom clearance is € = T'/3. The four baffles are £ = 7/12 wide.
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Figure 6.22: Stiveed tank, Geometry.

The non-inertial subdomain i3 attached to the impeller and is assigned a Neumann transinission
condition. The fized subdomain is the tank and is assigned a Dirichlet transmission condition. The
impeller subdomain is meshed with 93332 P1/P1 elements and the tank subdomain with 23135
["1/P1 elements; they are shown in Figure 6.23.

The impeller rotational speed 18 N = 225r.pan. which corresponds to an angular velocity
lw| = 23.6rad/s. The agitator tip speed is U = |w|D/2 = xDN = L18m/s, providing a low
agitation, The Reynolds number is defined as:

2

Re = ND = i,

while according to this choice the Eckman number is simply Ek = 1/2Re. Each problem is solved
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nsing an iterative solver (GMRES with diagonal preconditioning): the total time nsed by the
Master i 3.3 % of the total CPU time used to solve this problem.

Figure 6.28: Stirred tank, Composite mesh, (Left) Overwhole view. (Top) (Right) Top of the tank.
{Boi.) (IRight) lmpeller and baffle,

Figure 6.24 (Left) shows the convergence of the DD method in the first steps of the simulation.
Due to the high viscosity of the fluid, the flow becomes very rapldly perlodie. Figure 6.24 (Right)
presents the power spectrum of the w-viscous foree exerted on the impeller. We recognize the
rotation frequency at 3.75 Hz, but we cannot distinguish any other important requency,

Figure 6.25 shows the pressure contours on the impeller blades. The contours are smooth and
confirme the good stabilization of the numerical scheme. On the left-hand side blade the pressure
i low: this is the suetion face which draws the finid from above. Figure 6.28 (Top) (Left) shows
the pressure contours on a vertical cut outlining the low pressure above the impeller and high
pressure below the impeller, On the right hand side blade, the pressure is higher and pushed the
fow downwards,

Figure 6,26 shows a cut Just below the impeller, The small stains just below the blades indieate
downward flow, while the bigger stains indicate upward flow. A wider pevspective is given by Figure
G.28 (Bot.) (Right).

Figure 6.27 shows some iso-surfaces of the vertieal velocity, around the impeller. The dark
contours represent negative values while the light contours represent upward movement of the
fluid, The fAuid vertical swirl is confirmed by Figure 6.28 (Top) (Right) which shows a vertical cut
of the veloeity vectora, Figure 6.28 (Bot.) (Left) shows the instantaneous streamlines, winding
around the tauk from top to bottom and bhottom o top.
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Figura 6.24: Stivred tank. (Left) Convergence history. (Right) Power spectrum of the w-viscous foree,

Figure 6.25: Stirred tank, Pressure on impeller. Left-hand blade: low pressuce. Right-hand blade: high

prossure.
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Figure 6.26; Stirred tank, Horizontal cut: vertical velocity,
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rlaces,

Figure 6.27: Stired tank. Vertical velocity iso-s0
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Figure 6,28: Stivred tank. (Top) (Left) Pressure. (Top) (Right) Velocity vectors on vertical cut. (Bot.)
(Left) Streamlines, (Bot.) (Right) Vertieal velocity.
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6.6 Axial fan

We solve an axial fan of the COMPACT series of Soler i Palan, namely the HCFT /4-630/H axial
fun, abbreviated here as €630, This fan operades at 1420 vopon. and in open conditions worls
with oo msxinnnn How rate of lTllﬁ{liu:tﬂl. The geometry ag well ag the data ave based on the real
peometry of this fan and are shown in Figure 6.29 (Lelt). The fan consists of a rotor composed
of seven blades and a stator composed of height struts, The dimensions of the bopeller and the

R

L

Ly La

Figure 0.28: C-630 fan. (Left) Pleture of the fan, (Right) Geometry,
casing of the fan are

iy = 92, , Ay = 310mm, Ry =7 mm,

Ly = 250mm, Ly = 100mm, D = 27 mm, ' = 82 mm,

In Section G4 we revised briefly how centvifugal fans operate: the impellers play the role of
vanes, puiding the flow outwards and taking advantage of the neceleration due to the centrifugal
foree; in the case of axinl-low machines, the impellers modify the angular momentum of the fuid
s enerpy exchange. Axial fangs work as follows: the Huid ia first set in motion by the displacements
of the blades. The eascade of blades forces the Huid to follow the inclined path formed by two
successive blades, resulting in a net change of angular momentum,  Therefore, the fuid on the
upper surface of a blade will have to accolerato with respect to the fuid on the lower surface,
forming the usual suction/pressure padr of surfaces of an aivfoll. As in the case of centrifugal fans,
the machine provides o net low rate ag well as an increase of the dlatie pressure.

The rotor i3 meshed with 41469 P1/P1 elements and the stator i meshed with 71138 P1/P]
elements. The boundary eomposite mesh 18 shown in Figure 6G.30 at its initial position.

The simulations are lnmioar, although the low s clearly tuebuleni. We do nob try to solve the
bowndary layer and impose a slip condition on the walls. We expect that the meshes are coarse
enough to damp any perturbating frequencies so that a “stable” solution can be obtained, Due
to the 1:1”“3;1'. mmber of degrees of freadom, the algebraie syatems are solved using the GMRES
iberative solver with diagonal preconditioner,



2 22 CHAPTEN B NUMBRICAL AFPLITATIONS

:
= = ‘z_ = &
=
st -5 =
Vi e :
i i — 2 =
.'- J-- -l---I ¥, e e
‘-l-. _-'-I
3 _:‘H jat
-
o
alf 7 5% z A
- £
A )
Sl Pl iy
Y b 4 a Y
i %
4 = - L kT
r CIA
¥t B »
A o o %,
L
" = -
: a
#
i 3 4
e =
A y = )
N
e : i = -
i+ ]
- 1
! . & 3
i i
b < k
r o} -
- ) .
. 2 Ay
i 4
g i A
E
L i
5 i d
-
4 u
i
Cl
I 0
=
-
i
_.
d}f
i =
= =
|

Figure 6.30: C-630 fan. Composite mesh,

The DD problem is solved using the D/N method with less than one-element layer. The stresses
computed at the Neumann boundary are of first order in space (the same approach was used in
[147] for the simulation of an axial turbine). The time integration is carried out using the backward
Fuler scheme with a time step of 6 = 6 x 107" 5: this corresponds to approximately 10 time steps
hetween two blade passings. As an initial condition, the rotor s solved using zero traction at the
exit. The initial solution of the stator is obtained by solving some few steady iterations using
as Diriehlet inflow conditions the velocity obtained from the steady state of the stator plus the
rotational component. The initial velocity solution is shown in Figure G.31.

Figure 6.32 presents the velocity module and pressure contours on three planes, once the peri-
odie regime is obtained. The variables are perfectly continuous across the interface,

Fignre 6.33 shows the pressure contours on both faces of the blades. The left-hand side figure
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Figure G.31: CG30 Fan. Tnitial solution,

i5 the pressure [ace, located downstream, while the suction [ace is shown in the right-hand side
figure,

Figures 6.34 (Top) and (Bot,) show the velocity module and pressure contours on the bound-
aries of the fang remember that a glip condition ig imposed on the walls, and therefore the veloelty
Is always tangent to it

Figures 6.35 and 6.36 sliow the veloeity vectors at some time steps, when a blade passes by a
pair of struts,

Figure 6.37 shows some streamlines, They show how the fuid threads between the struts of
the stator,
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it I'L

Figure 6,33: C-630 fan. Pressure contours, (Left) Pressure face. (Right) Suction Thee,
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Figure 8.34: C-630 fain (Top) Velocity moduls, (Bot.) Pressure,
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Figure 6.35: C-630 fan. Velocity vectors,
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Figure 6.86: C-630 fan. Velocity vectors,
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]

Figure 6.37: C-630 fan. Streamlines,



Conclusion

We have proposed and studied overlapping mived iteration-by-subdomain domain decomposition
methods, These methods are extensions of some existing DD methods to the case of overlapping
subdomains; the transmission conditions on the interfaces are mixed, ie. they are of different
type on ench side of the interfaces; the solutions on the subdomains are coupled iteratively until
convergence g achieved,

The study of a one-dimensional sealar advection-diffusion-reaction equation has enabled us 1o
foresce the possible benefits of using overlapping subdomaing together with a mixed DD method.
We also discussed the importance of the relaxation parameter to gain control on the stability of
the DD algorithm, The most important result is that even in the hyperbolie limit, Dirichlet and
Neumann (or Robin) conditions ean be placed indifferently with respect to the dirvection of the
advection in order to achieve convergence, We coneluded that the overlap renders mixed methods
more robust,

Then we studied an overlapping Dirichlet/Robin method within a variational framework for
a two-gubdomain partition. All the analysis was based on an equivalent set of equations for the
interface unknowns, involving Steklov-Poincaré like operators. We showed the convergence of the
relaxed sequential algorithm, We also considerad the posaibility of applying the Dirichlet /Nenmann
method to overlapping subdomains. Using the finite element approximation, we showed that the
overlapping methods lead to an algebraie preconditioned Richardson procedure for the interface
unknowns. We outlined the relation between the proposed algorithin and the classieal Schwarz and
mixed methods on disjoint subdomains, Both overlapping DD methods wers tested through the
solution of three numerical examples, [t is well known that reflecting fransmission conditions are
undesirable in the advection dominated range as they destabilize the iterative algorithm. However,
when uged on overlapping subdomains, we showed that mixed methods diffuse much more rapidly
the error and o considerable gain in convergence can be obtained even with a small geometric
averlap, In particular, a notable improvement was obtalned using overlapping subdomaing when
i vortex passes by the interfaces,

In the view of a practical implementation for the solution of the Navier-Stokes equations, wo
built up a Master/Slave algorithmn to couple efficiently the numerieal solution obtained on dilferent
subdomains. A master code is in charge of controlling the iterative process and performing all the
necessary operations to leave the slaves unworried. Therefore, very few modifications of the original
finite element solver are required. We then addressed the importance of the way the Neumann
data s ealenlated: we identified the need for using the solution from the underlying mesh on
both gides of the Newmani type interface, This is not possible when using disjoint subdomaing as
the solution is only available on one side. From this remark, we derived a second order scheme
in space based on a least-square smoothing of the derivatives, The resulting scheme requires af
least a one-element overlap between the subdomaing, We also discussed some conservation aspects
of the interpolation and proposed two conservative algorithms. The interface constraint of mass

229
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conservation appeared 1o be indispensable when dealing with confined subdomains. Afterwards,
we introduced o Chimera strategy to treat complex geometries. Through an example, we showed
than the Dirichlet/Neumann method is more accurate than the Dirichlet/Dirichlet method. Then
we applied the iteration-by-subdomain algorithm to the solution of Hows around moving objects
by deriving tensorial transformations and an aceurate time integration algorithm.

Finally, the last chapter presented some examples of applications of the method and showed
the robustuess of the algorithm.

A lot of work remains to be done on overlapping mixed methods, Fiest of all, we only presented
a one-dimenstonal analytical example ng o first test for the new methods. Even though this example
provided a good insight on what can happen in multisdimensional problems, the study of a two-
dimensional example could reaveal much more on the characteristics of the methods,

When proving the convergence of the iterative Dirichlet/Robin method, we did not try to derive
sharp estimates. In addition, we did not investigate the role of the precise role of the overlap. A
closer look at the proof of convergence is therefore needed.

Also, we have only dealt with Dirichlet/Robin and Divichlet/Neumann couplings. The prosent
method ean also be applied to the Robin/Robin method which offers much more flexibility in the
choice of the coefficients in play in the transmission conditions,

Althotgh we carried out some algebraic applications of the methods, the final goal of this
work was the development of an iteration-hy-subdomain algorithm based on a Chimera method,
[t would be intertesting to derive a multidomain formulation for the view of parallelization and
compare its performance to that of other existing methods.

Finally but not of least importance, a theoretical study on the application of the overlapping
Dirichlet/Neumann(Robin) to the solution of the stationary Stokes and Navier-Stokes equitions is
to be done, as well as tlie extension to the case of transient. Hows.
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