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A procedure to locally refine and un-refine an unstructured computational grid of four-node 
quadrilaterals (in 2D) or of eight-node hexahedra (in 3D) is presented. The chosen refinement 
strategy generates only elements of the same type as their parents, but also produces so-called 
hanging nodes along non-conforming element-to-element interfaces. Continuity of the solution 
across such interfaces is enforced strongly by Lagrange multipliers. The element split and un-split 
algorithm is entirely integer-based. It relies only upon element connectivity and makes no use of 
nodal coordinates or other real-number quantities. The chosen data structure and the continuous 
tracking of the nature of each node facilitate the treatment of natural and essential boundary 
conditions in adaptivity. A generalization of the concept of neighbor elements allows transport 
calculations in adaptive fluid calculations. The proposed procedure is tested in structure and fluid 
wave propagation problems in explicit transient dynamics. 
Keywords: Mesh refinement, mesh un-refinement, adaptivity, 3D, explicit, transient dynamics. 

1. Introduction 

The numerical simulation of complex 3D fast transient dynamic phenomena, e.g. for the 
prediction of blast effects on critical infrastructures, requires long calculations even on 
today’s computers, due to the large number of elements—typically in the order of 
millions or even more—needed to obtain the desired accuracy. One of the most 
promising techniques to save CPU time is mesh adaptivity, i.e. automatic mesh 
refinement and un-refinement in order to “put the small elements only where they are 
really needed”. Adaptive techniques based on error estimators/indicators are nowadays 
relatively common in statics, but their application in fast transient dynamic problems, 
characterized by wave propagation, is still challenging. In order to follow rapidly 
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evolving phenomena, the chosen mesh adaptation techniques must be particularly simple, 
efficient and robust. 

This paper presents a strategy to continuously refine and un-refine a computational 
mesh in explicit fast transient dynamics. The element shapes considered here are only the 
4-node quadrilateral (QUA4) in 2D and the 8-node hexahedron (CUB8) in 3D. However, 
the method can be applied with minor modifications also to other element shapes. One 
basic choice is that, when splitting an element in order to locally refine the mesh, only 
elements of the same shape as their “parent” (i.e. either QUA4 or CUB8) are generated. 
This simplifies the geometry- and connectivity-updating calculations and contributes to 
the robustness of the method, but also produces so-called “hanging” nodes along the non-
conforming element-to-element interfaces, i.e. in the zones where element size varies. 

Over the last three decades a vast literature has been produced on mesh refinement 
techniques related to adaptivity, and a review is out of scope here. As concerns the purely 
geometric aspects of element splitting and un-splitting and the tree-like data organization, 
the strategy chosen here resembles the one proposed for example in 2D by Yerry and 
Shephard already in 1983 and by Demkowicz, Oden et al. [1985; 1989]. Similar 
techniques are still used nowadays in complex 3D applications; see e.g. Meyer [2009] or 
Burstedde et al. [2009], where massive parallelization aspects are discussed. 

Our final target is to use mesh adaptivity in safety studies to evaluate, in particular, 
the vulnerability of buildings or other critical infrastructure to blast loading. These 
applications require modeling of the fluid and of the structure (including failure and 
fragmentation), plus robust and efficient fluid-structure interaction (FSI) algorithms. 
Numerical models are huge in 3D, with millions of finite elements or finite volume cells, 
mainly in the fluid domain. Therefore, adaptivity can be exploited in a variety of 
manners. For example: to accurately track the shock fronts of blast waves, to improve the 
representation of material interfaces and of free surfaces (e.g. in blast loading of 
submerged structures), and to automatically refine the fluid mesh near structural walls for 
improved accuracy of embedded-type FSI algorithms. The first task requires suitable 
error indicators, see e.g. the pioneering work of Peraire et al. [1987], the comprehensive 
paper by Nithiarasu and Zienkiewicz [2000] and the article of Frey and Alauzet [2005], 
for fluid problems, or the recent paper by Erhart, Wall and Ramm [2006] on large 
deformation under impact, for solid problems. 

The present work deals with only one ingredient of adaptive formulations, i.e. the 
geometrical and data-structure aspects related to continuous mesh refinement and un-
refinement during a transient dynamic solution. The subject of error estimators/ 
indicators—or of any other criteria (e.g. structure proximity in FSI) needed to 
automatically drive mesh adaptation—is left for a subsequent contribution. 

The class of problems of interest here, namely fast transient FSI phenomena related to 
blast loading of complex 3D structures up to failure and fragmentation, can partially 
justify the specific choice of elements shape (quadrilaterals/hexahedra instead of the 
simpler and more commonly used, in adaptivity, triangles/tetrahedra) and of refinement 
strategy (which produces non-conforming refined meshes due to hanging nodes). In this 
class of applications use is typically made of “embedded” FSI algorithms, see e.g. 
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Casadei et al. [2011],  whereby the structure mesh is immersed in a regular (even uniform 
sometimes) background fluid mesh. This explains the use of quadrilaterals/hexahedra, 
without need for complicated mesh generation tools that typically operate only on 
simplexes (triangles/tetrahedra). Although structure adaptivity is also considered below 
for full generality, we are thus mainly interested in adapting the fluid domain. 

The interested reader may find it useful to compare the present mesh refinement 
strategy with the more widely used ones, based upon simplex elements, e.g. in the papers 
by Liu, Zhang and co-workers. The use of simplex shapes facilitates automatic meshing 
and re-meshing of arbitrarily complex domains, whenever this is needed: not only for the 
discretization of the computational domain in FE/FV solid mechanics [Zhang, Liu et al. 
(2008-2011), Nguyen-Thoi, Liu et al. (2009)] and in fluids [Xu, Liu et al. (2010)], but 
also in those mesh-free formulations which still require a background mesh to perform 
numerical integration [Liu and Tu (2002), Liu, Kee et al. (2006, 2008)]. 

Mesh refinement in the cited references makes typically use of Delaunay 
triangulation and/or of its dual, the Voronoi diagram, in order to obtain optimal and 
conforming refined (arbitrary, unstructured) meshes. This may sometimes lead to badly-
shaped (highly distorted) elements, thus requiring additional treatments such as redundant 
cells removal, diagonal swapping or grid smoothing. In the present approach refinement 
is conceptually straightforward, being based on simple bisection. This generates only 
descendent elements of the same shape and aspect as their parent (which is important, 
especially in 3D) and avoids any element distortion by construction. However, the price 
to be paid is the appearance of hanging nodes (non-conforming interfaces), which require 
a specific treatment, e.g. by Lagrange multipliers as proposed below. It is also clear that 
such a technique is especially useful when the base mesh is regular, although not 
necessarily structured (which is the case in the applications envisaged here). With 
geometrically complex domains to be discretized by conforming meshes, the use of 
simplexes is obviously superior. As concerns efficiency of the proposed procedure, no 
comparison with other methods (e.g. based on simplexes) was attempted. Despite its 
simplicity (bisection) the present procedure is relatively involved in 3D, due to hanging 
nodes. However, the resulting information on the nature of nodes and of neighboring 
elements greatly facilitates the treatment of boundary conditions (and of transport terms 
in fluids), thus recovering part of the effort devoted to geometrical calculations. 

This paper is organized as follows. Section 2 presents the chosen mesh refinement 
strategy, the classification of nodes—in such a way to facilitate the treatment of boundary 
conditions and the enforcement of continuity constraints—and the neighborhood relations 
between elements, which are useful both for element adaptation and for the calculation of 
numerical fluxes in fluid problems. Then in Section 3 the element splitting and un-
splitting algorithms are detailed. Section 4 shows how to impose constraints on the 
adaptive solution according to the nature of each node resulting from the algorithms of 
Section 3. The calculation of numerical fluxes in adaptive fluid meshes using a 
generalized notion of neighbors is also detailed. Numerical examples are presented in 
Section 5 and conclusions and perspectives for future developments are given in Section 
6. Some auxiliary procedures are listed in the Appendix. 
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The proposed algorithms are implemented and tested in EUROPLEXUS [Casadei et 
al. (2012)], a computer program for fast transient analysis of fluid-structure systems 
under dynamic loading, which is jointly developed by the French Commissariat à 
l’Energie Atomique (CEA Saclay) and by the Joint Research Centre of the European 
Commission (JRC Ispra). 

2. Mesh refinement strategy 

The chosen mesh refinement strategy is illustrated in 2D for the QUA4 element (Fig. 1). 

2.1.  Base mesh 

First, some terminology is introduced for the base mesh, i.e. the initial (coarse) mesh, 
assumed to be given in input (left drawing in Fig. 1). Let i  be the generic element, of 
vertices IV , 1, , 4I = K  which coincide with the four element nodes I , J , K , L . 
Elements are numbered anti-clockwise, e.g. IJKL  for element i  in the figure. Each 
element has four faces kF , 1, , 4k = K , with two nodes each: IJ , JK , KL , LI  in the 
example. The mesh information is completed by the list of neighbor elements, or simply 
neighbors, across each face. This list is built up once by performing a search over the 
base mesh, after reading it as input data. Two elements are (reciprocally) neighbors 
across a given face if the face belongs to both elements (with opposite orientations). In 
Fig. 1 element i  has no neighbor across faces 1 and 2 while it has neighbors j  and l  
across faces 3 and 4, respectively. The presence of a neighbor indicates an internal face 
(within the domain), while its absence indicates an external face (on the domain 
boundary). The base mesh is assumed conforming, hence neighbors are reciprocal: if i  
has neighbor j  across one of its faces ( )i

kF , then j  has neighbor i  across one of its 
faces ( )j

lF , and vice versa. Note also that the base mesh is assumed unstructured for full 
generality, although all numerical examples in Section 5 use structured element patches 
for simplicity. 

2.2.  Element splitting 

A generic element i  is split as shown in Fig. 1, right drawing. Four descendent elements 
1i , 2i , 3i , 4i  are created, all of which have element i  as their parent element. In addition, 

 
Fig. 1.  Splitting a QUA4. 



An algorithm for mesh refinement and un-refinement in fast transient dynamics 
 

5 

 
Fig. 2.  Further splitting. 

one to five new descendent nodes are created. In the example, n  is the central node, 
which is always created, while 1b , 2b , 1h , 2h  are the face nodes. A new face node is 
created or not, depending upon the mesh state across the face itself. If there is a neighbor, 
and if this has been previously refined, then the face node exists already; otherwise, a 
new face node is created. In the example of Fig. 1 all four face nodes are created upon 
splitting of element i . 

Element splitting is a recursive process, and can go on as shown e.g. in Fig. 2. 
Therefore, it seems convenient to store elements in a tree-like data structure [Yerry and 
Shephard (1983)], see Fig. 3 corresponding to the last mesh of Fig. 2. Each element 
occupies a certain level in the tree, with base elements (and only them) at level 1 by 
convention. Base elements have no parent. The notions of right and left siblings are also 
useful, to traverse the tree quickly in both directions. Elements with descendents are 
called branches while elements without descendents are called leaves. Note that only leaf 
elements take part in the computation. Branch elements are not computed, but are kept in 
memory (flagged as idle). This facilitates mesh un-refinement by simply re-activating a 
previously idle element. 

In Fig. 2 the example of Fig. 1 is continued by showing further splitting of level-2 
element 1i , which generates level-3 descendents 11i , 12i , 13i , 14i  and five new nodes. 
Then, base element j  is split into 1j , 2j , 3j , 4j , showing a case where one of the face 
nodes ( 1h ) exists already and needs not be created. However, the nature of this node 
changes from hanging to non-hanging (see Section 2.3) and therefore it is renamed 1n  for 
clarity. 

 

Fig. 3.  Tree data structure for the elements. 
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2.3.  Node types 

With the chosen mesh refinement strategy there are up to four different types of nodes in 
a mesh, and the nature of each node is (continuously) tracked during the transient. Like 
for elements, a level is associated to each node. The nodes of the base mesh are called 
base nodes and are the only nodes at level 1. All other nodes are descendent nodes, of 
which there are three types: hanging nodes, boundary-hanging nodes and non-hanging 
nodes, see Table 1. 

Table 1.  A classification of nodes. 

Node type Location Classification Interface 

 

Base 
Internal — — 
Boundary — — 

Descendent 

Internal 
Non-hanging Conforming 
Hanging Non-conforming 

Boundary 
Hanging (3D only) 

Non-conforming 
(internally) 

B-hanging — Example of hanging 
nodes on 3D boundary 

 
Hanging nodes, e.g. 1h  and 2h  in Fig. 1, are a direct consequence of the chosen 

element splitting procedure. They occur at locally non-conforming element-to-element 
interfaces, i.e. wherever a “bigger” and a “smaller” element are contiguous but without 
sharing a common face. Suitable constraints have to be imposed at such nodes in order to 
ensure continuity of the numerical solution across the interface. For example, in a 
displacement-based FE formulation it is clear that the degrees of freedom of 1h  in Fig. 1 
are not free. They depend (“hang”) upon those of nodes L  and K  (i.e. the nodes of the 
face on which the hanging node is located), if continuity has to be ensured. These nodes 
are called the masters of the hanging node. 

Boundary-hanging nodes (b-hanging for brevity in the following), e.g. 1b  and 2b  in 
Fig. 1, are the descendent nodes, located on the boundary of the body (as the name 
implies), which lie on a conforming element-to-element interface. Note that in 2D a 
descendent node on the boundary is guaranteed to lie upon a conforming interface. 
Consequently, in 2D all descendent nodes on the boundary are b-hanging. However, in 
3D the same property does not hold (see the inset in Table 1 and the discussion in Section 
3), and therefore both conditions must be satisfied for a 3D node to be b-hanging. B-
hanging nodes do not really “hang” upon any other nodes (and therefore the term is 
perhaps somewhat misleading), but their identification greatly facilitates the treatment of 
boundary conditions in an adaptive mesh. These nodes can be programmed so as to 
automatically “inherit” any boundary conditions that a user may have prescribed on the 
base mesh, i.e. on the nodes of the base face upon which the b-hanging node is located. 
Such nodes are called the masters of the b-hanging node. For example, in Fig. 2 nodes 1b  
and 3b  inherit conditions from base nodes I  and J . Note that the masters of a b-
hanging node are always base (boundary) nodes, while the masters of a hanging node can  
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Fig. 4.  Neighbors and pseudo-neighbors. 

 
be of any type. For the element shapes considered here, each hanging or b-hanging node 
has two masters in 2D, two or four masters (depending on whether it is on a corner or on 
a face) in 3D. 

Non-hanging nodes are any other descendent nodes. They are necessarily located in 
the interior of the domain, at locally conforming element-to-element interfaces. The 
degrees of freedom associated with these nodes are completely free. In fact, the case of 
“boundary” conditions (constraints) imposed by a user on internal nodes is not 
considered in this paper. 

2.4.  Neighbors and pseudo-neighbors 

Another consequence of the chosen element splitting procedure is that the simple bi-
univocal neighborhood relations valid for the (conforming) base mesh no longer hold for 
a locally refined mesh, see Fig. 4. Neighbors are connected by a double arrow as in 
i j´ . When element i  is split into its descendents, there are two of these (smaller) 
elements 3i  and 4i  adjacent to element j . We identify this situation by saying that 3i  
and 4i  have j  as pseudo-neighbor (or simply p-neighbor for brevity), across their upper 
face in the example. Note that this relation is univocal: element j  does not have 3i  and 
4i  as p-neighbors across its bottom face in the example. In fact, it (still) has element i  

(their parent, now idle) as neighbor. P-neighbors are connected by a single arrow as in 

4i jÆ . The following definitions of neighbor and of p-neighbor are adopted: 
• The neighbor of an element across a face is the element of the same level, active 

(leaf) or idle (branch), adjacent to the face, or 0 if there is no such element. 
• The p-neighbor of an element across a given face is the lower-level (i.e. larger) 

active (leaf) element adjacent to the face, or 0 if there is no such element. 
Neighbor and p-neighbor are mutually exclusive at a given face. That is, an element 

can have either a neighbor, or a p-neighbor (or nothing) across a face, but it cannot have 
both. This choice simplifies the implementation and speeds up calculations because the 
table of neighbors and p-neighbors has a fixed, known length. The presence of a neighbor 
across a face indicates an internal, locally conforming element-to-element interface. The 
presence of a p-neighbor indicates an internal, locally non-conforming interface. In fact, 
on the concerned face (of the p-neighbor) there are always one or more hanging nodes;  
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Fig. 5.  CUB8 vertices, faces, corners. 
 

see the examples. The absence of a neighbor and p-neighbor indicates that the face is 
external. The p-neighbor relation is univocal according to the above definition. That is, if 
element i  has j  as p-neighbor, then j  has i  neither as p-neighbor, nor as neighbor. In 
fact, in this case j  has an ancestor of i  (more precisely, the one at the same level as j ) 
as neighbor. 

Keeping track of neighbors and p-neighbors during mesh refinement and un-
refinement serves two purposes: first, it is used in the mesh adapting algorithms 
themselves; second, it allows efficient computation of transport terms in fluid 
applications, see Section 4.3. 

3. Element splitting and un-splitting algorithms 

The element splitting and un-splitting algorithms are now presented, for generality in 3D 
for the CUB8 element shape, i.e. the 8-node hexahedron. The same algorithms are 
applied also in 2D to the QUA4 element shape, with the simplifications indicated in 
Section 3.7. Extensions to other 2D or 3D element shapes are also possible using the 
same strategy, with only minor modifications. Before detailing the algorithms, some 
further definitions are given and the data structure used in the implementation is shortly 
introduced. 

3.1.  The CUB8 hexahedron 

The CUB8 element is shown in Fig. 5. It has eight vertices (or nodes) IV , 1, ,8I = K  
enumerated (in the element connectivity table) in such a way that the first four are located 
on the “bottom” element face, and so that the oriented normal to this face “enters” into 
the element. The last four vertices, located on the “upper” element face, are enumerated 
consistently (in this case the oriented normal “exits” from the element) so that 5V  stays 
“above” 1V , etc. 

The element has 6 faces kF , 1, , 6k = K , with four nodes each. Face numbering is 
such that the oriented normal always exits from the element. This convention is called 
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anti-clockwise orientation. For example, 
1 1 4 3 2{ , , , }F V V V V= , or 

1 {1, 4,3, 2}F =  for 
brevity. Faces are shown in Fig. 5 and are listed (together with all other constant 
connectivity data) in Table 2. 

 
Table 2.  Constant connectivity data used for the CUB8 element shape. 

Data Symbol Values 
Vertices 

1 8V ÷
 1-2-3-4-5-6-7-8. 

Faces 
1 4,1 6F
÷ ÷

 1-4-3-2; 1-2-6-5; 2-3-7-6; 3-4-8-7; 4-1-5-8; 5-6-7-8. 

Corners 
1 2,1 12C
÷ ÷

 1-2; 2-3; 3-4; 4-1; 1-5; 2-6; 3-7; 4-8; 5-6; 6-7; 7-8; 8-5. 

Faces to corners 
,1 4,1 6CF ÷ ÷

 4-3-2-1; 1-6-9-5; 2-7-10-6; 3-8-11-7; 4-5-12-8; 9-10-11-12. 

Corners to face 
,1 2,1 12FC ÷ ÷

 1-2; 1-3; 1-4; 1-5; 2-5; 3-2; 4-3; 5-4; 2-6; 3-6; 4-6; 5-6. 

Corners to corner nodes 
,1 2,1 12CC ÷ ÷

 1-2; 2-3; 3-4; 4-1; 1-5; 2-6; 3-7; 4-8; 5-6; 6-7; 7-8; 8-5. 

Faces to face nodes 
,1 2,1 6FF ÷ ÷

 1-3; 1-6; 2-7; 3-8; 4-5; 5-7. 

Corners to descendents 
,1 2,1 12DC ÷ ÷

 1-2; 2-3; 3-4; 4-1; 1-5; 2-6; 3-7; 4-8; 5-6; 6-7; 7-8; 8-5. 

 
3D elements also have corners, which do not exist in 2D. In the CUB8 there are 

twelve corners iC , 1, ,12i = K , with two nodes each, see Fig. 5. For example, 

1 1 2{ , } {1, 2}C V V= = . Much of the complexity of 3D algorithms comes from the fact that 
in order to split or un-split an element one has to consider not only the elements adjacent 
to faces (i.e. neighbors and p-neighbors), but also “adjacent to corners”, see Section 3.3. 
This is not the case in 2D. 

Each face of the CUB8 is bounded by four corners. This information is kept in a 
constant table ( , )CF c f , 1, , 4c = K , 1, ,6f = K  where the first entry is the corner and 
the second entry is the face. For example, for the first face of the CUB8: 

4 3 2 1( ,1) { , , , } {4,3, 2,1}CF c C C C C= = . Note that the corners of a given face kF  are 
enumerated in the same order as face nodes: i.e. anti-clockwise starting from the first 
node of the face. 

Each corner is adjacent to two faces of the element. This information is kept in a 
constant table ( , )FC f c , 1, 2f = , 1, ,12c = K  where the first entry is the face and the 
second entry is the corner (this is somehow the “inverse” of CF ). For example, for the 
first corner of the CUB8: 

1 2( ,1) { , } {1, 2}FC f F F= = . 
 

 

Fig. 6.  Splitting/un-splitting a CUB8. 
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The CUB8 element is split into a patch of eight CUB8 descendents jd , 1, ,8j = K , 
see Fig. 6. They are enumerated in such a way that the j -th descendent jd  is adjacent to 
(contains) the j -th vertex jV  of the parent. In the splitting/un-splitting process, the 
following nodes have to be considered in addition to the cube vertices: one node for each 
face, called the face nodes 

FN , 1, , 6F = K , one node for each corner, called the corner 
nodes 

CN , 1, ,12C = K , and one node at the element centre, called the central node 

MN . Thus, by including also the vertices, there are 8 6 12 1 27+ + + =  patch nodes, 
involved in the splitting or un-splitting of a CUB8. These are set in an array pP , 

1, , 27p = K  in the following order, see Fig. 6: first the eight vertices of the parent 
element (

1 8 1 8P V∏ ∏= ), then the six face nodes (
9 14 ,1 6FP N∏ ∏= ), then the twelve corner 

nodes (
15 26 ,1 12CP N∏ ∏= ), and finally the central node (

27 MP N= ). The notation 
a bA
÷

 is 
used as a shorthand to indicate all items from a  to b  in array A . 

An important assumption in the algorithms to be presented below is that all 
descendent elements are numbered consistently with their parent. This means, for 
example, that if the first face of an element points (say) “downward”, then all its 
descendents’ first faces also point downward, etc. This choice is quite natural and greatly 
facilitates the splitting/un-splitting operations. However, this assumption can only be 
satisfied for elements which, in adaptivity, produce descendents of the same shape as—
and which can be oriented in the same way as—their parent, like is the case here. 

There are also other (constant) data useful in the element splitting/un-splitting 
process. Consider first the following problem: given a branch element i , identify the 
(corner) node cN  located in the middle of its c -th corner, without having at disposal the 
patch nodes table 

pN  for i  (the construction of this table is relatively expensive and is 
performed only for the current element i  being split or un-split, not for its adjacent 
elements). Note that node cN  does not belong to element i , but it belongs to at least one 
(more precisely, to two) of its descendents. A constant table ( , )CC m c , 1, 2m = , 

1, ,12c = K  solves the problem: the first entry (1, )CC c  is the index of the descendent, 
the second entry (2, )CC c is the index of the node. Thus, for example, the corner node on 
corner 1 of a branch element is the second node ( (2,1) 2CC = ) of its first descendent 
( (1,1) 1CC = ). 

A similar constant table ( , )FF m f , 1, 2m = , 1, , 6f = K  allows to find the face 
node on the f -th face of a branch element i . The first entry (1, )FF f  is the index of the 
descendent; the second entry (2, )FF f is the index of the node. Thus, for example, the 
face node on face 1 of a branch element is the third node ( (2,1) 3FF = ) of its first 
descendent ( (1,1) 1FF = ). 

Finally, a constant table ( , )DC m c , 1, 2m = , 1, ,12c = K  lists the two descendents 
adjacent to each corner c  of a branch element, in the same order as corner nodes are 
listed in table iC . For example, the descendents adjacent to the first corner of a parent are 
(in this order) 1d  and 2d  (thus (1,1) 1DC =  and (2,1) 2DC = ). Note that, with the 
numbering conventions assumed here for the CUB8, it is 

i C DC C C= =  so only one of 
these three tables would suffice. However, the tables are kept distinct for generality in 
view of the application of these algorithms to other element shapes. 
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3.2.  Some auxiliary procedures 

There are some auxiliary procedures which are useful in the splitting/un-splitting 
algorithms to be detailed below. The first one computes the nature of a face kF  of an 
element i , i.e. whether the face is internal to the computational domain or external, i.e. 
on the boundary of the domain, based upon the neighbor and the p-neighbor at the face. 
The procedure (Algorithm A.1) is listed in the Appendix. 

Another procedure (Algorithm A.2 in Appendix) computes the nature of an external 
corner iC  of a descendent element jd , i.e. whether this corner lies on a base corner BC  
or on a base face BF . A criterion to find whether a corner is internal or external will be 
presented below in Section 3.3, based on the concept of corner star introduced there. Note 
that with the element splitting/un-splitting strategy used here an element corner—
whatever the level of the element—is either (completely) internal to the domain or 
(completely) external, i.e. on the domain boundary. It is impossible to have partially 
internal, partially external corners. 

3.3.  Corner neighbors and corner star data structure 

The nature of a corner node (hanging, b-hanging, non-hanging) depends upon the whole 
set of elements “adjacent” (in a broad sense) to the corner. We call such elements corner 
neighbors and the list of these elements the corner star of element i  with respect to (i.e. 
around) its corner c , see Fig. 7. The number of neighbors to a corner is potentially 
unlimited for an unstructured mesh, but in practice there are between one (element i  
itself) and slightly more than four elements in a corner star. Values much larger than four 
are unlikely because the elements would be badly shaped. For a regular mesh of CUB8 
there are exactly between one and four elements in each corner star. 

As shown in Fig. 7, it is useful to distinguish between a complete star and an 
incomplete star. A star is complete if the space around the corner is entirely filled by 
elements (without “holes”), else the star is incomplete. One sees then immediately that an 
element’s corner is external if and only if its corner star is incomplete, else the corner is 
internal. This distinction is useful because Algorithm A.2 needs to be applied only to 
external corners. Note incidentally that the nature of a corner cannot be computed based 
only upon the nature of its nodes: in fact a corner whose nodes are all external can be 
internal. The same holds for faces. 

The procedure to determine whether or not a star is complete is listed in the Appendix 
(see Algorithm A.3). 

3.4.  Computing a corner star 

The calculation of the corner star of an element i  around its corner c  is the most CPU-
expensive component of the present algorithms, because it must deal with a large variety 
of geometrical cases; see e.g. Fig. 7. Two different approaches have been tentatively 
considered. 

The first one consists in performing a (fast) geometrical search in the vicinity of the 
corner under consideration, in order to locate all the potentially involved elements. To  
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a) 

 
b) 

 
c) 

 
d) 

Fig. 7.  Examples of corner stars (complete or incomplete). 
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this end the extent of the concerned zone around the corner has to be chosen, and this is 
not simple in the presence of elements of very different sizes (p-neighbors), like is the 
case here. The zone must be large enough to ensure that no potential neighbor is 
overlooked, but using large zones increases the cost of the search. A second drawback is 
that the search uses real-number quantities, e.g. nodal coordinates. The associated tests 
are delicate and the robustness of the method can be affected. Finally, elements which lie 
within the zone are not guaranteed to be corner neighbors and the verification requires 
further complex calculations. 

The second approach is based on the observation that star elements are (recursively) 
the neighbors or p-neighbors of i  across its two faces 1F , 2F  adjacent to c , see Fig. 7a. 
So an algorithm can start from face 

1 (1, )FF C c=  and recursively compute neighbor and 
p-neighbor elements (adjacent to this corner) until it either reaches (again) the current 
element i , or the search terminates. In the first case the star is complete, and this can be 
recognized by the presence of i  as the last element in the list. In the second case, the 
same search process is repeated, but starting from face 

2 (2, )FF C c= . Thus a generic 
corner star is made of two element lists, 1S  and 2S . Let 1Sn , 

2Sn  be the number of items 
in the lists. Note that element i  is not inserted at the beginning of the lists, which start 
directly with i ’s neighbor or p-neighbor across the corresponding face. Element i  can be 
present (as the last item) in 1S , and in this case the star is complete just by using the first 
list, so that 

2 0Sn =  and 2S  is not built up at all. However, element i  cannot appear in 
2S . 

The advantage of the second method, which is the one chosen here, is that the search 
is entirely integer-based and therefore very robust. In fact, there are no tests on real-
number quantities, subjected to a tolerance. Only element connectivity is used (nodal 
coordinates are never considered), and the knowledge of neighbors and p-neighbors 
resulting from the algorithms is fully exploited, resulting in a very efficient algorithm. 

The method has only one limitation: since it is based on (recursively) using neighbors 
and p-neighbors, it can only deal with corner stars containing at most one “hole”. As 
shown in Fig. 7d (last drawing), a star with more than one hole would not be entirely 
detected by this procedure (although it would be correctly marked as incomplete). 
However, such a case can be considered pathological, and thus impossible in real 
applications, since it is not good practice in Finite Elements to connect different 3D 
continuum mesh zones just along a corner. 

The procedure to build up a corner star is relatively involved (although not difficult) 
due to the variety of possibilities, especially in the presence of p-neighbors, see some 
examples in Fig. 7. It is not completely detailed here for brevity. The constant data 
structures listed in Table 2 are exploited to speed up the calculations. 

3.5.  Element splitting algorithm 

With the definitions and the procedures given in the previous Sections, the element 
splitting and un-splitting algorithms can now be detailed. The tasks of the element 
splitting algorithm are: 
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• To find the node numbers of the split element patch 
1 27P
÷

 defined in Section 3.1, 
by creating any face- or corner nodes as needed, or by locating and re-using them 
if they already exist. 

• To define the hanging status (hanging, b-hanging or non-hanging) of newly 
created nodes; to check the hanging status of re-used nodes and to update it if 
necessary. 

The algorithm consists of four parts: 
A) Loop on the eight parent element nodes to find the cube vertices 

1 8P÷
. Their 

hanging status is not affected. 
B) Loop on the six element faces to find the face nodes 

9 14N
÷

. 
C) Loop on the twelve element corners to find the corner nodes 

15 26N
÷

. 
D) Generate the element central node 27P  and set it non-hanging. 

Parts A) and D) of the algorithm are trivial and need no further comment. Parts B) and C) 
are detailed below. The updating of neighbors and p-neighbors just after an element is 
split is given in Section 3.8. 

B) – Loop on element faces. 

1. Loop on the six faces F  of current element i . Let j  be the neighbor, and p  the 
p-neighbor, of i  across face F . 

2. If 0j = , i.e. there is no neighbor, then: 
• Create face node 

8 FP +
. 

• If 0p =  the face is external. Set 
8 FP +

 as b-hanging upon the four nodes of 
the corresponding base face BF , i.e. face F  of i ’s base element. BF  must 
exist in this case, since i  has neither a neighbor nor a p-neighbor across F . 

• Else 0p >  and 
8 FP +

is internal. Set it as hanging upon F ’s four nodes. 
• Interpolate coordinates and nodal variables at 

8 FP +
. 

3. Else 0j >  (so it must be 0p = ). 
a. If j  is a leaf, then: 

o  Create face node 
8 FP +

. 
o  Set it as hanging upon F ’s four nodes. 
o  Interpolate coordinates and nodal variables at 

8 FP +
. 

b. Else j  is a branch. Then: 
o  Find old face node (which must exist already) 

8 FP +
. 

o  Check that it was hanging and set it as non-hanging. 
4. Next face F . 

C) – Loop on element corners. 

1. Loop on the twelve corners C  of current element i , of level L . Let 1F , 2F  be 
the two faces of i  adjacent to the present corner C , let 1N , 2N  be the end-nodes 
of corner C , and let 

CN  indicate the corner node (either existing or to be 
created), see Fig. 7a. 

2. Determine whether faces 1F , 2F  are internal or external by Algorithm A.1. 
3. Build up the corner star of elements around C , see Section 3.4. 
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4. Find the corner node 
CN , if it exists already, otherwise create it: 

• If the corner star is not empty and contains at least one element m  (other 
than i ) of level L  (i.e. if m  has a corner mC  of extremes 1N , 2N ) and m  is 
a branch, then 

CN  exists and is readily determined from m ’s descendents. 
Check that 

CN  was hanging upon 1N  and 2N . Set 
14 C CN N
+
= . 

• Else
CN  is created by interpolation between 1N  and 2N . Set 

14 C CN N
+
= . 

5. Compute the (new) hanging status of 
CN : 

• If the corner star is either empty or contains only elements of level L  (i.e. if 
there are only neighbors and no p-neighbors) and if all such elements are 
branches, then: 
• If C  is external (the star is incomplete), then 

CN  is b-hanging. More 
precisely: 
•     If C  is part of an (external) base corner BC  (see Algorithm A.2), 

then 
CN  b-hangs upon the two (base) nodes of BC . 

•     Else C  is not part of a base corner, it just lies upon an (external) 
base face e

BF  (see Algorithm A.2), and 
CN  b-hangs upon the four 

(base) nodes of e

BF . 
• Else C  is internal (the star is complete) and 

CN  is non-hanging. 
• Else the corner star is not empty and either contains at least one element of 

level M L<  (i.e. a p-neighbor), or it contains only elements of level L , but 
at least one of them is a leaf. Then, 

CN  is hanging upon 1N  and 2N . 
6. Next corner C . 

3.6. Element un-splitting algorithm 

The task of this algorithm is to un-split an element, i.e. to re-activate a previously split 
(idle) element, starting from its eight descendents (which must be all leaves). At the 
beginning of the algorithm 

1 27 0P
÷

>  and all corresponding nodes exist. Upon un-splitting 
some nodes are deleted, the others are kept but possibly their hanging status changes. The 
algorithm consists of four parts: 

A) Fill 
1 27P
÷

 from the descendents of the element being un-split. 
B) Loop on the six element faces to treat the face nodes 

9 14P
÷

. 
C) Loop on the twelve element corners to treat the corner nodes 

15 26P
÷

. 
D) Verify that the old central node 27P  was non-hanging and destroy it. 

Parts A) and D) of the algorithm are trivial and need no further comment. Parts B) and C) 
are detailed below. The updating of neighbors and p-neighbors after element un-splitting 
is given in Section 3.9. 

B) – Loop on element faces. 

1. Loop on six faces F  of current element i . Let j  be the neighbor to i  across F . 
2. If 0j = , i.e. if there is no neighbor, then: 

• Check that face node 
8 FP +

 was hanging or b-hanging, then destroy it. 
3. Else 0j >  i.e. there is a neighbor. 

• If j  is a leaf: check that face node 
8 FP +

 was hanging, then destroy it. 
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• Else j  is a branch. Check that face node 
8 FP +

 was non-hanging, then set it 
hanging upon the four face nodes of F . 

4. Next face F . 

C) – Loop on element corners. 

1. Loop on the twelve corners C  of current element i , of level L . Let 1N , 2N  be 
the end-nodes of corner C , and let 

CN  indicate the corner node, see Fig. 7a. 
2. Build up the corner star of elements around corner C , see Section 3.4. 
3. If the corner star is not empty and contains at least one element m  (other than i ) 

of level L  (i.e. m  has a corner mC  of extreme nodes 1N , 2N ), and m  is a 
branch, then 

CN  is kept, and its hanging status is checked and set as follows: 
• If C  is external, i.e. if the star is incomplete, then check that 

CN  was either 
b-hanging (either on two or on four base nodes) or hanging upon 1N , 2N . 

• Else C  is internal, i.e. the star is complete. Check that 
CN  was either non-

hanging or hanging upon 1N , 2N . 
• Set 

CN  hanging upon 1N  and 2N . 
4. Else, destroy 

CN . 
5. Next corner C . 

3.7. The QUA4 quadrilateral 

The element splitting and un-splitting algorithms for the QUA4 quadrilateral in 2D 
follow exactly the same strategy as those for the CUB8 element in 3D, with obvious 
adjustments in the number of nodes, faces, neighbors etc. The most notable simplification 
is the absence of corners, and therefore also of corner stars, so that parts C) of the 
algorithms of Sections 3.5 and 3.6 do not exist in 2D. 

3.8. Treatment of p-neighbors upon element splitting 

When an element i  of level L  is split as shown in Section 3.5, it generates descendents 
of level 1L +  and i  is flagged as idle. Then: 

• Any element p  that was a p-neighbor of i  across a certain face, remains its p-
neighbor across that same face, see Fig. 8a. 

• Any element k  which had i  as a p-neighbor must be treated. Such elements are 
sought among all descendents (both leaves and branches) of i ’s neighbors, at any 
level K L> . Note that i ’s p-neighbors are not considered here because they are 
necessarily at a level M L<  and by definition they have no descendents. Let K  
be the level of one such element k , which had i  as p-neighbor. Then: 

• If 1K L= + , then one of the descendents of i  (to be determined) becomes 
neighbor of k  and reciprocally, see Fig. 8b. 

• Else 1K L> + . Then one of the descendents of i  (to be determined) 
becomes p-neighbor of k , see Fig. 8c. 
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Case a 

 
Case b 

 
Case c 

 
Case d 

 
Case e 

 
Case f 

Fig. 8.  Updating neighbors and p-neighbors. 
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3.9. Treatment of p-neighbors upon element un-splitting 

When an element i  of level L  is un-split as shown in Section 3.6, its descendents of 
level 1L +  are destroyed and i  (which was flagged as idle) becomes active again. Then: 

• Any element p  that was a p-neighbor of i  across a certain face, remains its p-
neighbor across that same face, see Fig. 8d. 

• No elements could have i  as p-neighbor because i  was idle (branch). However, 
some elements k  could have one of i ’s descendents as neighbor or p-neighbor. 
Such elements must be sought among all descendents (both leaves and branches) 
of i ’s neighbors, at any level K L> . Note that i ’s p-neighbors are not 
considered here because they are necessarily at a level M L<  and by definition 
they are leaves. Let K  be the level of one of such elements k , having one of i ’s 
descendents as neighbor or p-neighbor. Then: 

• If 1K L= + , then k  and one of i ’s descendents (to be determined) were 
neighbors. Element i  becomes p-neighbor of k , see Fig. 8e. 

• Else 1K L> + . Then k  had one of i ’s descendents (to be determined) as p-
neighbor. Element i  becomes p-neighbor of k , see Fig. 8f. 

4. Exploiting the adaptive data structure 

The knowledge of hanging and b-hanging nodes resulting from the algorithms of Section 
3 is exploited in order to impose suitable constraints ensuring consistency of the adaptive 
solution. First, continuity of the solution must be satisfied at nodes on locally non-
conforming element-to-element interfaces (hanging nodes). Second, essential boundary 
conditions at b-hanging nodes must be inherited from the corresponding (base) master 
nodes. All such constraints are of course non-permanent because nodes nature can change 
step by step during the transient. 

Finally, the notion of neighbor and p-neighbor across an element’s face allows to 
efficiently compute numerical fluxes (transport terms) in adaptive fluid calculations. 

4.1.  Constraints on hanging nodes 

As an example of hanging node consider node 1h  in the right part of Fig. 1, which results 
from the splitting of element i . In the current mesh configuration this node hangs upon 
two master nodes, K  and L . These happen to be base nodes in the present case, but this 
is not necessary in general, and is irrelevant as concerns the proposed treatment. 

A displacement-based Finite Element formulation is used in the code. Time 
integration is done explicitly by the Central Difference scheme and the fundamental 
quantity is the velocity v , discretized at nodes. Therefore, in order to ensure continuity 
of the solution around a generic hanging node H  the constraint to be imposed is: 

 
1 i

m

H i Mi
Nv v

=
=∑ . (1) 

where 
iM  are the m  master nodes upon which node H  is hanging, and iN  are suitable 

coefficients. In the example of Fig. 1, 2m =  and eq. (1) becomes 
1
( ) / 2h K Lv v v= + . 
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Constraints (1) are written for each hanging node. Each constraint is split into d  
components, one for each global axis, where d  is the space dimension (2 or 3). All such 
constraints, plus any essential boundary conditions imposed by the user, form a linear 
system of constraints on the (velocity) degrees of freedom (dofs) of the system. Note that 
this system contains only the constrained dofs, not all system dofs. To enforce such 
constraints a method of Lagrange multipliers is used. This requires the numerical 
solution, at each time step, of a linear system of equations and is the only implicit part of 
the transient solution strategy. Interested readers can find full details of the procedure in 
references [Casadei et al. (1995, 2009)]. 

4.2.  Constraints on b-hanging nodes 

As an example of b-hanging node consider node 1b  in the right part of Fig. 1, which 
results from the splitting of element i . In the current mesh configuration this node b-
hangs upon two master nodes, I  and J . Note that, in contrast with the case of hanging 
nodes of Section 4.1, the masters of a b-hanging node are always base nodes. 

An important practical aspect of using adaptivity in real applications is the 
specification of essential boundary conditions. Here we assume that users only know the 
base mesh, which is provided in input to the code, and therefore boundary conditions are 
specified only for the base nodes. It is then desirable that such conditions be 
automatically propagated to any descendent nodes on the boundary that are 
(automatically, i.e. out of user’s control) created during the mesh adaptation process. 

To this end, we exploit the knowledge of b-hanging nodes resulting from the 
algorithms of Section 3. The m  masters 

iM  of a generic b-hanging node are inspected. If 
all of them share the same type of boundary condition, then this condition is imposed on 
the b-hanging node as well, and is added to the system of constraints to be solved by the 
Lagrange multipliers method as described in Section 4.1. This explains why the masters 
of a b-hanging node are always base nodes: because boundary conditions are explicitly 
known only for base nodes, not for descendents. 

For example, assume that in the case of Fig. 1 node I  is blocked in the vertical 
direction, while node J  is blocked in both directions. Then, b-hanging node 1b  would 
also be blocked in the vertical direction. This strategy works well, at least for the simplest 
types of boundary conditions, as shown in the numerical examples of Section 5. 

4.3.  Numerical fluxes in fluid calculations 

The knowledge of the neighbor or p-neighbor at each element face resulting from the 
algorithms of Section 3 allows a precise and efficient calculation of numerical fluxes 
across element-to-element interfaces, an essential ingredient in the solution of fluid 
equations. The procedure is briefly outlined for the case of fluid modeling by Finite 
Elements using a classical fractional step approach, but it can be extended along the same 
lines also to other schemes, e.g. to node-centered or cell-centered Finite Volume 
formulations. 
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In the chosen fractional step approach, transport terms (numerical fluxes) across 
neighboring elements—resulting from Euler equations for compressible inviscid fluids—
are computed according to the so-called lowest-index rule. 

Assuming for the moment a conforming mesh, if elements i  and j  are neighbors at a 
given face, then the flux of mass and energy across the face is evaluated (with the 
appropriate sign, depending on nodal velocities) while treating the element with the 
minimum index, i.e. min ( , )i j  in the general loop over all elements. This ensures two 
things: first, the transport across each face is evaluated only once (correctness); second, 
when an element is treated all fluxes across its faces have been evaluated so that the 
element state can be directly updated, without the need of an additional loop over 
elements (efficiency). This algorithm is generalized as follows to the case of non-
conforming meshes (adaptivity): 

1. Set total mass and energy fluxes to zero for all elements. 
2. Loop over elements. Let i  be the current element. 
3. Loop over i ’s faces. Let F  be the current face, j  the neighbour and p  the p-

neighbor of i  across face F . 
4. If 0j =  then: 

• If 0p =  or 0 p i< <  then skip flux calculations for face F . 
• Else p i> . Compute the (signed) mass and energy fluxes from i  to p  

across F , subtract them from the total fluxes of i  and add them to the total 
fluxes of p . 

5. Else 0j > . Then: 
• If j  is a leaf, then: 

• If j i<  then skip flux calculations for face F . 
• Else j i> . Compute the (signed) mass and energy fluxes from i  to j  

across F , subtract them from the total fluxes of i  and add them to the 
total fluxes of j . 

• Else j  is a branch. Then loop on all active (leaf) descendents jd  of j  
having i  as p-neighbor across one of their faces jf : 
• If 

jd i<  then skip flux calculations for face jf . 
• Else 

jd i> . Compute the (signed) mass/energy fluxes from i  to jd  
across jf , subtract them from the total fluxes of i  and add them to the 
total fluxes of jd . Note that the geometry of (the smaller) face jf , and 
not of (the larger) face F , is used in this case to compute the fluxes. 

• Next jd . 
6. Next face (GOTO 3). 
7. All faces have been considered for the current element i  and therefore its total 

mass and energy fluxes have been computed. Update the element’s physical state 
and compute internal forces. 

8. Next element (GOTO 2). 
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5. Numerical examples 

Three numerical examples are presented to illustrate the proposed mesh refinement and 
un-refinement algorithms in action. In all cases mesh adaptation is piloted by a special 
WAVE directive simulating the propagation of waves in a continuum. Two types of 
waves are considered in these tests: a plane wave and a spherical wave. The first type is 
characterized by a source point and by a direction of propagation, while the second only 
requires the source point. To each wave are assigned a constant imposed propagation 
speed v  and a starting time 0t . Each wave front has two associated length parameters: 1h  
specifies the thickness of the wave front zone in which the mesh has to be refined up to 
an imposed maximum level 

maxL ; 2h  specifies the thickness of the whole wave. The mesh 
refinement level is varied linearly from 

maxL  (finest mesh) to 1 (base mesh) in the zone 
between 1h  and 2h . 

The values of all wave parameters are prescribed according to known analytical 
solutions for the simple academic problems chosen. The following tests cannot be 
considered real adaptive calculations, because in adaptivity mesh refinement should 
rather be (automatically) piloted by suitable error estimators/indicators. However, the 
tests are sufficient to check all geometric aspects of the proposed mesh refinement and 
un-refinement algorithms, and to verify their effects on explicit numerical solutions in 
fast transient dynamics. 

5.1.  Spherical wave in a 3D slab 

The first test simulates propagation of a spherical wave in a square slab of 10 10¥  units 
and of thickness 1. The wave originates in one corner of the slab at time 0. The base mesh 
consists of 10 10 100¥ =  regular cubes and the chosen wave parameters are: 

max 3L = , 

1 1.5h = , 
2 5.0h = , 5000v = . The material is linear elastic but material properties are 

irrelevant in this case because the wave is purely fictitious: no loading is applied and thus 
no stresses are generated. 

The initial mesh is shown in Fig. 9a. Note that some refinement occurs near the wave 
origin (marked by a dot) already at the initial time, so that the wave is then properly 
captured. Since a spherical wave is used rather than a cylindrical one, mesh refinement is 
not uniform across the slab thickness. This is done on purpose in order to submit the 
splitting and un-splitting algorithms to a larger variety of cases than with a cylindrical 
wave. Figs. 9b and 9c show the advancing wave front at 1.5 ms on the surface and within 
the body, respectively. Note that with the chosen parameters mesh transition is quite 
sharp and some base elements ( 1L = ) are adjacent to some maximum-refined elements 
( 3L = ). This is probably not a good choice in practical applications but again, it is used 
here just to show that the proposed algorithms are general and can deal with arbitrary 
level jumps between neighboring elements. An option in the code allows to automatically 
prescribe smooth mesh transitions, such that the level jump between any couple of 
neighboring elements is at most one. This is to say that the index of irregularity of the 
mesh is one, or that a 1-irregular mesh is prescribed, following the terminology 
introduced by Demkowicz et al. [1989]. 
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a) Initial mesh (refined near the source) b) Wave at 1.5 ms 

  
c) Internal mesh view at 1.5 ms d) B-hanging nodes at 1.5 ms 

  
e) Wave fronts and hanging nodes at 1.5 ms f) Hanging nodes on slab surface at 1.5 ms 

Fig. 9.  Spherical wave propagation in a 3D slab. 
 
Fig. 9d shows b-hanging nodes at 1.5 ms. These are all located on the slab surface, by 

definition. Finally, Figs. 9e and 9f show hanging nodes at 1.5 ms. These are located on 
the advancing wave fronts. In Fig. 9e the slab is made transparent to show all hanging 
nodes, most of which are in the body interior. Fig. 9f shows only the hanging nodes on 
the body surface, a possibility which exists only in 3D cases as mentioned above. 

Source 
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The mesh adaptation algorithms behave as expected in this test. The maximum 
number of elements reached during the transient (including both branches and leaves) is 
2460, of which 100 are base elements. The maximum number of nodes is 3183, of which 
242 are base nodes. 

5.2. Plane step wave in an elastic bar 

The second test considers an elastic bar of length 1l =  m, with a square cross-section of 
0.1 0.1¥  m subjected to a constant pressure 81.0 10p = ¥  Pa at the left end, and blocked 
at the right end. The material is linear elastic with density 8000r =  kg/m3, Young’s 
modulus 112.0 10E = ¥  Pa, Poisson’s coefficient 0n =  (so that the problem is 
physically 1D). With these values, sound speed is / 5000c E r= =  m/s. Adaptivity is 
piloted by two WAVE directives. The first one represents the incident wave produced by 
the pressure load, starting at the left end at 0t =  and propagating to the right. The 
second one represents the reflected wave, starting at the (blocked) right end at 

4/ 2 10t l c -­‐= = ¥  s and moving to the left. Both waves have 
1 0.15h = , 

2 0.5h =  and 

max 4L = . The base mesh uses only 10 regular cubes. 
 

 
a) Initial mesh and adapted mesh at 10 µs 

 
b) Comparison of velocities at bar mid-point 

Fig. 10.  Plane step wave in an elastic bar. 

Applied 
pressure 

Blocked 
end 

WAVE 
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This test is a first example of the treatment of boundary conditions with the present 
adaptivity strategy. The pressure (an example of natural condition) is applied by a special 
boundary-condition (b.c.) element attached to the left end of the bar. This element has the 
shape of a 4-node quadrilateral, whose nodes are merged with the nodes of the (base) 
cube face at the left end of the bar. The advantage of this technique is evident from the 
mesh at 0t = , shown in Fig. 10a (first picture): the first WAVE command refines the 
bar mesh (cube elements) at the left end at 0t = , in order to properly capture the 
incoming wave. Whenever a cube is refined or un-refined, the algorithm checks whether 
there is a b.c. element attached to any of its (external) faces, and if so then the b.c. 
element is automatically split or un-split as well. In this way, the applied load (pressure in 
this case) is transferred from the parent to the descendent b.c. elements and, ultimately, 
properly scaled loads result on the appropriate surface nodes of the descendent cubes, in a 
fully automatic an transparent way. 

The imposed blockage of nodes at the right bar end is another example of boundary 
condition, in this case of the essential type. It seems natural that users impose constraints 
only on the base nodes, in this case the four nodes of the right-most cube face. The 
present adaptivity strategy makes it relatively simple to program automatic transfer of 
constraints to any descendent nodes created in the adaptive process (Section 4.2). In fact, 
all such nodes are b-hanging nodes whose masters are the blocked face nodes. Since all 
masters are subjected to the same constraint (horizontal blockage), this constraint can be 
easily and automatically propagated to all the relevant descendent nodes. Fig. 10a 
(second picture) shows the adapted mesh at a later time, when the incident wave is 
traversing the bar. Note that the mesh at the left bar extremity (including the b.c. 
elements) has been automatically un-refined and the base mesh is recovered. 

Fig. 10b compares solutions without and with adaptivity against the analytical 
solution of the bar problem. The curves represent the time history of velocity at the bar 
center. The analytical solution is the step function represented by the dotted curve. 
Numerical solutions present oscillations, due to the elastic nature of the material (no 
numerical damping). Two solutions with uniform cube meshes are shown (dashed lines): 
one with a coarse mesh (only 10 elements) and one with a fine mesh (80 elements), 
corresponding to the maximum mesh refinement in the adaptive solution (level 4). The 
adaptive solution, represented by the solid line, coincides exactly with the fine-mesh 
solution near the jumps at 0.1 and 0.3 ms (where the WAVE directive keeps the mesh 
fine), while far from them it has an oscillatory behavior. Oscillations have lower 
amplitude and lower frequency than both uniform mesh solutions, so the adaptive 
solution looks somewhat smoother. Probably some numerical damping is introduced by 
the mesh un-refinement process, whereby stresses in a parent element are computed by 
averaging the stresses in its children. The adaptive solution looks very good: it captures 
the shocks as precisely as the fine-mesh model, and presents less oscillations. 

The maximum number of cube elements reached during the transient (including both 
branches and leaves) is 1386, of which 10 are base elements. The maximum number of 
special b.c. elements (to impose the pressure) reached during the transient (including both 
branches and leaves) is 85, of which only 1 is a base element. The maximum number of 
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nodes is 1656, of which 44 are base nodes. The same bar problem has been solved also 
with 2D elements, QUA4 4-node quadrilaterals. Results (not shown for brevity) are 
nearly identical to the 3D case, both with uniform and with adaptive meshes. 

5.3. Shock tube 

The third and last test is the classical shock tube problem. A rigid tube of length 1l =  m 
and 0.01 0.01¥  m square cross section is filled by a perfect gas and is subdivided in two 
equal parts by an ideal wall. The left part is initially at higher pressure than the right part. 
At the initial time the separation between the two parts is removed and waves start to 
propagate along the tube: a shock wave and a contact discontinuity wave propagate 
towards the low-pressure zone, and a rarefaction wave propagates towards the high-
pressure zone. A complete analytical solution of this problem is available. 

The assumed gas equation is ( 1)p ig r= -­‐  where p  is the pressure, g  is the ratio 
of specific heats, r  is the density and i  is the specific internal energy. We take 

1.269g =  and 63.046 10i = ¥  J/kg in both zones. The left zone has 
1 1.22r =  kg/m3 

and thus 6

1 1 10p = ¥  Pa, while the right zone has 
2 0.1237r =  kg/m3 and thus 

5

1 1.01 10p = ¥  Pa. 
Two uniform-mesh solutions are obtained, one with a coarse mesh of 100 cube fluid 

elements and the other with a fine mesh of 800 cubes. Then an adaptive solution is 
obtained using a base mesh of 100 cubes, and four WAVE directives, one for the shock 
wave, one for the contact discontinuity and two for the initial and final fronts of the 
rarefaction fan. All waves originate at the tube center at the initial time and propagate in 
the relevant direction with the analytically computed velocities: 1672 m/s for the shock, 
925.4 m/s for the contact discontinuity, 30.12-­‐  m/s and 1020-­‐  m/s for the rarefaction 
wave. All waves use 

1 0.015h = , 
2 0.05h =  and 

max 4L = . The boundary conditions are 
as follows: all (base) nodes on the tube surface are blocked in the y  and z  directions; 
the four (base) nodes of the left tube face and the four (base) nodes of the right tube face 
are blocked also in the x  direction. Like in the previous example, b-hanging 
(descendent) nodes automatically inherit such constraints from the corresponding master 
(base) nodes, thanks to the strategy proposed in Section 4.2. Numerical fluxes in the fluid 
are computed according to the technique described in Section 4.3. 

Figs. 11a and 11b show the distributions of fluid pressure and of fluid density along 
the tube, respectively, at 0.25 ms. The analytical solution is the step function represented 
by the dotted curve. The two solutions with uniform (coarse or fine) meshes are the 
dashed curves. The adaptive solution is the solid line. Both the shock and the contact 
discontinuity are captured by the adaptive solution with the same accuracy as the fine-
mesh solution. In the rarefaction wave, only the two fronts are captured with great 
accuracy, while inside the fan the adaptive solution is similar to the coarse-mesh solution. 
This is normal since the chosen WAVE directives refine the mesh only at the fronts. All 
solutions are quite smooth and no oscillations are induced by mesh adaptation. 

The maximum number of elements reached during the transient (including both 
branches and leaves) is 5084, of which 100 are base elements. The maximum number of  
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a) Pressure along the tube at 0.25 ms 

 
b) Density along the tube at 0.25 ms 

Fig. 11.  Shock tube. 
 
nodes is 6290, of which 404 are base nodes. Identical uniform-mesh and adaptive 
solutions are obtained in 2D with quadrilateral elements, and are not presented here for 
brevity. 

5.4. Efficiency 

A rough estimate of the efficiency of the proposed mesh refinement and un-refinement 
algorithms can be obtained by comparing CPU times for uniform-mesh and adaptive 
solutions. Such times are too small for the elastic bar test of Section 5.2, but for the shock 
tube problem of Section 5.3 (3D version) we have the following results. The adaptive 
solution with 100 base elements, 4 WAVE directives and 

max 4L =  needs 44 s on a laptop 
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computer. Since the present algorithms refine the mesh in all spatial directions, this 
should be compared against a uniform fine-mesh non-adaptive solution with 
8 8 800 51200¥ ¥ =  elements, which needs 229 s. Therefore, a speed-up factor of 5.2 is 
obtained in this case (including the overhead needed to compute the WAVE fronts in the 
adaptive solution). 

6. Conclusions and perspectives 

The paper presents procedures to arbitrarily refine and un-refine a computational grid of 
QUA4 (in 2D) or CUB8 (in 3D) element shapes. The chosen strategy, based only upon 
element connectivity (integer data), is simple and robust and lends itself well to fast 
transient dynamic applications, dominated by wave propagation. 

The numerical tests, performed using a simple wave propagation paradigm (WAVE 
directive) both in solid- and in fluid mechanics, show that mesh-adaptive solutions are as 
accurate as uniform fine-mesh solutions near the advancing wave fronts, without causing 
instability or loss of accuracy in zones where the solution is smooth. 

Special attention is devoted to boundary conditions in adaptivity, an aspect of great 
importance in realistic applications. As concerns essential conditions, a technique 
exploiting the information resulting from the proposed mesh adaptation algorithms 
allows propagating the user-imposed constraints from the base nodes to the descendent 
(adaptive) nodes in an automatic and transparent way. Similarly, for natural conditions 
(e.g. an imposed pressure) a technique, based on special boundary-condition elements 
also subjected to adaptivity (in a natural way), is proposed in the bar test of Section 5.2. 

This is only a first step (covering mostly geometric aspects) towards implementation 
of full mesh adaptivity in fast dynamics. Ongoing work focuses on error indicators, 
which should ultimately be used to automatically pilot mesh adaptation especially in fast 
transient fluid-structure interaction problems, see reference [Casadei et al. (2011)], by the 
algorithms proposed in this paper. To this end, calculation of numerical fluxes in adaptive 
fluid meshes will have to be extended to Finite Volume formulations, along the lines 
already presented for Finite Elements in Section 4.3. 
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Appendix 

Here are the auxiliary procedures mentioned in Sections 3.2 and 3.3. 

Algorithm A.1 - Determination of internal and external faces. 
Let j  be the neighbor and p  the p-neighbor of element i  across its face kF . Then: 

• If 0j > , then kF  is internal and lies upon a locally conforming element-to-
element interface. 

• Else, if 0p >  then kF  is internal and lies upon a locally non-conforming element-
to-element interface. 

• Else, kF  is external. 

Algorithm A.2 - Determination of base corner or base face of an external corner. 

Let c  be an external corner of element i  (see criterion in Section 3.3). Let 
1 (1, )FF C c=  

and 
2 (2, )FF C c=  be the two faces of i  adjacent to c , see Table 2. Then: 

• If 1F  and 2F  are either both external or both internal (see Algorithm A.1), then 
corner c  lies upon a base corner Bc . This is the c -th corner of iB , the base 
element from which element i  descends (this element is called the base ancestor 
of i ). The base ancestor is readily determined by (recursively) computing i ’s 
parent up to level 1 in the elements tree. 

• Else, 1F  and 2F  are one external ( eF ) and one internal ( iF ). Let Ad , Bd  be the 
two descendents of the generic CUB8 element adjacent to its c -th corner: 

(1, )A Dd C c=  and (2, )B Dd C c= , see Table 2. Then: 
•   If i  is either the Ad -th or the Bd -th descendent of its parent, and if this 

property holds recursively up to level 1 of the elements tree, then corner c  lies 
upon a base corner Bc , namely the c -th corner of iB , the base ancestor of i . 

•   Else, corner c  lies upon a base face BF , namely the eF -th face of iB , the base 
ancestor of i . 

Algorithm A.3 - Determination of complete or incomplete corner star. 
The corner star around corner c  of element i  (see Section 3.4), represented by element 
lists 1S  and 2S , of length 1Sn , 

2Sn  is complete if and only if: 
• Either 

1 0Sn >  and 
1 1( )SS n i= . In this case it is 

2 0Sn = . 
• Or, 

1 0Sn >  and 
2 0Sn >  and 

1 1 2 2( ) ( )S SS n S n i= π . This happens when there is a 
“big” p-neighbor without a corner superposed to corner c  which “closes” the star, 
see e.g. Fig. 7d. We denote such a p-neighbor a face p-neighbor, as opposed to a 
corner p-neighbor. 


