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An efficient and general approach for implementing

thermodynamic phase-equilibria information in geophysical and

geodynamic studies

Juan Carlos Afonso,1 Sergio Zlotnik,2, Pedro Diez,2

Abstract. We present a flexible, general and efficient approach for implementing ther-
modynamic phase equilibria information (in the form of sets of physical parameters) into
geophysical and geodynamic studies. The approach is based on multi-dimensional decom-
position methods, which transform the original multi-dimensional discrete information
into a separated representation that contains significantly less terms, thus drastically re-
ducing the amount of information to be stored in memory during a numerical simula-
tion or geophysical inversion. Accordingly, the amount and resolution of the thermody-
namic information that can be used in a simulation or inversion increases substantially.
In addition, the method is independent of the actual software used to obtain the pri-
mary thermodynamic information, and therefore it can be used in conjunction with any
thermodynamic modeling program and/or database. Also, the errors associated with the
decomposition procedure are readily controlled by the user, depending on her/his actual
needs (e.g. preliminary runs vs full resolution runs). We illustrate the benefits, gener-
ality and applicability of our approach with several examples of practical interest for both
geodynamic modeling and geophysical inversion/modeling. Our results demonstrate that
the proposed method is a competitive and attractive candidate for implementing ther-
modynamic constraints into a broad range of geophysical and geodynamic studies. MAT-
LAB implementations of the method and examples can be downloaded from [link].

1. Introduction

Phase equilibria calculations of crustal and mantle rocks
represent one of the best sources of physical parameters
(e.g. bulk density, heat capacity, elastic moduli, ther-
mal expansion, etc) needed in both geophysical inversions
and geodynamic simulations [e.g. Sobolev and Babeyko,
1994; 2005; Connolly and Kerrick, 2002; Gerya et al.,
2001; 2006; Khan et al., 2006; 2011; Kuskov and Kon-
rod, 2006; Stixrude and Lithgow-Bertelloni, 2005; Yam-
ato et al., 2007; Xu et al., 2008; Herbert et al.; 2009;
Cammarano et al., 2009; Tirone et al., 2009; Nakagawa et
al., 2010; Afonso and Zlotnik, 2011; Afonso et al., 2008;
2013a,b; Davies et al., 2012; Kuskov et al., 2014, among
many others]. Arguably, the main advantage of such meth-
ods over other common approaches is that they provide com-
plete sets of thermodynamically- and internally-consistent
physical parameters, therefore minimizing inconsistencies
related to the use of independent mineral physics parame-
ters “hand-picked” by non-specialists and obtained by differ-
ent methods/laboratories. Parameters from thermodynamic
phase equilibria calculations also explicitly consider effects
of modal composition (i.e. mineral volume fractions) and
mineral composition (by treating minerals as solid-solutions)
as a function of pressure, temperature and composition (P-
T-C), complex solid-solid mineral phase transitions (and
their associated entropy and latent heat changes), hydra-
tion effects/state, and in some cases, melting. Due to the
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abovementioned advantages, there has been an increasing
interest in the use of thermodynamic/phase equilibria infor-
mation within the geophysical and geodynamic community
(see references above).

From the practical point of view, the actual implemen-
tation of such methods into geodynamic simulations or geo-
physical inversions is of critical importance. Traditionally,
there has been two major approaches. The most popular
one is the use of pre-computed property tables for specific
lithologies (i.e. bulk compositions) discretized in pressure
and temperature space. A third dimension (e.g. water con-
tent) can also be included to obtain a discretized cube of
T-P-H2O [e.g. Rupke et al., 2004; Nikolaeva et al., 2009;
Afonso and Zlotnik, 2011]. Thus, when the size and num-
ber of tables is relatively small, the physical parameters of
interest can be stored in memory as functions of e.g. P-T
and retrieved (via an appropriate search algorithm) very ef-
ficiently during the course of the simulation/inversion. This
approach is commonly referred to as the “static approach”,
and has been widely used in both geophysical and geody-
namic studies [e.g. Petrini et al., 2001; Gerya et al., 2001;
Rupke et al., 2004; Yamato et al., 2007; Cammarano et al.,
2009; 2011; Nakagawa et al., 2010; Afonso and Zlotnik, 2011;
Vozar et al., 2014]. However, the practicality of the static
approach is extremely dependent on the number of tables,
the dimensions of interest, and the discretization of these di-
mensions (i.e. number of nodes per dimension). As such, it
is particularly sensitive to the so-called “curse of dimension-
ality”, as the number of parameters to be stored in memory
grow exponentially with dimension. When the number of
materials or lithologies is relatively large, and for any useful
discretization step of the individual axes (e.g. ∆T, ∆P, ∆F,
etc), the static approach can quickly become impractical.

Alternatively, one could solve the thermodynamic equilib-
rium problem “on the fly”, thus circumventing the need for
discretized pre-computed tables; the equilibrium assemblage
and associated physical parameters are computed for the ex-
act T-P-C conditions as needed by the simulation/inversion
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[e.g. Khan et al., 2006; Tirone et al., 2009; Herbert et
al., 2009; Afonso et al., 2013a;b; Duesteroheft et al., 2014].
Some of the most important advantages of this implemen-
tation, commonly known as the “dynamic” approach, are
that it is free from P-T-C discretization errors, it allows
for a more accurate tracking/modelling of chemical reac-
tions, phase changes, and partitioning of chemical species
(e.g. during partial melting and reactive flow) in geody-
namic simulations, and it does not require a priori esti-
mates of the P-T-C conditions and relevant parameters be-
fore the simulation/inversion. The tradeoff is that dynamic
implementations are more computationally expensive than
static ones; when the number of computations is large, as in
high-resolution large-scale thermo-mechanical simulations of
mantle convection, this approach can become prohibitively
expensive. Also, the presence of first-order phase transfor-
mations can cause problems due to numerical singularities
arising during the minimization [Connolly, 2009].

Another example of practical importance where both
static and dynamic approaches are desirable is geophysi-
cal inversions for the physical state of the lithosphere and
mantle [e.g. Khan et al., 2006; 2011; Kuskov and Konrod,
2006; Cammarano et al., 2009; 2011; Afonso et al., 2013a,b;
Kuskov et al., 2014; Shan et al., 2014; Kaban et al., 2014].
In particular, the method of Afonso et al., [2013a,b] solves
a complete energy minimization problem for each mantle
node (characterized by a specific T-P-C) of all Earth models
tested during the probabilistic inversion (typically of the or-
der of 105-108). However, since such probabilistic approach
requires a thorough exploration of the compositional space
and a large number of energy minimization problems, the
compositional space has been limited to simple peridotitic
compositions within the mantle, leaving the more compli-
cated and heterogeneous crustal component as a parame-
terized model; this seriously limits the application of prob-
abilistic inversions for the thermochemical structure of the
crust.

The increasing interest in implementing thermodynamic
phase equilibria information into geophysical and geody-
namic problems prompts the following questions: how can a
non-specialist easily implement thermodynamic phase equi-
libria information into her/his geophysical or geodynamic
models? what is the most general and efficient way to do it?
how can the user control the accuracy of the input thermo-
dynamic information? The first question has been recently
addressed by Zunino et al., [2011] and Duesterhoeft and de
Capitani [2013], who provided open-source tools that facili-
tates the implementation of static and dynamic thermody-
namic information, respectively. Unfortunately, both tools
are built on top of specific energy minimization software
and databases, thus somewhat limiting their generality and
reach.

In this contribution we address all three questions, with
particular emphasis on the last two and focusing on the
generality, efficiency, and quality control of the proposed
method. By generality we mean that the thermodynamic
information can be obtained from any thermodynamic mod-
elling program and/or database; i.e. users have total free-
dom to use their program/database of choice. By efficiency
we mean that the method/algorithm must allow the user to
be able to store and retrieve the relevant thermodynamic
information (e.g. density, specific heat, thermal expansion,
etc) very efficiently during the simulation/inversion. Finally,
quality control refers to the ability to control, efficiently and
rigourously, the accuracy or quality of the thermodynamic
information needed for the inversion/simulation. This can
become important during the preliminary or exploratory
stages of a study, where the user may want to compromise
accuracy in favour of rapid solutions. We present a gen-
eral, efficient and easy-to-use algorithm that can be used
in both dynamic and static approaches and that overcomes

the limitations of previously proposed adds-on tools (see
next section). The algorithm is based on a generalization
of the Proper Orthogonal Decomposition method to higher
dimensions. Decomposition methods have been extensively
used in many different scientific fields. Examples include
chemometrics [Henrion et al., 1993, Andersson and Henrion,
1999], linear algebra and numerical analysis [De Lathauwer
et al.,2000, Ibraghimov, 2002] and neurosciences [Beckmann
and Smith, 2005]. This list is by no means exhaustive.
Decomposition techniques, however, have not been yet ex-
ploited in the geoscience community.

2. Method

2.1. Separated representation of functions

The data produced by a thermodynamic modeling pro-
gram is usually output and/or stored as high-dimensional
tables containing the properties of interest (e.g. density,
heat capacity, etc) as functions of e.g. pressure, tempera-
ture, water content, melt depletion degree, composition, etc.
The large dimensionality of these tables becomes a problem
because the number of coefficients to be stored grow expo-
nentially with the number of dimensions. Therefore, de-
scribing a function in D dimensions (e.g. density depending
on T, P, etc), requires nfull =

∏D
d=1 nd coefficients, where

nd is the number of points/nodes used in the discretization
of the d-th dimension. In practice, one solution to avoid
the exponential growth of coefficients is the use of separable
representations. A function is said to be separable if it has
the form,

f(x1, x2, ..., xD) =

M∑
m=1

Fm
1 (x1)Fm

2 (x2)...Fm
D (xD) =

M∑
m=1

D∏
d=1

Fm
d (xd),

(1)
that is, f is written as a sum of M terms (or modes), and
each term is a product of functions depending on one dimen-
sion only. The advantage of this form is that the number
of coefficients to be stored is now linear with the number of
dimensions,

nsep = M

D∑
d=1

nd. (2)

For example, if n1 = n2 = n3 = n4 = 50, then nfull =
504 = 6250000 while nsep = 200M . In most cases, M is a
small number (in all the examples presented in this paper
M . 100), therefore, the compression of information in the
separated representation is extremely high (see examples in
Section 3).

The same idea of separability can be extended from mul-
tidimensional functions to multidimensional tensors. A sep-
arable tensor S has the form

S =

M∑
m=1

am ⊗ bm ⊗ cm. (3)

where am, bm and cm are vectors and ⊗ denotes the stan-
dard tensor product. This separation is illustrated for a 3D
case in Figure 1. Note that in most cases, am, bm, cm can
be identified as the discretized versions of the functions Fm

1 ,
Fm
2 and Fm

3 in equation (1).
Many procedures have been proposed to obtain separated

approximations of known functions (continuum space) or
tensors (discrete space, e.g. tables). If the number of dimen-
sions is two, the separated approximation can be computed
using a Singular Value Decomposition (SVD) or any other
related technique. For this case, SVD is said to be optimal in
the sense that the separated representation is such that the
number of terms required to obtain a given accuracy is lower
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than for any other decomposition [Eckart and Young , 1936].
Unfortunately, this property is lost for higher dimensions
[Kolda, 2001]. Consequently, a number of higher-order tech-
niques have been proposed, each with particular advantages
and limitations. Some examples are the Higher-Order SVD
[De Lathauwer et al., 2000], the CANDECOMP/PARAFAC
[Carroll and Chang , 1970; Harshman, 1970] and the Tucker
decomposition [Tucker , 1966]. An overview of these tech-
niques can be found in Kolda and Bader [2009].

For the present purposes, we adopt a version of the
CANDECOMP/PARAFAC method based on an alternat-
ing linear least-squares algorithm (hereafter, CP ALS). This
method is one of the simplest to implement and typically
outperforms other methods in obtaining separated represen-
tations of thermodynamic functions (see Section 3). More-
over, it is many orders of magnitude faster than the ac-
tual generation of the primary thermodynamic data, and
therefore it does not add any significant extra computational
time. In the next section, we briefly describe the basic idea
of the CP ALS algorithm. To simplify the description, we
use a three-dimensional table (a cube) as default. The same
ideas can be easily extended to any number of dimensions.

2.2. CP ALS algorithm

Relevant notations and definitions related to this section
can be found in Appendix A. The general problem to be
solved is stated as follows: The full third order (D = 3)
real-valued tensor T has dimensions I × J ×K. This ten-
sorial space is denoted as RI×J×K , where I = n1, J = n2,
K = n3. In the present context, this tensor would represent
e.g. a table containing density as a function of P-T-H2O.

Our goal is to find a separable approximation S of the
tensor T . This representation has the form described in Eq.
(3). Therefore, we need to determine the vectors am, bm

and cm that compose S. The problem to be solved, then, is
find S such that,

min
S
||T − S||. (4)

Arranging the vectors am as columns, a factor matrix
A = [a1 a2 a3 . . .aM ] is defined. Matrices B and C are de-
fined similarly.

Problem (4) is nonlinear because the form of the sepa-
rated function imposes a product of the unknown vectors.
The CP ALS algorithm uses an alternating direction scheme
to deal with this nonlinearity. First, it fixes B and C and
solves for A. Then, it fixes A and C and solves for B. Fi-
nally, it fixes A and B and solves for C. These steps are
repeated until convergence is achieved. Note that each of
these steps only involves solving a linear least-squares prob-
lem. At every step, the CP ALS method finds an approx-
imation for all vectors corresponding to one dimension, i.e.
a first approximation for all am (the factor matrix A), then
for all bm (the factor matrix B), etc. This can be done very
efficiently by solving a linear system of size M ×M , where
M is the number of terms in the sum of S (Eq. 3).

In the standard implementation of the CP ALS algorithm,
each of the linear steps assumes that D -1 dimensions are
known. For example, the first problem reads: given the full
tensor T and the factor matrices B and C (related to the
separated form of S), find A such that

min
S
||T(1) − S(1)|| = min

S
||T(1) −A(C�B)>||. (5)

Here, T and S were replaced by their reshaped versions
along the dimension we are solving for, and then S(1) was
written in terms of its factor matrices using the Khatri-Rao
product (see Appendix A). Note that after the reshaping op-
eration, the norm in (5) became a standard Frobenius norm.
The optimal solution of (5) is given by

A = T(1)
[
(C�B)>

]+
. (6)

The Khatri-Rao product can be rewritten as [Kolda and
Bader , 2009],

A = T(1)(C�B)(C>C. ∗B>B)
−1

. (7)

which has the advantage of being a square M×M linear sys-
tem. The subsequent steps to find B and C are essentially
the same.

This ends the description of the basic version of the CP
ALS algorithm as proposed in Carroll and Chang [1970]
and Harshman [1970]. Improvements to the basic algorithm
have been proposed in the literature; relevant examples in
the context of chemometrics include Acar et al. [2011] and
Kang et al. [2015]. Moreover, open-source implementations
of CP ALS and variations of it are available in several com-
puter languages. Examples include the MATLAB Tensor
toolbox by Bader et al. [2015] and the FORTRAN Multi-
linear Engine [Paatero,, 1999]. Our particular implementa-
tion (included in this submission as supplementary mate-
rial) is written in MATLAB and tailored to facilitate the
incorporation of thermodynamic information from thermo-
dynamic modeling programs into existent inversion and/or
geodynamic codes.

One drawback of the CP ALS algorithm is the need to
choose the number of terms M for the separated representa-
tion before performing the actual decomposition. Since it is
difficult to estimate a priori the number of terms required
to obtain a predefined accuracy, in practice, several trials
with different values of M need to be preformed until an
appropriate value is found. An alternative is the algorithm
proposed in our previous work [Modesto et al., 2015], which
enriches the separated solution by sequentially adding terms
to the separated solution. In this way, the enrichment can
be stopped when a specific accuracy threshold is obtained
without the need of restarting the procedure for every value
of M . The trade-off of this approach is that it usually pro-
duces separated functions having more terms than the CP
ALS algorithm. Although the examples shown in this paper
have been computed with the CP ALS algorithm, we also
provide a MATLAB implementation of the enriched algo-
rithm.

3. Examples

In this section we present some illustrative examples to
highlight the advantages and drawbacks of the proposed
approach for implementing thermodynamic phase equilib-
ria information into geophysics/geodynamics problems. Al-
though these examples are representative of real applications
in geophysics and geodynamics, they are illustrative in na-
ture and should not be taken strictly as final products or
implementation recipes.

3.1. Example1: The P-T-H2O case

This case is typical of large-scale thermomechanical simu-
lations, where different lithologies are used to model distinct
lithospheric bodies and no reactions or diffusion between
these domains is allowed other than hydration/dehydration
reactions (e.g. Gerya et al., 2006; Yamato et al., 2007; Niko-
laeva et al., 2008; Hebert et al., 2009; Afonso and Zlotnik,
2011). As a practical example, we choose a peridotitic com-
position and discretize our P-T-H2O space as follows: 400
nodes for the P-axis in the range 0 < P < 15 GPa, 400
nodes for the T-axis in the range 273 < T < 2000 K, and 5
nodes for the water axis with constant contents of 0, 1, 2, 3,
and 4%. This discretization thus amounts to 8×105 values
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to be stored per parameter of interest (e.g. density, Cp,
coefficient of thermal expansion, etc).

We solve the energy minimization problem with the soft-
ware Perple X [Connolly, 2009] using the thermodynamic
database of Holland and Powell [2011]. We then post-
process this primary information with CP ALS to obtain a
compact representation of the results. The first row in Fig.
2 shows the density fields obtained from the minimization
problem as functions of P-T for all five cases with differ-
ent water contents. The second and third rows in Fig. 2
show, respectively, the same density fields given by the CP
ALS algorithm with 100 terms and the difference between
the two solutions. Figure 3 shows a comparison of the full
solution with different separated solutions using 10, 40 and
100 terms. One can see that even in the case with 40 terms,
it is difficult to perceive any difference between the full and
CP ALS results. The mean error associated with the low-
est resolution is < 0.14%, demonstrating that our separated
representation can reproduce the relevant information accu-
rately, even with a small number of terms. This mean error
becomes an order of magnitude smaller in the cases with 40
and 100 terms (Table 1). We also see that the rate of error
reduction (i.e. increase in the explained variance) is more
dramatic within the first 30-40 terms, and it becomes less
pronounced for higher terms.

The compression ratio achieved by the separated solution
can be defined as

CR = 100− SVsep

SVfull
× 100 (8)

where SVsep and SVfull are the stored values in memory
needed by the separated solution and those given by the full
table, respectively. We therefore see that the compression
ratio of the lowest resolution case is a staggering ∼ 99%
(Table 1). In other words, to reproduce the relevant infor-
mation (bulk density, in this case) with a mean error of ∼
0.14% within the entire P-T space, we only need to store ∼
1% of the original information (i.e. only 8050 coefficients).
Even in the case with 40 terms, the compression ratio is ∼
96% (Table 1).

As expected, the main sources of error are related to re-
gions with sharp discontinuities in the fields (e.g. major
phase transitions), as the decomposition algorithm tends to
smooth sharp gradients (Figs. 2, 4). We can partially allevi-
ate this problem by adding more terms (i.e. higher frequen-
cies). However, this prompts the question of how critical
and representative these errors really are. The location of
major phase transitions predicted by internally-consistent
databases are affected by uncertainties that, although diffi-
cult to estimate and rarely reported, should be in the range
of tens to hundreds of MPa and tens of ◦C [e.g. Chatterjee
et al., 1998]. The errors in the solutions from our algorithm
are directly associated to the impossibility of CP to repro-
duce the exact position and sharpness of the transition as
predicted by the database (Fig. 4). However, when we con-
sider the uncertainties associated with the actual prediction
of the phase transition, the computational error arising from
our algorithm becomes immaterial for all practical purposes.

3.2. Example 2: The F-P-T-H2O case

Another case of practical interest is the tracking of a par-
tial melting path for mantle rocks with different water con-
tents. This scenario may be relevant e.g. for the simulation
of mantle wedge dynamics [e.g. Sobolev and Babeyko, 2005;
Faccenda et al., 2008; Nikolaeva et al., 2009; Gerya, 2011;
Duesteroheft et al., 2014] and lithospheric mantle stability
[e.g. Hirth and Kohlstedt, 1996; Li et al., 2008; Wang et
al., 2014], where the thermophysical properties of the solid
residue (i.e. mantle rocks) changes continuously as melting
proceeds, therefore affecting the dynamic evolution of the

simulation. In terms of computing the necessary thermody-
namic phase equilibria information, we just need to add an
extra axis with the melt fraction F. Each value of F thus
corresponds to a specific solid residue composition given by
the chosen melting model. For illustration purposes, we use
the polybaric perfect-fractional melting model of Herzberg
[2004].

For this example, we use a discretization representative
of those used in large-scale geodynamic models [e.g. Nak-
agawa et al., 2010; Afonso and Zlotnik, 2011]. Pressure is
discretized with 501 nodes (∆P ∼ 180 MPa), temperature
with 151 nodes (∆T ∼ 8 ◦C), and water content with 5
nodes (∆H2O = 1%wt, as in the previous example). The
F-axis is discretized with 6 nodes with constant melt values
of 0, 1, 2, 3, 4 and 5% melt (i.e. 6 distinct solid residue
compositions). This gives a total of >1.89×106 individual
nodes for each physical parameter of interest.

Statistics for the 4D separated representation of bulk den-
sity are listed in Table 1. Including 50 terms in the separated
solution results in a maximum (local) error of 1.62% (again,
only at the locus of sharp phase transitions). The corre-
sponding mean error, however, is as low as 0.02%, indicating
that the separated representation is an excellent description
of the field. Note also that the compression achieved in this
case is > 98% (i.e. only 1.46% of the full table), significantly
higher than in the equivalent representation of the 3D case
described in the previous section (∼ 95% for 50 terms). This
is a typical trend in high-dimensional problems, where the
compression ratio becomes more substantial as the number
of dimensions increase.

Another important feature of the proposed method is
that the finer the discretization of the axes, the larger
the compression achieved by the separated representation.
For instance, although the use of a 6 node grid for melt
fraction (steps of 1%) is practical given common memory
requirements during large-scale thermomechanical simula-
tions, large interpolation errors are expected at midpoint
melt fraction values. The use of finer grids in pre-computed
tables, on the other hand, may become unfeasible if a sig-
nificant number of lithologies are to be used (and stored in
memory) in a simulation. The staggering compression pro-
vided by the separated representation, however, overcomes
this limitation and allows the use of much finer grids. To
illustrate this, let us rediscretize the F-P-T-H2O example
above, keeping the same discretization for P and T, but in-
creasing the discretization of F and H2O to 51 and 17 nodes,
respectively (i.e. ∆F = 0.005% and ∆H2O = 0.25%wt). The
full table now contains > 65.5× 106 coefficients. The sepa-
rated solution with 50 terms has an average error of 0.02%,
a maximum (localized) error of 1.88% and allows a massive
compression of 99.95% (only 0.05% of coefficients are stored
with respect with the full table). This compression reduces
the memory requirement to that of an equivalent full 4D
table with only ∼ 14 nodes per dimension. Such drastic re-
duction in memory requirements makes it possible to work
with much finer discretizations and thus significantly reduce
interpolation errors in numerical simulations and inversions.

4. Conclusions and Final Remarks

We have presented a flexible, general and efficient ap-
proach, based on a generalization of the Proper Orthogonal
Decomposition method, that facilitates the implementation
of thermodynamic phase equilibria information into a wide
range of geophysical and geodynamic studies. The main
virtues of the present approach can be summarized as fol-
lows:
• The method is easy to implement in any scientific

language. As such, it can be incorporated into existing
geodynamic/geophysical codes or used as a separate pre-
processing software.
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• The method is independent of particular thermody-
namic software or databases. Users can use any software
or database to create the desired primary thermodynamic
information encoded in multi-dimensional tables.

• The amount of stored information required by the pro-
posed method to reproduce the original information to a
high level of accuracy is typically of the order of 1-5% of
the original information. This drastic compression of infor-
mation allows using much finer P-T-C grids, therefore min-
imizing discretization errors. It also largely overcomes the
so-called “curse of dimensionality” affecting other standard
methods, allowing the use of significantly larger thermody-
namic datasets (e.g. more lithologies, melting paths, etc)
than otherwise possible with raw pre-computed tables.

• The method permits an easy characterization and con-
trol of the errors associated with the separated representa-
tion of thermodynamic data. This is important when work-
ing with preliminary models/inversions, where accuracy can
be compromised in favour of computational speed. More-
over, smoothing errors associated with the separated repre-
sentation are only significant at the locus of large disconti-
nuities (i.e. phase transitions). These errors, however, are
either smaller or comparable to those already present in the
original thermodynamic data.

Although not discussed in this contribution, derivatives
of the fields (e.g. ∂Vs/∂T) are easily and directly ob-
tained from the separated solution [e.g. Zlotnik et al, 2015].
This can be particularly useful e.g. when working with
matrix-based inversions method, where the matrices of par-
tial derivatives are needed.

A shortcoming of the described approach is related to the
fact that we still need to compute the primary thermody-
namic information, so we can then decompose it a posteriori
to generate the separated solution. In reality, this can be
also viewed as and advantage, as it allows the user to have
a better control on the actual primary information to be
used in her/his simulations or inversions. Also, this primary
information can be saved in a “library” and used in sub-
sequent studies. However, we expect that the extension of
a posteriori decomposition methods, such as the one de-
scribed here, to truly Proper Generalised Decomposition so-
lutions [e.g. Ammar et al, 2010, Zlotnik et al, 2015] for the
free energy minimization problem would bring important
additional benefits to the “on-the-fly” or dynamic imple-
mentation of thermodynamic information into geophysical
and geodynamic investigations. We are currently working
on this.

Appendix A: Notation and definitions

Vectors are denoted by boldface lowercase letters (e.g. a),
matrices as boldface capital letters (e.g. A) and tensors by
boldface script letters (e.g. A).

The norm of a tensor T ∈ RI×J×K , is the trivial exten-
sion of the Frobenius norm for matrices:

||T || =

√√√√ I∑
i=1

J∑
j=1

K∑
k=1

t2ijk.

One operation that facilitates notation and, in addition,
gives some clues on the implementation, is the reshape op-
eration (also known as matricization or unfolding or flat-
tening). The reshape operation converts a n-dimensional
tensor into a matrix (second order tensor). It can be per-
formed along any dimension d of the tensor: the columns
of the resulting matrix are taken as the values of the tensor
along the dimension d. If T ∈ RI×J×K then the size of the
three possible reshapes are T(1) ∈ RI×JK , T(2) ∈ RJ×IK and
T(3) ∈ RK×IJ . The next example illustrates this operation:

let T ∈ R2×3×2 defined by its two frontal slices:

T (:, :, 1) =

[
1 3 5
2 4 6

]
and T (:, :, 2) =

[
7 9 11
8 10 12

]
then, the three reshape operations are

T(1) =

[
1 3 5 7 9 11
2 4 6 8 10 12

]
, T(2) =

1 2 7 8
3 4 9 10
5 6 11 12

 and T(3) =

[
1 2 3 4 5 6
7 8 9 10 11 12

]
.

The tensor product ⊗ produce a tensor T in which each
element or the tensor is the product of the correspond-
ing vector elements, for example, T = a ⊗ b ⊗ c produce
tijk = aibjck.

Two special matrix products are required. The first one
is called the Hadamard product denoted by .∗ and consisting
of the elementwise matrix multiplication. Given A ∈ RI×J

and B ∈ RI×J their Hadamard product is

A. ∗B =


a11b11 a12b12 . . . a1Jb1J
a21b21 a22b22 . . . a2Jb2J

...
. . .

...
aI1bI1 aI2bI2 . . . aIJbIJ

 .

The second product is the so-called Khatri-Rao product
denoted by �. Given A ∈ RI×R and B ∈ RJ×R then
A�B ∈ RIJ×R is defined as

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 . . . aR ⊗ bR

]
.

Finally, the Moore-Penrose pseudoinverse of a matrix is a
generalization of the inverse of matrix applicable to non-
square matrices [Penrose, 1955]. The pseudoinverse of the
matrix A is denoted by A+.
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Table 1. Top: Results of the separation the 3D table P-T-
H2O (Example 1) for different number of terms (number of
coefficients of the full tensor nfull ≈ 8.0 × 105 per parameter
of interest). Bottom: Results of the separation the 4D table
F-P-T-H2O with different number of terms (number of coeffi-
cients of the full tensor nfull ≈ 65.59× 106). NCE: number of
coefficients having error larger than 1%. nsep number of coeffi-
cient stored in the separated representation. CR: compression
ratio computed as described in the text.

Terms Max err. Mean err. NCE nsep CR
10 3.70% 0.14% 8767 8050 98.9%
20 2.93% 0.08% 2295 16100 97.9%
30 2.30% 0.06% 1005 24150 96.9%
40 1.94% 0.05% 553 32200 95.9%
50 1.90% 0.04% 313 40250 94.9%
60 1.90% 0.04% 163 48300 93.9%
70 1.82% 0.03% 127 56350 92.9%
80 1.78% 0.03% 78 64400 91.9%
90 1.66% 0.03% 49 72450 90.9%
100 1.69% 0.03% 43 80500 89.9%

10 4.27% 0.07% 10291 6630 0.29%
20 3.02% 0.05% 3837 13260 0.58%
30 2.53% 0.04% 1961 19890 0.88%
40 2.09% 0.03% 1294 26520 1.17%
50 1.62% 0.02% 281 33150 1.46%
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Figure 1. Illustration of the decomposition of a three-dimensional tensor.
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Figure 2. Density fields obtained from the energy mini-
mization problem for water contents from 0 to 4% (from
left to right) are shown in the first row. Same fields pro-
vided by the CP ALS procedure with 100 terms are shown
in the second row. Their absolute difference (full - sepa-
rated) is shown in the third row.
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Figure 3. Density fields given by the separated solution
with 10, 40 and 100 terms. Only the slice corresponding
to F=0%, H2O=1% is shown.
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Figure 4. 1D transects through the 3D cube of Example
1 across a major density discontinuity. Note the good
representation of the separated solution for terms & 40


