
International Journal of Computational Methods
©World Scientific Publishing Company

1

AN ALGORITHM FOR MESH REFINEMENT AND UN-REFINEMENT
IN FAST TRANSIENT DYNAMICS

FOLCO CASADEI

Joint Research Center, Institute for the Protection and Security of the Citizen,
T.P. 480, I-21027 Ispra, Italy

folco.casadei@jrc.ec.europa.eu
http://europlexus.jrc.ec.europa.eu/

PEDRO DÍEZ, FRANCESC VERDUGO

Universitat Politècnica de Catalunya,
Barcelona, Spain

vre.diez@upc.edu, francesc.verdugo@upc.edu

Received (Day Month Year)
Revised (Day Month Year)

A procedure to locally refine and un-refine an unstructured computational grid of four-node
quadrilaterals (in 2D) or of eight-node hexahedra (in 3D) is presented. The chosen refinement
strategy generates only elements of the same type as their parents, but also produces so-called
hanging nodes along non-conforming element-to-element interfaces. Continuity of the solution
across such interfaces is enforced strongly by Lagrange multipliers. The element split and un-split
algorithm is entirely integer-based. It relies only upon element connectivity and makes no use of
nodal coordinates or other real-number quantities. The chosen data structure and the continuous
tracking of the nature of each node facilitate the treatment of natural and essential boundary
conditions in adaptivity. A generalization of the concept of neighbor elements allows transport
calculations in adaptive fluid calculations. The proposed procedure is tested in structure and fluid
wave propagation problems in explicit transient dynamics.
Keywords: Mesh refinement, mesh un-refinement, adaptivity, 3D, explicit, transient dynamics.

1. Introduction

The numerical simulation of complex 3D fast transient dynamic phenomena, e.g. for the
prediction of blast effects on critical infrastructures, requires long calculations even on
today’s computers, due to the large number of elements—typically in the order of
millions or even more—needed to obtain the desired accuracy. One of the most
promising techniques to save CPU time is mesh adaptivity, i.e. automatic mesh
refinement and un-refinement in order to “put the small elements only where they are
really needed”. Adaptive techniques based on error estimators/indicators are nowadays
relatively common in statics, but their application in fast transient dynamic problems,
characterized by wave propagation, is still challenging. In order to follow rapidly

Casadei, Díez and Verdugo

2

evolving phenomena, the chosen mesh adaptation techniques must be particularly simple,
efficient and robust.

This paper presents a strategy to continuously refine and un-refine a computational
mesh in explicit fast transient dynamics. The element shapes considered here are only the
4-node quadrilateral (QUA4) in 2D and the 8-node hexahedron (CUB8) in 3D. However,
the method can be applied with minor modifications also to other element shapes. One
basic choice is that, when splitting an element in order to locally refine the mesh, only
elements of the same shape as their “parent” (i.e. either QUA4 or CUB8) are generated.
This simplifies the geometry- and connectivity-updating calculations and contributes to
the robustness of the method, but also produces so-called “hanging” nodes along the non-
conforming element-to-element interfaces, i.e. in the zones where element size varies.

Over the last three decades a vast literature has been produced on mesh refinement
techniques related to adaptivity, and a review is out of scope here. As concerns the purely
geometric aspects of element splitting and un-splitting and the tree-like data organization,
the strategy chosen here resembles the one proposed for example in 2D by Yerry and
Shephard already in 1983 and by Demkowicz, Oden et al. [1985; 1989]. Similar
techniques are still used nowadays in complex 3D applications; see e.g. Meyer [2009] or
Burstedde et al. [2009], where massive parallelization aspects are discussed.

Our final target is to use mesh adaptivity in safety studies to evaluate, in particular,
the vulnerability of buildings or other critical infrastructure to blast loading. These
applications require modeling of the fluid and of the structure (including failure and
fragmentation), plus robust and efficient fluid-structure interaction (FSI) algorithms.
Numerical models are huge in 3D, with millions of finite elements or finite volume cells,
mainly in the fluid domain. Therefore, adaptivity can be exploited in a variety of
manners. For example: to accurately track the shock fronts of blast waves, to improve the
representation of material interfaces and of free surfaces (e.g. in blast loading of
submerged structures), and to automatically refine the fluid mesh near structural walls for
improved accuracy of embedded-type FSI algorithms. The first task requires suitable
error indicators, see e.g. the pioneering work of Peraire et al. [1987], the comprehensive
paper by Nithiarasu and Zienkiewicz [2000] and the article of Frey and Alauzet [2005],
for fluid problems, or the recent paper by Erhart, Wall and Ramm [2006] on large
deformation under impact, for solid problems.

The present work deals with only one ingredient of adaptive formulations, i.e. the
geometrical and data-structure aspects related to continuous mesh refinement and un-
refinement during a transient dynamic solution. The subject of error estimators/
indicators—or of any other criteria (e.g. structure proximity in FSI) needed to
automatically drive mesh adaptation—is left for a subsequent contribution.

The class of problems of interest here, namely fast transient FSI phenomena related to
blast loading of complex 3D structures up to failure and fragmentation, can partially
justify the specific choice of elements shape (quadrilaterals/hexahedra instead of the
simpler and more commonly used, in adaptivity, triangles/tetrahedra) and of refinement
strategy (which produces non-conforming refined meshes due to hanging nodes). In this
class of applications use is typically made of “embedded” FSI algorithms, see e.g.

An algorithm for mesh refinement and un-refinement in fast transient dynamics

3

Casadei et al. [2011], whereby the structure mesh is immersed in a regular (even uniform
sometimes) background fluid mesh. This explains the use of quadrilaterals/hexahedra,
without need for complicated mesh generation tools that typically operate only on
simplexes (triangles/tetrahedra). Although structure adaptivity is also considered below
for full generality, we are thus mainly interested in adapting the fluid domain.

The interested reader may find it useful to compare the present mesh refinement
strategy with the more widely used ones, based upon simplex elements, e.g. in the papers
by Liu, Zhang and co-workers. The use of simplex shapes facilitates automatic meshing
and re-meshing of arbitrarily complex domains, whenever this is needed: not only for the
discretization of the computational domain in FE/FV solid mechanics [Zhang, Liu et al.
(2008-2011), Nguyen-Thoi, Liu et al. (2009)] and in fluids [Xu, Liu et al. (2010)], but
also in those mesh-free formulations which still require a background mesh to perform
numerical integration [Liu and Tu (2002), Liu, Kee et al. (2006, 2008)].

Mesh refinement in the cited references makes typically use of Delaunay
triangulation and/or of its dual, the Voronoi diagram, in order to obtain optimal and
conforming refined (arbitrary, unstructured) meshes. This may sometimes lead to badly-
shaped (highly distorted) elements, thus requiring additional treatments such as redundant
cells removal, diagonal swapping or grid smoothing. In the present approach refinement
is conceptually straightforward, being based on simple bisection. This generates only
descendent elements of the same shape and aspect as their parent (which is important,
especially in 3D) and avoids any element distortion by construction. However, the price
to be paid is the appearance of hanging nodes (non-conforming interfaces), which require
a specific treatment, e.g. by Lagrange multipliers as proposed below. It is also clear that
such a technique is especially useful when the base mesh is regular, although not
necessarily structured (which is the case in the applications envisaged here). With
geometrically complex domains to be discretized by conforming meshes, the use of
simplexes is obviously superior. As concerns efficiency of the proposed procedure, no
comparison with other methods (e.g. based on simplexes) was attempted. Despite its
simplicity (bisection) the present procedure is relatively involved in 3D, due to hanging
nodes. However, the resulting information on the nature of nodes and of neighboring
elements greatly facilitates the treatment of boundary conditions (and of transport terms
in fluids), thus recovering part of the effort devoted to geometrical calculations.

This paper is organized as follows. Section 2 presents the chosen mesh refinement
strategy, the classification of nodes—in such a way to facilitate the treatment of boundary
conditions and the enforcement of continuity constraints—and the neighborhood relations
between elements, which are useful both for element adaptation and for the calculation of
numerical fluxes in fluid problems. Then in Section 3 the element splitting and un-
splitting algorithms are detailed. Section 4 shows how to impose constraints on the
adaptive solution according to the nature of each node resulting from the algorithms of
Section 3. The calculation of numerical fluxes in adaptive fluid meshes using a
generalized notion of neighbors is also detailed. Numerical examples are presented in
Section 5 and conclusions and perspectives for future developments are given in Section
6. Some auxiliary procedures are listed in the Appendix.

Casadei, Díez and Verdugo

4

The proposed algorithms are implemented and tested in EUROPLEXUS [Casadei et
al. (2012)], a computer program for fast transient analysis of fluid-structure systems
under dynamic loading, which is jointly developed by the French Commissariat à
l’Energie Atomique (CEA Saclay) and by the Joint Research Centre of the European
Commission (JRC Ispra).

2. Mesh refinement strategy

The chosen mesh refinement strategy is illustrated in 2D for the QUA4 element (Fig. 1).

2.1. Base mesh

First, some terminology is introduced for the base mesh, i.e. the initial (coarse) mesh,
assumed to be given in input (left drawing in Fig. 1). Let i be the generic element, of
vertices IV , 1, , 4I = K which coincide with the four element nodes I , J , K , L .
Elements are numbered anti-clockwise, e.g. IJKL for element i in the figure. Each
element has four faces kF , 1, , 4k = K , with two nodes each: IJ , JK , KL , LI in the
example. The mesh information is completed by the list of neighbor elements, or simply
neighbors, across each face. This list is built up once by performing a search over the
base mesh, after reading it as input data. Two elements are (reciprocally) neighbors
across a given face if the face belongs to both elements (with opposite orientations). In
Fig. 1 element i has no neighbor across faces 1 and 2 while it has neighbors j and l
across faces 3 and 4, respectively. The presence of a neighbor indicates an internal face
(within the domain), while its absence indicates an external face (on the domain
boundary). The base mesh is assumed conforming, hence neighbors are reciprocal: if i
has neighbor j across one of its faces ()i

kF , then j has neighbor i across one of its
faces ()j

lF , and vice versa. Note also that the base mesh is assumed unstructured for full
generality, although all numerical examples in Section 5 use structured element patches
for simplicity.

2.2. Element splitting

A generic element i is split as shown in Fig. 1, right drawing. Four descendent elements
1i , 2i , 3i , 4i are created, all of which have element i as their parent element. In addition,

Fig. 1. Splitting a QUA4.

An algorithm for mesh refinement and un-refinement in fast transient dynamics

5

Fig. 2. Further splitting.

one to five new descendent nodes are created. In the example, n is the central node,
which is always created, while 1b , 2b , 1h , 2h are the face nodes. A new face node is
created or not, depending upon the mesh state across the face itself. If there is a neighbor,
and if this has been previously refined, then the face node exists already; otherwise, a
new face node is created. In the example of Fig. 1 all four face nodes are created upon
splitting of element i .

Element splitting is a recursive process, and can go on as shown e.g. in Fig. 2.
Therefore, it seems convenient to store elements in a tree-like data structure [Yerry and
Shephard (1983)], see Fig. 3 corresponding to the last mesh of Fig. 2. Each element
occupies a certain level in the tree, with base elements (and only them) at level 1 by
convention. Base elements have no parent. The notions of right and left siblings are also
useful, to traverse the tree quickly in both directions. Elements with descendents are
called branches while elements without descendents are called leaves. Note that only leaf
elements take part in the computation. Branch elements are not computed, but are kept in
memory (flagged as idle). This facilitates mesh un-refinement by simply re-activating a
previously idle element.

In Fig. 2 the example of Fig. 1 is continued by showing further splitting of level-2
element 1i , which generates level-3 descendents 11i , 12i , 13i , 14i and five new nodes.
Then, base element j is split into 1j , 2j , 3j , 4j , showing a case where one of the face
nodes (1h) exists already and needs not be created. However, the nature of this node
changes from hanging to non-hanging (see Section 2.3) and therefore it is renamed 1n for
clarity.

Fig. 3. Tree data structure for the elements.

Casadei, Díez and Verdugo

6

2.3. Node types

With the chosen mesh refinement strategy there are up to four different types of nodes in
a mesh, and the nature of each node is (continuously) tracked during the transient. Like
for elements, a level is associated to each node. The nodes of the base mesh are called
base nodes and are the only nodes at level 1. All other nodes are descendent nodes, of
which there are three types: hanging nodes, boundary-hanging nodes and non-hanging
nodes, see Table 1.

Table 1. A classification of nodes.

Node type Location Classification Interface

Base
Internal — —
Boundary — —

Descendent

Internal
Non-hanging Conforming
Hanging Non-conforming

Boundary
Hanging (3D only)

Non-conforming
(internally)

B-hanging — Example of hanging
nodes on 3D boundary

Hanging nodes, e.g. 1h and 2h in Fig. 1, are a direct consequence of the chosen

element splitting procedure. They occur at locally non-conforming element-to-element
interfaces, i.e. wherever a “bigger” and a “smaller” element are contiguous but without
sharing a common face. Suitable constraints have to be imposed at such nodes in order to
ensure continuity of the numerical solution across the interface. For example, in a
displacement-based FE formulation it is clear that the degrees of freedom of 1h in Fig. 1
are not free. They depend (“hang”) upon those of nodes L and K (i.e. the nodes of the
face on which the hanging node is located), if continuity has to be ensured. These nodes
are called the masters of the hanging node.

Boundary-hanging nodes (b-hanging for brevity in the following), e.g. 1b and 2b in
Fig. 1, are the descendent nodes, located on the boundary of the body (as the name
implies), which lie on a conforming element-to-element interface. Note that in 2D a
descendent node on the boundary is guaranteed to lie upon a conforming interface.
Consequently, in 2D all descendent nodes on the boundary are b-hanging. However, in
3D the same property does not hold (see the inset in Table 1 and the discussion in Section
3), and therefore both conditions must be satisfied for a 3D node to be b-hanging. B-
hanging nodes do not really “hang” upon any other nodes (and therefore the term is
perhaps somewhat misleading), but their identification greatly facilitates the treatment of
boundary conditions in an adaptive mesh. These nodes can be programmed so as to
automatically “inherit” any boundary conditions that a user may have prescribed on the
base mesh, i.e. on the nodes of the base face upon which the b-hanging node is located.
Such nodes are called the masters of the b-hanging node. For example, in Fig. 2 nodes 1b
and 3b inherit conditions from base nodes I and J . Note that the masters of a b-
hanging node are always base (boundary) nodes, while the masters of a hanging node can

An algorithm for mesh refinement and un-refinement in fast transient dynamics

7

Fig. 4. Neighbors and pseudo-neighbors.

be of any type. For the element shapes considered here, each hanging or b-hanging node
has two masters in 2D, two or four masters (depending on whether it is on a corner or on
a face) in 3D.

Non-hanging nodes are any other descendent nodes. They are necessarily located in
the interior of the domain, at locally conforming element-to-element interfaces. The
degrees of freedom associated with these nodes are completely free. In fact, the case of
“boundary” conditions (constraints) imposed by a user on internal nodes is not
considered in this paper.

2.4. Neighbors and pseudo-neighbors

Another consequence of the chosen element splitting procedure is that the simple bi-
univocal neighborhood relations valid for the (conforming) base mesh no longer hold for
a locally refined mesh, see Fig. 4. Neighbors are connected by a double arrow as in
i j´ . When element i is split into its descendents, there are two of these (smaller)
elements 3i and 4i adjacent to element j . We identify this situation by saying that 3i
and 4i have j as pseudo-neighbor (or simply p-neighbor for brevity), across their upper
face in the example. Note that this relation is univocal: element j does not have 3i and
4i as p-neighbors across its bottom face in the example. In fact, it (still) has element i

(their parent, now idle) as neighbor. P-neighbors are connected by a single arrow as in

4i jÆ . The following definitions of neighbor and of p-neighbor are adopted:
• The neighbor of an element across a face is the element of the same level, active

(leaf) or idle (branch), adjacent to the face, or 0 if there is no such element.
• The p-neighbor of an element across a given face is the lower-level (i.e. larger)

active (leaf) element adjacent to the face, or 0 if there is no such element.
Neighbor and p-neighbor are mutually exclusive at a given face. That is, an element

can have either a neighbor, or a p-neighbor (or nothing) across a face, but it cannot have
both. This choice simplifies the implementation and speeds up calculations because the
table of neighbors and p-neighbors has a fixed, known length. The presence of a neighbor
across a face indicates an internal, locally conforming element-to-element interface. The
presence of a p-neighbor indicates an internal, locally non-conforming interface. In fact,
on the concerned face (of the p-neighbor) there are always one or more hanging nodes;

Casadei, Díez and Verdugo

8

Fig. 5. CUB8 vertices, faces, corners.

see the examples. The absence of a neighbor and p-neighbor indicates that the face is
external. The p-neighbor relation is univocal according to the above definition. That is, if
element i has j as p-neighbor, then j has i neither as p-neighbor, nor as neighbor. In
fact, in this case j has an ancestor of i (more precisely, the one at the same level as j)
as neighbor.

Keeping track of neighbors and p-neighbors during mesh refinement and un-
refinement serves two purposes: first, it is used in the mesh adapting algorithms
themselves; second, it allows efficient computation of transport terms in fluid
applications, see Section 4.3.

3. Element splitting and un-splitting algorithms

The element splitting and un-splitting algorithms are now presented, for generality in 3D
for the CUB8 element shape, i.e. the 8-node hexahedron. The same algorithms are
applied also in 2D to the QUA4 element shape, with the simplifications indicated in
Section 3.7. Extensions to other 2D or 3D element shapes are also possible using the
same strategy, with only minor modifications. Before detailing the algorithms, some
further definitions are given and the data structure used in the implementation is shortly
introduced.

3.1. The CUB8 hexahedron

The CUB8 element is shown in Fig. 5. It has eight vertices (or nodes) IV , 1, ,8I = K
enumerated (in the element connectivity table) in such a way that the first four are located
on the “bottom” element face, and so that the oriented normal to this face “enters” into
the element. The last four vertices, located on the “upper” element face, are enumerated
consistently (in this case the oriented normal “exits” from the element) so that 5V stays
“above” 1V , etc.

The element has 6 faces kF , 1, , 6k = K , with four nodes each. Face numbering is
such that the oriented normal always exits from the element. This convention is called

An algorithm for mesh refinement and un-refinement in fast transient dynamics

9

anti-clockwise orientation. For example,
1 1 4 3 2{ , , , }F V V V V= , or

1 {1, 4,3, 2}F = for
brevity. Faces are shown in Fig. 5 and are listed (together with all other constant
connectivity data) in Table 2.

Table 2. Constant connectivity data used for the CUB8 element shape.

Data Symbol Values
Vertices

1 8V ÷
 1-2-3-4-5-6-7-8.

Faces
1 4,1 6F
÷ ÷

 1-4-3-2; 1-2-6-5; 2-3-7-6; 3-4-8-7; 4-1-5-8; 5-6-7-8.

Corners
1 2,1 12C
÷ ÷

 1-2; 2-3; 3-4; 4-1; 1-5; 2-6; 3-7; 4-8; 5-6; 6-7; 7-8; 8-5.

Faces to corners
,1 4,1 6CF ÷ ÷

 4-3-2-1; 1-6-9-5; 2-7-10-6; 3-8-11-7; 4-5-12-8; 9-10-11-12.

Corners to face
,1 2,1 12FC ÷ ÷

 1-2; 1-3; 1-4; 1-5; 2-5; 3-2; 4-3; 5-4; 2-6; 3-6; 4-6; 5-6.

Corners to corner nodes
,1 2,1 12CC ÷ ÷

 1-2; 2-3; 3-4; 4-1; 1-5; 2-6; 3-7; 4-8; 5-6; 6-7; 7-8; 8-5.

Faces to face nodes
,1 2,1 6FF ÷ ÷

 1-3; 1-6; 2-7; 3-8; 4-5; 5-7.

Corners to descendents
,1 2,1 12DC ÷ ÷

 1-2; 2-3; 3-4; 4-1; 1-5; 2-6; 3-7; 4-8; 5-6; 6-7; 7-8; 8-5.

3D elements also have corners, which do not exist in 2D. In the CUB8 there are

twelve corners iC , 1, ,12i = K , with two nodes each, see Fig. 5. For example,

1 1 2{ , } {1, 2}C V V= = . Much of the complexity of 3D algorithms comes from the fact that
in order to split or un-split an element one has to consider not only the elements adjacent
to faces (i.e. neighbors and p-neighbors), but also “adjacent to corners”, see Section 3.3.
This is not the case in 2D.

Each face of the CUB8 is bounded by four corners. This information is kept in a
constant table (,)CF c f , 1, , 4c = K , 1, ,6f = K where the first entry is the corner and
the second entry is the face. For example, for the first face of the CUB8:

4 3 2 1(,1) { , , , } {4,3, 2,1}CF c C C C C= = . Note that the corners of a given face kF are
enumerated in the same order as face nodes: i.e. anti-clockwise starting from the first
node of the face.

Each corner is adjacent to two faces of the element. This information is kept in a
constant table (,)FC f c , 1, 2f = , 1, ,12c = K where the first entry is the face and the
second entry is the corner (this is somehow the “inverse” of CF). For example, for the
first corner of the CUB8:

1 2(,1) { , } {1, 2}FC f F F= = .

Fig. 6. Splitting/un-splitting a CUB8.

Casadei, Díez and Verdugo

10

The CUB8 element is split into a patch of eight CUB8 descendents jd , 1, ,8j = K ,
see Fig. 6. They are enumerated in such a way that the j -th descendent jd is adjacent to
(contains) the j -th vertex jV of the parent. In the splitting/un-splitting process, the
following nodes have to be considered in addition to the cube vertices: one node for each
face, called the face nodes

FN , 1, , 6F = K , one node for each corner, called the corner
nodes

CN , 1, ,12C = K , and one node at the element centre, called the central node

MN . Thus, by including also the vertices, there are 8 6 12 1 27+ + + = patch nodes,
involved in the splitting or un-splitting of a CUB8. These are set in an array pP ,

1, , 27p = K in the following order, see Fig. 6: first the eight vertices of the parent
element (

1 8 1 8P V∏ ∏=), then the six face nodes (
9 14 ,1 6FP N∏ ∏=), then the twelve corner

nodes (
15 26 ,1 12CP N∏ ∏=), and finally the central node (

27 MP N=). The notation
a bA
÷

 is
used as a shorthand to indicate all items from a to b in array A .

An important assumption in the algorithms to be presented below is that all
descendent elements are numbered consistently with their parent. This means, for
example, that if the first face of an element points (say) “downward”, then all its
descendents’ first faces also point downward, etc. This choice is quite natural and greatly
facilitates the splitting/un-splitting operations. However, this assumption can only be
satisfied for elements which, in adaptivity, produce descendents of the same shape as—
and which can be oriented in the same way as—their parent, like is the case here.

There are also other (constant) data useful in the element splitting/un-splitting
process. Consider first the following problem: given a branch element i , identify the
(corner) node cN located in the middle of its c -th corner, without having at disposal the
patch nodes table

pN for i (the construction of this table is relatively expensive and is
performed only for the current element i being split or un-split, not for its adjacent
elements). Note that node cN does not belong to element i , but it belongs to at least one
(more precisely, to two) of its descendents. A constant table (,)CC m c , 1, 2m = ,

1, ,12c = K solves the problem: the first entry (1,)CC c is the index of the descendent,
the second entry (2,)CC c is the index of the node. Thus, for example, the corner node on
corner 1 of a branch element is the second node ((2,1) 2CC =) of its first descendent
((1,1) 1CC =).

A similar constant table (,)FF m f , 1, 2m = , 1, , 6f = K allows to find the face
node on the f -th face of a branch element i . The first entry (1,)FF f is the index of the
descendent; the second entry (2,)FF f is the index of the node. Thus, for example, the
face node on face 1 of a branch element is the third node ((2,1) 3FF =) of its first
descendent ((1,1) 1FF =).

Finally, a constant table (,)DC m c , 1, 2m = , 1, ,12c = K lists the two descendents
adjacent to each corner c of a branch element, in the same order as corner nodes are
listed in table iC . For example, the descendents adjacent to the first corner of a parent are
(in this order) 1d and 2d (thus (1,1) 1DC = and (2,1) 2DC =). Note that, with the
numbering conventions assumed here for the CUB8, it is

i C DC C C= = so only one of
these three tables would suffice. However, the tables are kept distinct for generality in
view of the application of these algorithms to other element shapes.

An algorithm for mesh refinement and un-refinement in fast transient dynamics

11

3.2. Some auxiliary procedures

There are some auxiliary procedures which are useful in the splitting/un-splitting
algorithms to be detailed below. The first one computes the nature of a face kF of an
element i , i.e. whether the face is internal to the computational domain or external, i.e.
on the boundary of the domain, based upon the neighbor and the p-neighbor at the face.
The procedure (Algorithm A.1) is listed in the Appendix.

Another procedure (Algorithm A.2 in Appendix) computes the nature of an external
corner iC of a descendent element jd , i.e. whether this corner lies on a base corner BC
or on a base face BF . A criterion to find whether a corner is internal or external will be
presented below in Section 3.3, based on the concept of corner star introduced there. Note
that with the element splitting/un-splitting strategy used here an element corner—
whatever the level of the element—is either (completely) internal to the domain or
(completely) external, i.e. on the domain boundary. It is impossible to have partially
internal, partially external corners.

3.3. Corner neighbors and corner star data structure

The nature of a corner node (hanging, b-hanging, non-hanging) depends upon the whole
set of elements “adjacent” (in a broad sense) to the corner. We call such elements corner
neighbors and the list of these elements the corner star of element i with respect to (i.e.
around) its corner c , see Fig. 7. The number of neighbors to a corner is potentially
unlimited for an unstructured mesh, but in practice there are between one (element i
itself) and slightly more than four elements in a corner star. Values much larger than four
are unlikely because the elements would be badly shaped. For a regular mesh of CUB8
there are exactly between one and four elements in each corner star.

As shown in Fig. 7, it is useful to distinguish between a complete star and an
incomplete star. A star is complete if the space around the corner is entirely filled by
elements (without “holes”), else the star is incomplete. One sees then immediately that an
element’s corner is external if and only if its corner star is incomplete, else the corner is
internal. This distinction is useful because Algorithm A.2 needs to be applied only to
external corners. Note incidentally that the nature of a corner cannot be computed based
only upon the nature of its nodes: in fact a corner whose nodes are all external can be
internal. The same holds for faces.

The procedure to determine whether or not a star is complete is listed in the Appendix
(see Algorithm A.3).

3.4. Computing a corner star

The calculation of the corner star of an element i around its corner c is the most CPU-
expensive component of the present algorithms, because it must deal with a large variety
of geometrical cases; see e.g. Fig. 7. Two different approaches have been tentatively
considered.

The first one consists in performing a (fast) geometrical search in the vicinity of the
corner under consideration, in order to locate all the potentially involved elements. To

Casadei, Díez and Verdugo

12

a)

b)

c)

d)

Fig. 7. Examples of corner stars (complete or incomplete).

An algorithm for mesh refinement and un-refinement in fast transient dynamics

13

this end the extent of the concerned zone around the corner has to be chosen, and this is
not simple in the presence of elements of very different sizes (p-neighbors), like is the
case here. The zone must be large enough to ensure that no potential neighbor is
overlooked, but using large zones increases the cost of the search. A second drawback is
that the search uses real-number quantities, e.g. nodal coordinates. The associated tests
are delicate and the robustness of the method can be affected. Finally, elements which lie
within the zone are not guaranteed to be corner neighbors and the verification requires
further complex calculations.

The second approach is based on the observation that star elements are (recursively)
the neighbors or p-neighbors of i across its two faces 1F , 2F adjacent to c , see Fig. 7a.
So an algorithm can start from face

1 (1,)FF C c= and recursively compute neighbor and
p-neighbor elements (adjacent to this corner) until it either reaches (again) the current
element i , or the search terminates. In the first case the star is complete, and this can be
recognized by the presence of i as the last element in the list. In the second case, the
same search process is repeated, but starting from face

2 (2,)FF C c= . Thus a generic
corner star is made of two element lists, 1S and 2S . Let 1Sn ,

2Sn be the number of items
in the lists. Note that element i is not inserted at the beginning of the lists, which start
directly with i ’s neighbor or p-neighbor across the corresponding face. Element i can be
present (as the last item) in 1S , and in this case the star is complete just by using the first
list, so that

2 0Sn = and 2S is not built up at all. However, element i cannot appear in
2S .

The advantage of the second method, which is the one chosen here, is that the search
is entirely integer-based and therefore very robust. In fact, there are no tests on real-
number quantities, subjected to a tolerance. Only element connectivity is used (nodal
coordinates are never considered), and the knowledge of neighbors and p-neighbors
resulting from the algorithms is fully exploited, resulting in a very efficient algorithm.

The method has only one limitation: since it is based on (recursively) using neighbors
and p-neighbors, it can only deal with corner stars containing at most one “hole”. As
shown in Fig. 7d (last drawing), a star with more than one hole would not be entirely
detected by this procedure (although it would be correctly marked as incomplete).
However, such a case can be considered pathological, and thus impossible in real
applications, since it is not good practice in Finite Elements to connect different 3D
continuum mesh zones just along a corner.

The procedure to build up a corner star is relatively involved (although not difficult)
due to the variety of possibilities, especially in the presence of p-neighbors, see some
examples in Fig. 7. It is not completely detailed here for brevity. The constant data
structures listed in Table 2 are exploited to speed up the calculations.

3.5. Element splitting algorithm

With the definitions and the procedures given in the previous Sections, the element
splitting and un-splitting algorithms can now be detailed. The tasks of the element
splitting algorithm are:

Casadei, Díez and Verdugo

14

• To find the node numbers of the split element patch
1 27P
÷

 defined in Section 3.1,
by creating any face- or corner nodes as needed, or by locating and re-using them
if they already exist.

• To define the hanging status (hanging, b-hanging or non-hanging) of newly
created nodes; to check the hanging status of re-used nodes and to update it if
necessary.

The algorithm consists of four parts:
A) Loop on the eight parent element nodes to find the cube vertices

1 8P÷
. Their

hanging status is not affected.
B) Loop on the six element faces to find the face nodes

9 14N
÷

.
C) Loop on the twelve element corners to find the corner nodes

15 26N
÷

.
D) Generate the element central node 27P and set it non-hanging.

Parts A) and D) of the algorithm are trivial and need no further comment. Parts B) and C)
are detailed below. The updating of neighbors and p-neighbors just after an element is
split is given in Section 3.8.

B) – Loop on element faces.

1. Loop on the six faces F of current element i . Let j be the neighbor, and p the
p-neighbor, of i across face F .

2. If 0j = , i.e. there is no neighbor, then:
• Create face node

8 FP +
.

• If 0p = the face is external. Set
8 FP +

 as b-hanging upon the four nodes of
the corresponding base face BF , i.e. face F of i ’s base element. BF must
exist in this case, since i has neither a neighbor nor a p-neighbor across F .

• Else 0p > and
8 FP +

is internal. Set it as hanging upon F ’s four nodes.
• Interpolate coordinates and nodal variables at

8 FP +
.

3. Else 0j > (so it must be 0p =).
a. If j is a leaf, then:

o Create face node
8 FP +

.
o Set it as hanging upon F ’s four nodes.
o Interpolate coordinates and nodal variables at

8 FP +
.

b. Else j is a branch. Then:
o Find old face node (which must exist already)

8 FP +
.

o Check that it was hanging and set it as non-hanging.
4. Next face F .

C) – Loop on element corners.

1. Loop on the twelve corners C of current element i , of level L . Let 1F , 2F be
the two faces of i adjacent to the present corner C , let 1N , 2N be the end-nodes
of corner C , and let

CN indicate the corner node (either existing or to be
created), see Fig. 7a.

2. Determine whether faces 1F , 2F are internal or external by Algorithm A.1.
3. Build up the corner star of elements around C , see Section 3.4.

An algorithm for mesh refinement and un-refinement in fast transient dynamics

15

4. Find the corner node
CN , if it exists already, otherwise create it:

• If the corner star is not empty and contains at least one element m (other
than i) of level L (i.e. if m has a corner mC of extremes 1N , 2N) and m is
a branch, then

CN exists and is readily determined from m ’s descendents.
Check that

CN was hanging upon 1N and 2N . Set
14 C CN N
+
= .

• Else
CN is created by interpolation between 1N and 2N . Set

14 C CN N
+
= .

5. Compute the (new) hanging status of
CN :

• If the corner star is either empty or contains only elements of level L (i.e. if
there are only neighbors and no p-neighbors) and if all such elements are
branches, then:
• If C is external (the star is incomplete), then

CN is b-hanging. More
precisely:
• If C is part of an (external) base corner BC (see Algorithm A.2),

then
CN b-hangs upon the two (base) nodes of BC .

• Else C is not part of a base corner, it just lies upon an (external)
base face e

BF (see Algorithm A.2), and
CN b-hangs upon the four

(base) nodes of e

BF .
• Else C is internal (the star is complete) and

CN is non-hanging.
• Else the corner star is not empty and either contains at least one element of

level M L< (i.e. a p-neighbor), or it contains only elements of level L , but
at least one of them is a leaf. Then,

CN is hanging upon 1N and 2N .
6. Next corner C .

3.6. Element un-splitting algorithm

The task of this algorithm is to un-split an element, i.e. to re-activate a previously split
(idle) element, starting from its eight descendents (which must be all leaves). At the
beginning of the algorithm

1 27 0P
÷

> and all corresponding nodes exist. Upon un-splitting
some nodes are deleted, the others are kept but possibly their hanging status changes. The
algorithm consists of four parts:

A) Fill
1 27P
÷

 from the descendents of the element being un-split.
B) Loop on the six element faces to treat the face nodes

9 14P
÷

.
C) Loop on the twelve element corners to treat the corner nodes

15 26P
÷

.
D) Verify that the old central node 27P was non-hanging and destroy it.

Parts A) and D) of the algorithm are trivial and need no further comment. Parts B) and C)
are detailed below. The updating of neighbors and p-neighbors after element un-splitting
is given in Section 3.9.

B) – Loop on element faces.

1. Loop on six faces F of current element i . Let j be the neighbor to i across F .
2. If 0j = , i.e. if there is no neighbor, then:

• Check that face node
8 FP +

 was hanging or b-hanging, then destroy it.
3. Else 0j > i.e. there is a neighbor.

• If j is a leaf: check that face node
8 FP +

 was hanging, then destroy it.

Casadei, Díez and Verdugo

16

• Else j is a branch. Check that face node
8 FP +

 was non-hanging, then set it
hanging upon the four face nodes of F .

4. Next face F .

C) – Loop on element corners.

1. Loop on the twelve corners C of current element i , of level L . Let 1N , 2N be
the end-nodes of corner C , and let

CN indicate the corner node, see Fig. 7a.
2. Build up the corner star of elements around corner C , see Section 3.4.
3. If the corner star is not empty and contains at least one element m (other than i)

of level L (i.e. m has a corner mC of extreme nodes 1N , 2N), and m is a
branch, then

CN is kept, and its hanging status is checked and set as follows:
• If C is external, i.e. if the star is incomplete, then check that

CN was either
b-hanging (either on two or on four base nodes) or hanging upon 1N , 2N .

• Else C is internal, i.e. the star is complete. Check that
CN was either non-

hanging or hanging upon 1N , 2N .
• Set

CN hanging upon 1N and 2N .
4. Else, destroy

CN .
5. Next corner C .

3.7. The QUA4 quadrilateral

The element splitting and un-splitting algorithms for the QUA4 quadrilateral in 2D
follow exactly the same strategy as those for the CUB8 element in 3D, with obvious
adjustments in the number of nodes, faces, neighbors etc. The most notable simplification
is the absence of corners, and therefore also of corner stars, so that parts C) of the
algorithms of Sections 3.5 and 3.6 do not exist in 2D.

3.8. Treatment of p-neighbors upon element splitting

When an element i of level L is split as shown in Section 3.5, it generates descendents
of level 1L + and i is flagged as idle. Then:

• Any element p that was a p-neighbor of i across a certain face, remains its p-
neighbor across that same face, see Fig. 8a.

• Any element k which had i as a p-neighbor must be treated. Such elements are
sought among all descendents (both leaves and branches) of i ’s neighbors, at any
level K L> . Note that i ’s p-neighbors are not considered here because they are
necessarily at a level M L< and by definition they have no descendents. Let K
be the level of one such element k , which had i as p-neighbor. Then:

• If 1K L= + , then one of the descendents of i (to be determined) becomes
neighbor of k and reciprocally, see Fig. 8b.

• Else 1K L> + . Then one of the descendents of i (to be determined)
becomes p-neighbor of k , see Fig. 8c.

An algorithm for mesh refinement and un-refinement in fast transient dynamics

17

Case a

Case b

Case c

Case d

Case e

Case f

Fig. 8. Updating neighbors and p-neighbors.

Casadei, Díez and Verdugo

18

3.9. Treatment of p-neighbors upon element un-splitting

When an element i of level L is un-split as shown in Section 3.6, its descendents of
level 1L + are destroyed and i (which was flagged as idle) becomes active again. Then:

• Any element p that was a p-neighbor of i across a certain face, remains its p-
neighbor across that same face, see Fig. 8d.

• No elements could have i as p-neighbor because i was idle (branch). However,
some elements k could have one of i ’s descendents as neighbor or p-neighbor.
Such elements must be sought among all descendents (both leaves and branches)
of i ’s neighbors, at any level K L> . Note that i ’s p-neighbors are not
considered here because they are necessarily at a level M L< and by definition
they are leaves. Let K be the level of one of such elements k , having one of i ’s
descendents as neighbor or p-neighbor. Then:

• If 1K L= + , then k and one of i ’s descendents (to be determined) were
neighbors. Element i becomes p-neighbor of k , see Fig. 8e.

• Else 1K L> + . Then k had one of i ’s descendents (to be determined) as p-
neighbor. Element i becomes p-neighbor of k , see Fig. 8f.

4. Exploiting the adaptive data structure

The knowledge of hanging and b-hanging nodes resulting from the algorithms of Section
3 is exploited in order to impose suitable constraints ensuring consistency of the adaptive
solution. First, continuity of the solution must be satisfied at nodes on locally non-
conforming element-to-element interfaces (hanging nodes). Second, essential boundary
conditions at b-hanging nodes must be inherited from the corresponding (base) master
nodes. All such constraints are of course non-permanent because nodes nature can change
step by step during the transient.

Finally, the notion of neighbor and p-neighbor across an element’s face allows to
efficiently compute numerical fluxes (transport terms) in adaptive fluid calculations.

4.1. Constraints on hanging nodes

As an example of hanging node consider node 1h in the right part of Fig. 1, which results
from the splitting of element i . In the current mesh configuration this node hangs upon
two master nodes, K and L . These happen to be base nodes in the present case, but this
is not necessary in general, and is irrelevant as concerns the proposed treatment.

A displacement-based Finite Element formulation is used in the code. Time
integration is done explicitly by the Central Difference scheme and the fundamental
quantity is the velocity v , discretized at nodes. Therefore, in order to ensure continuity
of the solution around a generic hanging node H the constraint to be imposed is:

1 i

m

H i Mi
Nv v

=
=∑ . (1)

where
iM are the m master nodes upon which node H is hanging, and iN are suitable

coefficients. In the example of Fig. 1, 2m = and eq. (1) becomes
1
() / 2h K Lv v v= + .

An algorithm for mesh refinement and un-refinement in fast transient dynamics

19

Constraints (1) are written for each hanging node. Each constraint is split into d
components, one for each global axis, where d is the space dimension (2 or 3). All such
constraints, plus any essential boundary conditions imposed by the user, form a linear
system of constraints on the (velocity) degrees of freedom (dofs) of the system. Note that
this system contains only the constrained dofs, not all system dofs. To enforce such
constraints a method of Lagrange multipliers is used. This requires the numerical
solution, at each time step, of a linear system of equations and is the only implicit part of
the transient solution strategy. Interested readers can find full details of the procedure in
references [Casadei et al. (1995, 2009)].

4.2. Constraints on b-hanging nodes

As an example of b-hanging node consider node 1b in the right part of Fig. 1, which
results from the splitting of element i . In the current mesh configuration this node b-
hangs upon two master nodes, I and J . Note that, in contrast with the case of hanging
nodes of Section 4.1, the masters of a b-hanging node are always base nodes.

An important practical aspect of using adaptivity in real applications is the
specification of essential boundary conditions. Here we assume that users only know the
base mesh, which is provided in input to the code, and therefore boundary conditions are
specified only for the base nodes. It is then desirable that such conditions be
automatically propagated to any descendent nodes on the boundary that are
(automatically, i.e. out of user’s control) created during the mesh adaptation process.

To this end, we exploit the knowledge of b-hanging nodes resulting from the
algorithms of Section 3. The m masters

iM of a generic b-hanging node are inspected. If
all of them share the same type of boundary condition, then this condition is imposed on
the b-hanging node as well, and is added to the system of constraints to be solved by the
Lagrange multipliers method as described in Section 4.1. This explains why the masters
of a b-hanging node are always base nodes: because boundary conditions are explicitly
known only for base nodes, not for descendents.

For example, assume that in the case of Fig. 1 node I is blocked in the vertical
direction, while node J is blocked in both directions. Then, b-hanging node 1b would
also be blocked in the vertical direction. This strategy works well, at least for the simplest
types of boundary conditions, as shown in the numerical examples of Section 5.

4.3. Numerical fluxes in fluid calculations

The knowledge of the neighbor or p-neighbor at each element face resulting from the
algorithms of Section 3 allows a precise and efficient calculation of numerical fluxes
across element-to-element interfaces, an essential ingredient in the solution of fluid
equations. The procedure is briefly outlined for the case of fluid modeling by Finite
Elements using a classical fractional step approach, but it can be extended along the same
lines also to other schemes, e.g. to node-centered or cell-centered Finite Volume
formulations.

Casadei, Díez and Verdugo

20

In the chosen fractional step approach, transport terms (numerical fluxes) across
neighboring elements—resulting from Euler equations for compressible inviscid fluids—
are computed according to the so-called lowest-index rule.

Assuming for the moment a conforming mesh, if elements i and j are neighbors at a
given face, then the flux of mass and energy across the face is evaluated (with the
appropriate sign, depending on nodal velocities) while treating the element with the
minimum index, i.e. min (,)i j in the general loop over all elements. This ensures two
things: first, the transport across each face is evaluated only once (correctness); second,
when an element is treated all fluxes across its faces have been evaluated so that the
element state can be directly updated, without the need of an additional loop over
elements (efficiency). This algorithm is generalized as follows to the case of non-
conforming meshes (adaptivity):

1. Set total mass and energy fluxes to zero for all elements.
2. Loop over elements. Let i be the current element.
3. Loop over i ’s faces. Let F be the current face, j the neighbour and p the p-

neighbor of i across face F .
4. If 0j = then:

• If 0p = or 0 p i< < then skip flux calculations for face F .
• Else p i> . Compute the (signed) mass and energy fluxes from i to p

across F , subtract them from the total fluxes of i and add them to the total
fluxes of p .

5. Else 0j > . Then:
• If j is a leaf, then:

• If j i< then skip flux calculations for face F .
• Else j i> . Compute the (signed) mass and energy fluxes from i to j

across F , subtract them from the total fluxes of i and add them to the
total fluxes of j .

• Else j is a branch. Then loop on all active (leaf) descendents jd of j
having i as p-neighbor across one of their faces jf :
• If

jd i< then skip flux calculations for face jf .
• Else

jd i> . Compute the (signed) mass/energy fluxes from i to jd
across jf , subtract them from the total fluxes of i and add them to the
total fluxes of jd . Note that the geometry of (the smaller) face jf , and
not of (the larger) face F , is used in this case to compute the fluxes.

• Next jd .
6. Next face (GOTO 3).
7. All faces have been considered for the current element i and therefore its total

mass and energy fluxes have been computed. Update the element’s physical state
and compute internal forces.

8. Next element (GOTO 2).

An algorithm for mesh refinement and un-refinement in fast transient dynamics

21

5. Numerical examples

Three numerical examples are presented to illustrate the proposed mesh refinement and
un-refinement algorithms in action. In all cases mesh adaptation is piloted by a special
WAVE directive simulating the propagation of waves in a continuum. Two types of
waves are considered in these tests: a plane wave and a spherical wave. The first type is
characterized by a source point and by a direction of propagation, while the second only
requires the source point. To each wave are assigned a constant imposed propagation
speed v and a starting time 0t . Each wave front has two associated length parameters: 1h
specifies the thickness of the wave front zone in which the mesh has to be refined up to
an imposed maximum level

maxL ; 2h specifies the thickness of the whole wave. The mesh
refinement level is varied linearly from

maxL (finest mesh) to 1 (base mesh) in the zone
between 1h and 2h .

The values of all wave parameters are prescribed according to known analytical
solutions for the simple academic problems chosen. The following tests cannot be
considered real adaptive calculations, because in adaptivity mesh refinement should
rather be (automatically) piloted by suitable error estimators/indicators. However, the
tests are sufficient to check all geometric aspects of the proposed mesh refinement and
un-refinement algorithms, and to verify their effects on explicit numerical solutions in
fast transient dynamics.

5.1. Spherical wave in a 3D slab

The first test simulates propagation of a spherical wave in a square slab of 10 10¥ units
and of thickness 1. The wave originates in one corner of the slab at time 0. The base mesh
consists of 10 10 100¥ = regular cubes and the chosen wave parameters are:

max 3L = ,

1 1.5h = ,
2 5.0h = , 5000v = . The material is linear elastic but material properties are

irrelevant in this case because the wave is purely fictitious: no loading is applied and thus
no stresses are generated.

The initial mesh is shown in Fig. 9a. Note that some refinement occurs near the wave
origin (marked by a dot) already at the initial time, so that the wave is then properly
captured. Since a spherical wave is used rather than a cylindrical one, mesh refinement is
not uniform across the slab thickness. This is done on purpose in order to submit the
splitting and un-splitting algorithms to a larger variety of cases than with a cylindrical
wave. Figs. 9b and 9c show the advancing wave front at 1.5 ms on the surface and within
the body, respectively. Note that with the chosen parameters mesh transition is quite
sharp and some base elements (1L =) are adjacent to some maximum-refined elements
(3L =). This is probably not a good choice in practical applications but again, it is used
here just to show that the proposed algorithms are general and can deal with arbitrary
level jumps between neighboring elements. An option in the code allows to automatically
prescribe smooth mesh transitions, such that the level jump between any couple of
neighboring elements is at most one. This is to say that the index of irregularity of the
mesh is one, or that a 1-irregular mesh is prescribed, following the terminology
introduced by Demkowicz et al. [1989].

Casadei, Díez and Verdugo

22

a) Initial mesh (refined near the source) b) Wave at 1.5 ms

c) Internal mesh view at 1.5 ms d) B-hanging nodes at 1.5 ms

e) Wave fronts and hanging nodes at 1.5 ms f) Hanging nodes on slab surface at 1.5 ms

Fig. 9. Spherical wave propagation in a 3D slab.

Fig. 9d shows b-hanging nodes at 1.5 ms. These are all located on the slab surface, by

definition. Finally, Figs. 9e and 9f show hanging nodes at 1.5 ms. These are located on
the advancing wave fronts. In Fig. 9e the slab is made transparent to show all hanging
nodes, most of which are in the body interior. Fig. 9f shows only the hanging nodes on
the body surface, a possibility which exists only in 3D cases as mentioned above.

Source

An algorithm for mesh refinement and un-refinement in fast transient dynamics

23

The mesh adaptation algorithms behave as expected in this test. The maximum
number of elements reached during the transient (including both branches and leaves) is
2460, of which 100 are base elements. The maximum number of nodes is 3183, of which
242 are base nodes.

5.2. Plane step wave in an elastic bar

The second test considers an elastic bar of length 1l = m, with a square cross-section of
0.1 0.1¥ m subjected to a constant pressure 81.0 10p = ¥ Pa at the left end, and blocked
at the right end. The material is linear elastic with density 8000r = kg/m3, Young’s
modulus 112.0 10E = ¥ Pa, Poisson’s coefficient 0n = (so that the problem is
physically 1D). With these values, sound speed is / 5000c E r= = m/s. Adaptivity is
piloted by two WAVE directives. The first one represents the incident wave produced by
the pressure load, starting at the left end at 0t = and propagating to the right. The
second one represents the reflected wave, starting at the (blocked) right end at

4/ 2 10t l c -­‐= = ¥ s and moving to the left. Both waves have
1 0.15h = ,

2 0.5h = and

max 4L = . The base mesh uses only 10 regular cubes.

a) Initial mesh and adapted mesh at 10 µs

b) Comparison of velocities at bar mid-point

Fig. 10. Plane step wave in an elastic bar.

Applied
pressure

Blocked
end

WAVE

Casadei, Díez and Verdugo

24

This test is a first example of the treatment of boundary conditions with the present
adaptivity strategy. The pressure (an example of natural condition) is applied by a special
boundary-condition (b.c.) element attached to the left end of the bar. This element has the
shape of a 4-node quadrilateral, whose nodes are merged with the nodes of the (base)
cube face at the left end of the bar. The advantage of this technique is evident from the
mesh at 0t = , shown in Fig. 10a (first picture): the first WAVE command refines the
bar mesh (cube elements) at the left end at 0t = , in order to properly capture the
incoming wave. Whenever a cube is refined or un-refined, the algorithm checks whether
there is a b.c. element attached to any of its (external) faces, and if so then the b.c.
element is automatically split or un-split as well. In this way, the applied load (pressure in
this case) is transferred from the parent to the descendent b.c. elements and, ultimately,
properly scaled loads result on the appropriate surface nodes of the descendent cubes, in a
fully automatic an transparent way.

The imposed blockage of nodes at the right bar end is another example of boundary
condition, in this case of the essential type. It seems natural that users impose constraints
only on the base nodes, in this case the four nodes of the right-most cube face. The
present adaptivity strategy makes it relatively simple to program automatic transfer of
constraints to any descendent nodes created in the adaptive process (Section 4.2). In fact,
all such nodes are b-hanging nodes whose masters are the blocked face nodes. Since all
masters are subjected to the same constraint (horizontal blockage), this constraint can be
easily and automatically propagated to all the relevant descendent nodes. Fig. 10a
(second picture) shows the adapted mesh at a later time, when the incident wave is
traversing the bar. Note that the mesh at the left bar extremity (including the b.c.
elements) has been automatically un-refined and the base mesh is recovered.

Fig. 10b compares solutions without and with adaptivity against the analytical
solution of the bar problem. The curves represent the time history of velocity at the bar
center. The analytical solution is the step function represented by the dotted curve.
Numerical solutions present oscillations, due to the elastic nature of the material (no
numerical damping). Two solutions with uniform cube meshes are shown (dashed lines):
one with a coarse mesh (only 10 elements) and one with a fine mesh (80 elements),
corresponding to the maximum mesh refinement in the adaptive solution (level 4). The
adaptive solution, represented by the solid line, coincides exactly with the fine-mesh
solution near the jumps at 0.1 and 0.3 ms (where the WAVE directive keeps the mesh
fine), while far from them it has an oscillatory behavior. Oscillations have lower
amplitude and lower frequency than both uniform mesh solutions, so the adaptive
solution looks somewhat smoother. Probably some numerical damping is introduced by
the mesh un-refinement process, whereby stresses in a parent element are computed by
averaging the stresses in its children. The adaptive solution looks very good: it captures
the shocks as precisely as the fine-mesh model, and presents less oscillations.

The maximum number of cube elements reached during the transient (including both
branches and leaves) is 1386, of which 10 are base elements. The maximum number of
special b.c. elements (to impose the pressure) reached during the transient (including both
branches and leaves) is 85, of which only 1 is a base element. The maximum number of

An algorithm for mesh refinement and un-refinement in fast transient dynamics

25

nodes is 1656, of which 44 are base nodes. The same bar problem has been solved also
with 2D elements, QUA4 4-node quadrilaterals. Results (not shown for brevity) are
nearly identical to the 3D case, both with uniform and with adaptive meshes.

5.3. Shock tube

The third and last test is the classical shock tube problem. A rigid tube of length 1l = m
and 0.01 0.01¥ m square cross section is filled by a perfect gas and is subdivided in two
equal parts by an ideal wall. The left part is initially at higher pressure than the right part.
At the initial time the separation between the two parts is removed and waves start to
propagate along the tube: a shock wave and a contact discontinuity wave propagate
towards the low-pressure zone, and a rarefaction wave propagates towards the high-
pressure zone. A complete analytical solution of this problem is available.

The assumed gas equation is (1)p ig r= -­‐ where p is the pressure, g is the ratio
of specific heats, r is the density and i is the specific internal energy. We take

1.269g = and 63.046 10i = ¥ J/kg in both zones. The left zone has
1 1.22r = kg/m3

and thus 6

1 1 10p = ¥ Pa, while the right zone has
2 0.1237r = kg/m3 and thus

5

1 1.01 10p = ¥ Pa.
Two uniform-mesh solutions are obtained, one with a coarse mesh of 100 cube fluid

elements and the other with a fine mesh of 800 cubes. Then an adaptive solution is
obtained using a base mesh of 100 cubes, and four WAVE directives, one for the shock
wave, one for the contact discontinuity and two for the initial and final fronts of the
rarefaction fan. All waves originate at the tube center at the initial time and propagate in
the relevant direction with the analytically computed velocities: 1672 m/s for the shock,
925.4 m/s for the contact discontinuity, 30.12-­‐ m/s and 1020-­‐ m/s for the rarefaction
wave. All waves use

1 0.015h = ,
2 0.05h = and

max 4L = . The boundary conditions are
as follows: all (base) nodes on the tube surface are blocked in the y and z directions;
the four (base) nodes of the left tube face and the four (base) nodes of the right tube face
are blocked also in the x direction. Like in the previous example, b-hanging
(descendent) nodes automatically inherit such constraints from the corresponding master
(base) nodes, thanks to the strategy proposed in Section 4.2. Numerical fluxes in the fluid
are computed according to the technique described in Section 4.3.

Figs. 11a and 11b show the distributions of fluid pressure and of fluid density along
the tube, respectively, at 0.25 ms. The analytical solution is the step function represented
by the dotted curve. The two solutions with uniform (coarse or fine) meshes are the
dashed curves. The adaptive solution is the solid line. Both the shock and the contact
discontinuity are captured by the adaptive solution with the same accuracy as the fine-
mesh solution. In the rarefaction wave, only the two fronts are captured with great
accuracy, while inside the fan the adaptive solution is similar to the coarse-mesh solution.
This is normal since the chosen WAVE directives refine the mesh only at the fronts. All
solutions are quite smooth and no oscillations are induced by mesh adaptation.

The maximum number of elements reached during the transient (including both
branches and leaves) is 5084, of which 100 are base elements. The maximum number of

Casadei, Díez and Verdugo

26

a) Pressure along the tube at 0.25 ms

b) Density along the tube at 0.25 ms

Fig. 11. Shock tube.

nodes is 6290, of which 404 are base nodes. Identical uniform-mesh and adaptive
solutions are obtained in 2D with quadrilateral elements, and are not presented here for
brevity.

5.4. Efficiency

A rough estimate of the efficiency of the proposed mesh refinement and un-refinement
algorithms can be obtained by comparing CPU times for uniform-mesh and adaptive
solutions. Such times are too small for the elastic bar test of Section 5.2, but for the shock
tube problem of Section 5.3 (3D version) we have the following results. The adaptive
solution with 100 base elements, 4 WAVE directives and

max 4L = needs 44 s on a laptop

An algorithm for mesh refinement and un-refinement in fast transient dynamics

27

computer. Since the present algorithms refine the mesh in all spatial directions, this
should be compared against a uniform fine-mesh non-adaptive solution with
8 8 800 51200¥ ¥ = elements, which needs 229 s. Therefore, a speed-up factor of 5.2 is
obtained in this case (including the overhead needed to compute the WAVE fronts in the
adaptive solution).

6. Conclusions and perspectives

The paper presents procedures to arbitrarily refine and un-refine a computational grid of
QUA4 (in 2D) or CUB8 (in 3D) element shapes. The chosen strategy, based only upon
element connectivity (integer data), is simple and robust and lends itself well to fast
transient dynamic applications, dominated by wave propagation.

The numerical tests, performed using a simple wave propagation paradigm (WAVE
directive) both in solid- and in fluid mechanics, show that mesh-adaptive solutions are as
accurate as uniform fine-mesh solutions near the advancing wave fronts, without causing
instability or loss of accuracy in zones where the solution is smooth.

Special attention is devoted to boundary conditions in adaptivity, an aspect of great
importance in realistic applications. As concerns essential conditions, a technique
exploiting the information resulting from the proposed mesh adaptation algorithms
allows propagating the user-imposed constraints from the base nodes to the descendent
(adaptive) nodes in an automatic and transparent way. Similarly, for natural conditions
(e.g. an imposed pressure) a technique, based on special boundary-condition elements
also subjected to adaptivity (in a natural way), is proposed in the bar test of Section 5.2.

This is only a first step (covering mostly geometric aspects) towards implementation
of full mesh adaptivity in fast dynamics. Ongoing work focuses on error indicators,
which should ultimately be used to automatically pilot mesh adaptation especially in fast
transient fluid-structure interaction problems, see reference [Casadei et al. (2011)], by the
algorithms proposed in this paper. To this end, calculation of numerical fluxes in adaptive
fluid meshes will have to be extended to Finite Volume formulations, along the lines
already presented for Finite Elements in Section 4.3.

References

Burstedde, C., et al. (2009). ALPS: a framework for parallel adaptive PDE solution.
Journal of Physics: Conference Series 180, doi 10.1088/1742-6596/180/1/012009.

Casadei, F., Halleux, J.P. (1995). An algorithm for permanent fluid-structure interaction
in explicit transient dynamics. Computer Methods in Applied Mechanics and
Engineering, 128(3-4): 231–289.

Casadei, F., Halleux, J.P. (2009). Binary spatial partitioning of the central-difference time
integration scheme for explicit fast transient dynamics. International Journal for
Numerical Methods in Engineering, 78: 1436–1473.

Casadei, F., Larcher, M. and Leconte, N. (2011). Strong and weak forms of fully non-
conforming FSI algorithm in fast transient dynamics for blast loading of structures.
Proceedings of the COMPDYN 2011 Conference, Papadrakakis, M., Fragiadakis, M.,
Plevris, V. (eds.), Corfu, Greece, 26–28 May 2011.

Casadei, Díez and Verdugo

28

Casadei, F., et al. (2012). EUROPLEXUS User’s Manual: see http://europlexus.jrc.ec.
europa.eu/.

Demkowicz, L., Devloo, Ph. and Oden, J.T. (1985). On an h-type mesh-refinement
strategy based on minimization of interpolation errors. Computer Methods in Applied
Mechanics and Engineering, 53: 67–89.

Demkowicz, L., et al. (1989). Towards a universal h-p adaptive Finite Element strategy,
Part 1. Constrained approximation and data structure. Computer Methods in Applied
Mechanics and Engineering, 77: 79–112.

Erhart, T., Wall, W.A. and Ramm, E. (2006). Robust adaptive remeshing strategy for
large deformation, transient impact simulations. International Journal for Numerical
Methods in Engineering, 65: 2139–2166.

Frey, P.J. and Alauzet, F. (2005). Anisotropic mesh adaptation for CFD computations.
Computer Methods in Applied Mechanics and Engineering, 194: 5068–5082.

Kee, Bernard B.T., Liu, G.R. and Lu, C. (2008). A least-square radial point collocation
method for adaptive analysis in linear elasticity. Engineering Analysis with Boundary
Elements, 32: 440–460.

Li, Y. and Liu, G.R. (2011). An adaptive NS/ES-FEM approach for 2D contact problems
using triangular elements. Finite Elements in Analysis and Design, 47: 256–275.

Liu, G.R. and Tu, Z.H. (2002). An adaptive procedure based on background cells for
meshless methods. Computer Methods in Applied Mechanics and Engineering, 191:
1923–1943.

Liu, G.R., Kee, Bernard B.T. and Chun, L. (2006). A stabilized least-squares radial point
collocation method (LS-RPCM) for adaptive analysis. Computer Methods in Applied
Mechanics and Engineering, 195: 4843–4861.

Meyer, A. (2009). Error estimators and the adaptive Finite Element method on large
strain deformation problems. Mathematical Methods in the Applied Sciences, 32:
2148–2159.

Nguyen-Thoi, T., Liu, G.R. et al. (2009). Adaptive analysis using the node-based
smoothed finite element method. Communications in Numerical Methods in
Engineering, DOI: 10.1002/cnm.1291.

Nithiarasu, P. and Zienkiewicz, O.C. (2000). Adaptive mesh generation for fluid
mechanics problems. International Journal for Numerical Methods in Engineering,
47: 629–662.

Peraire, J., et al. (1987). Adaptive remeshing for compressible flow computations.
Journal of Computational Physics, 72: 449–466.

Tang, Q., Zhang, G.Y., Liu, G.R. et al. (2011). A three-dimensional adaptive analysis
using the meshfree node-based smoothed point interpolation method (NS-PIM).
Engineering Analysis with Boundary Elements, 35: 1123–1135.

Xu, George X., Liu, G.R. and Tani, A. (2010). An adaptive gradient smoothing method
(GSM) for fluid dynamics problems. International Journal for Numerical Methods in
Fluids, 62: 499–529.

Yerry, M.A. and Shephard, M.S. (1983). A modified quad-tree approach to Finite
Element mesh generation. IEEE Computer Graphics and Applications, 3(1): 34–46.

Zhang, G.Y., Liu, G.R., and Li, Y. (2008). An efficient adaptive analysis procedure for
certified solutions with exact bounds of strain energy for elasticity problems. Finite
Elements in Analysis and Design, 44: 831–841.

An algorithm for mesh refinement and un-refinement in fast transient dynamics

29

Zhang, J., Liu, G.R. et al. (2008). A gradient smoothing method (GSM) based on strong
form governing equation for adaptive analysis of solid mechanics problems. Finite
Elements in Analysis and Design, 44: 889–909.

Appendix

Here are the auxiliary procedures mentioned in Sections 3.2 and 3.3.

Algorithm A.1 - Determination of internal and external faces.
Let j be the neighbor and p the p-neighbor of element i across its face kF . Then:

• If 0j > , then kF is internal and lies upon a locally conforming element-to-
element interface.

• Else, if 0p > then kF is internal and lies upon a locally non-conforming element-
to-element interface.

• Else, kF is external.

Algorithm A.2 - Determination of base corner or base face of an external corner.

Let c be an external corner of element i (see criterion in Section 3.3). Let
1 (1,)FF C c=

and
2 (2,)FF C c= be the two faces of i adjacent to c , see Table 2. Then:

• If 1F and 2F are either both external or both internal (see Algorithm A.1), then
corner c lies upon a base corner Bc . This is the c -th corner of iB , the base
element from which element i descends (this element is called the base ancestor
of i). The base ancestor is readily determined by (recursively) computing i ’s
parent up to level 1 in the elements tree.

• Else, 1F and 2F are one external (eF) and one internal (iF). Let Ad , Bd be the
two descendents of the generic CUB8 element adjacent to its c -th corner:

(1,)A Dd C c= and (2,)B Dd C c= , see Table 2. Then:
• If i is either the Ad -th or the Bd -th descendent of its parent, and if this

property holds recursively up to level 1 of the elements tree, then corner c lies
upon a base corner Bc , namely the c -th corner of iB , the base ancestor of i .

• Else, corner c lies upon a base face BF , namely the eF -th face of iB , the base
ancestor of i .

Algorithm A.3 - Determination of complete or incomplete corner star.
The corner star around corner c of element i (see Section 3.4), represented by element
lists 1S and 2S , of length 1Sn ,

2Sn is complete if and only if:
• Either

1 0Sn > and
1 1()SS n i= . In this case it is

2 0Sn = .
• Or,

1 0Sn > and
2 0Sn > and

1 1 2 2() ()S SS n S n i= π . This happens when there is a
“big” p-neighbor without a corner superposed to corner c which “closes” the star,
see e.g. Fig. 7d. We denote such a p-neighbor a face p-neighbor, as opposed to a
corner p-neighbor.

