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Abstract 

This paper describes features of a fully coupled thermo-mechanical model for Friction Stir Welding (FSW) simulation. 

An apropos kinematic setting for different zones of the computational domain is introduced and an efficient coupling strategy 

is proposed. Heat generation via viscous dissipation as well as frictional heating is considered.  

The results of the simulation using the proposed model are compared with the experimental evidence. The effect of slip 

and stick condition on non-circular pin shapes is analyzed. Simulation of material stirring is also carried out via particle 

tracing, providing insight of the material flow pattern in the vicinity of the pin. 

Keywords: Friction Stir Welding, Apropos kinematic framework, Particle tracing, Visco-plasticity, Friction, Stabilized finite 
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1. Introduction 

1.1. The industrial process  

FSW is a solid state joining technology in which no gross melting of the welded material takes place. It is a relatively new 

technique (developed by The Welding Institute (TWI), in Cambridge, UK, in 1991) widely used over the past decades for 

joining aluminium alloys. Recently, FSW has been applied to the joining of a wide variety of other metals and alloys such as 

magnesium, titanium, steel and others. This process offers a number of advantages over conventional joining processes (such 

as e.g. fusion welding). The main advantages include: (a) absence of the need for expensive consumables; (b) ease of 

automation of the machinery involved; (c) low distortion of the work-piece; and (d) good mechanical properties of the 

resultant joint [1]. Additionally being a solid state technique, it avoids all the problems associated to the cooling from the 
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liquid phase. Issues such as porosity, solute redistribution, solidification cracking and liquation cracking are not encountered 

during FSW. In general, FSW is found to produce a low concentration of defects and is very tolerant to variations in process 

parameters and materials. Furthermore, since welding occurs by the deformation of material at temperatures below the 

melting temperature, many problems commonly associated with joining of dissimilar aluminium alloys can be avoided, thus 

high-quality welds are produced. All these benefits render FSW appropriate for different industrial applications where 

metallurgical characteristics should be retained, such as in aeronautic, naval and automotive industry. 

In FSW, a pin rotating at a constant speed is inserted into the welding line between two pieces of sheet or plate material 

(which are butted together) generating heat. This heat is produced by the friction between the pin shoulder and the work-

pieces and by the mechanical mixing (stirring) in the solid state. The plasticized material is stirred by the pin and the heated 

material is forced to flow around the pin to its backside. There the material is consolidated to create a weld as the pin 

advances. As the temperature cools down, a solid continuous joint between the two plates emerges. Figure 1 shows the 

process schematically: The work-pieces joined by the weld are located on either the retreating or advancing side of the weld. 

The retreating side is the one where the pin rotating direction is opposite to the pin travel direction and parallel to the metal 

flow direction. In contrast, the advancing side is the one where the pin rotation direction is the same as the pin travel direction 

and opposite to the metal flow direction.  

 

Figure 1: Friction Stir Welding schematic [2] 

The numerical simulation is an important tool for understanding the mechanisms of the FSW process. It enables obtaining 

both qualitative and quantitative insights of the welding characteristics without performing costly experiments. Flexibility of 

the numerical methods (in particular FEM) in treating complex geometries and boundary conditions defines an important 

advantage of these methods against their analytical counterparts. 
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The FSW simulation typically involves studies of the transient temperature and its dependence on the rotation and 

advancing speed, residual stresses in the work-piece, etc. This simulation is not an easy task since it involves the interaction 

of thermal, mechanical and metallurgical phenomena. Up to now several researchers have carried out computational 

modelling of FSW. In the majority of the works, FSW process is studied at a global level.  Simulation carried out at global 

level investigates the effect of moving heat source on the entire structure to be welded while local phenomena such as 

material flow are excluded. In a global approach, the generated heat is considered an input parameter. In different global 

studies various heat source types ranging from point sources to the distributed ones are considered. These studies typically 

analyze the effect of welding process on the structural behavior in terms of distortions, residual stresses or weakness along 

the welding line, among others.  

Askari et al. [3] use the CTH finite volume hydrocode coupled to an advection-diffusion solver for the energy balance 

equation. Particular attention is given to the residual stresses in FSW joints in [4-6]. Giorgi et al. [5] study the effect of 

different shoulder geometries on the longitudinal stress distribution. Additionally, Dattoma et al. [6] investigate the influence 

of shoulder geometry on heat generation during the welding process. Chen and Kovacevic [7] use the commercial FEM 

software ANSYS for a Lagrangian finite element model of aluminium alloy AA-6061-T6. The welding pin is modeled as a 

heat source. This simple model severely limits the accuracy in the predicted stress and force, as the strain rate dependence is 

not included in the material model. However, the authors are able to investigate the effect of the heat moving source on the 

work-piece material.  

Since the temperature is crucial for the FSW simulation, the heat source needs to be well-modeled. This consideration 

obliges to study the process at the local level where the simulation is concentrated on the stirring zone. For this type of 

simulation, the heat power is assumed to be generated either by the visco-plastic dissipation or by the friction at the contact 

interface. At this level the majority of the process phenomena can be analyzed: the relationship between rotation and 

advancing speed, the contact mechanisms, the effect of pin shape, the material flow within the heat affected zone (HAZ), the 

size of the HAZ and the corresponding consequences on the microstructure evolution, etc. 

Among the local level studies, Cho et al. [8] use an Eulerian approach including thermo-mechanical models without 

considering the transient temperature in simulation. The strain hardening and texture evolution in the friction stir welds of 

stainless steel is studied in this paper. A Lagrangian approach with intensive re-meshing is employed in [9] while similar 

approaches are applied in [10, 11] which are not numerically efficient. Nandan et al. [12, 13] employ a control volume 

approach for discretization of the FSW domain. The material is considered as 3D visco-plastic flow to show the nature of 
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mass transportation in FSW. Assidi et al. [14] and Guerdoux [16] use an ALE formulation implemented into the commercial 

software with a splitting approach (one Lagrangian step followed by an advection phase), remapping techniques and an 

adaptive re-meshing scheme based on error estimation. Buffa el al. [15] predict the residual stresses in a 3D FE model for the 

FSW simulation of butt joints through a single block approach. The model is able to predict the residual stresses by 

considering only thermal actions.  

Despite the wide range of FSW application in industry and related extensive research, many aspects of the process and of 

the ensuing mechanical properties are still not well-understood and require further studies. These include material mixing in 

the vicinity of the pin, influence of the pin shape and non-linear material behavior. The effort aimed at understanding the 

FSW process, such as computational modelling and simulation, is limited mainly because of the complexity of this thermo-

mechanical process (e.g. material flow, temperature rise, large plastic deformation, contact and friction). Most of the existing 

models have limitations in either the representation of the non-circular pin geometries, or the non-linear material behavior, or 

application of the boundary conditions, or involve costly re-meshing procedure.  

In this work we strive to develop a numerical tool for studying FSW at local level. The objective, however, is not to 

compromise on the computational efficiency and to develop a robust and efficient approach. One of the main objectives of 

the present work is to establish an apropos kinematic framework for the FSW simulation with arbitrary pin shapes together 

with an accurate definition of the boundary conditions. This framework allows to avoid remeshing and remapping of the state 

variables. Section 2 is explaining the division of the geometry into sub-domains and introduces an appropriate kinematic 

framework for each one of them. Coupling between each domain is detailed including the friction contact. As the heat due to 

plastic dissipation in FSW is usually large and cannot be neglected, mechanical and thermal equations become coupled thus 

necessitating a fully coupled thermo-mechanical model. Section 3 is devoted to the presentation of the coupled governing 

equations together with a rigid visco-plastic model suitable for the simulation of high deformation rate in FSW. Section 4 is 

devoted to particle tracing method applied for the visualization of material stirring around the pin. Section 5 is validating the 

work by simulation of some benchmarks and comparing them with experimental evidence. 

2. Apropos Kinematic framework 

In modelling FSW, the choice of kinematic frameworks for different domain zones (regions) crucially impacts the 

computational efficiency and the solution quality. For defining the suitable frameworks several observations must be made:  

 The extent of the material deformation varies in different regions of the analysis domain. 
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 Pins used in practice are not necessarily circular. 

 Boundary conditions must be applied conveniently. 

 Re-definition of the integration domain and re-meshing is preferably to be avoided. 

Considering these, the domain of the analysis is divided into three parts which are the Pin, the Plates and the heat affected 

zone (HAZ), associating a specific kinematic framework to each one of them. 

Pin: The pin (Figure 2a) undergoes exclusively a rigid-body rotation at a constant speed and its deformation is not 

considered in the analysis. Thus, a Lagrangian framework is a natural choice for the description of the pin’s movement.  

 

Figure 2: Kinematic zones a) Pin b) HAZ c) Plate 

HAZ: HAZ is a part of work-piece close to the pin where most of the material deformation takes place. The extent of the 

deformation in the vicinity of the pin is such, that it cannot be efficiently handled with a classical updated Lagrangian 

scheme, since it would lead to the mesh degradation and therefore necessity of a continuous re-meshing. At the same time, 

use of an Eulerian formulation would not be straight-forward for any pin shapes other than circular1. In the case of non-

circular pins, additional techniques for tracking the moving boundary would be necessary as well as redefinition of the 

integration domain at every time step.  

The ALE formulation allows overcoming the above mentioned problems provided a feasible mesh-moving strategy.  

                                                            

1 The pin geometry influences the extent of mixing and thus the quality of the resulting weld. 
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Usually, using an ALE framework requires the treatment of the convective terms and the calculation of the mesh velocity 

following a splitting approach (see, for instance [14, 16]). There, the use of remeshing and remapping of state and internal 

variables are unavoidable. 

In this work, HAZ is modeled as a circular region around the pin, as the flow there is predominantly rotational2 (Figure 

2b). The key idea consists in using the so-called mesh sliding, which in our case means rotating the HAZ mesh rigidly at each 

time step according to the pin movement, decoupling the material motion from the motion of the mesh. Consequently, the 

integration domain moves in such a way that the inner boundary of the HAZ is connected to the contour surface of the pin. 

Thus the ALE mesh velocity must be defined as: 

Rωv ˆ  (2.1) 

where R  is the distance between the given point and the center of rotation and ω  is the angular velocity. With this 

choice of mesh velocity, the re-meshing in HAZ is avoided as the mesh does not undergo any deformations. Note that the 

material and the mesh motions are decoupled. Therefore, the convective term must be included in the governing equations, 

the convective velocity being equal to the difference between mesh and material velocity.  

Plate: The area lying outside the HAZ is characterized by the material flow predominantly in the welding direction 

(Figure 2c). As in this area the domain neither changes its shape nor contains moving boundaries, the Eulerian framework 

can be used. The use of fixed mesh facilitates the application of boundary conditions on the inflow and outflow.  

Coupling ALE and Eulerian part: Coupling of the ALE (HAZ) and the Eulerian (welding plate) parts at the interface 

requires a special treatment as the mesh is fixed on one side (Eulerian) and moves on the other side (ALE). The coupling can 

be performed using a node-to-node link approach. The nodes lying at the interface are duplicated. At every mesh movement 

step the correspondence between the nodes belonging to the two parts (the plate and the HAZ) is established. For a given 

node of the ALE part the corresponding node of the Eulerian one is found3 and a link between the two nodes is created 

(Figure 3). Afterwards, the boundary conditions and the properties of the plate nodes are copied to the corresponding HAZ 

nodes within the link. The time step must be chosen such that the two meshes (ALE and Eulerian) coincide at the interface. 

This means that the ALE mesh slides precisely from one Eulerian interface node to another at each time step. This requires 

having a coincident structured mesh at the mentioned interface. 

                                                            

2 The domain must be chosen large enough to contain the whole deformation zone. 
3 This can be done by a nearest neighbor search. 
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The strategy proposed in this work is very advantageous from the point of view of computational efficiency, as it avoids 

remeshing and remapping of the variables. In this strategy, only the connection between the moving and the fixed parts 

changes at each time step; therefore, the moving mesh does not deform but slides. 

 

Figure 3: Coupling Ale and Eulerian parts 

Coupling ALE and Lagrangian part: Coupling of the ALE (HAZ) and the Lagrangian (pin) parts at the interface 

requires a special attention too. While the mesh velocity in both cases is equal, the material velocities, the pressure and the 

temperature are different.  

The contact between the pin and the HAZ material is generally characterized by slipping or nearly sticking condition. The 

corresponding boundary conditions applied at the pin/HAZ interface prescribe the material velocity field at the interface. The 

cases considered are modeled as follows: 

 Full sticking: The local material velocity matching that of the pin everywhere at the interface. 

 Slipping: The rotational speed of the material being an arbitrary constant fraction of the pin rotation speed.  

 Stick/slip: Contact may be partially slipping and partially sticking, and if local melting occurs, there may be 

oscillating stick-slip behavior. 

In this work, the frictional heating due to the contact interaction between pin/HAZ is defined by the Norton friction law 

[16]. Tangential (shear) component   Tt   of the traction vector at the contact interface is defined as 

  T
q

TT Ta uvt   (2.2) 

where    Ta  is the (temperature dependent) material consistency and 10  q  is the strain rate sensitivity. Tu  is the 

tangential unit vector, 
T

T
T v

v
u




  and Tv  is the tangential component of the slip velocity. 
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3. Problem statement 

In this section the coupled thermo-mechanical FSW model is introduced. The governing equations are formulated within 

the kinematic framework introduced in the previous section. 

3.1. Mechanical model 

For the FSW simulation, several assumptions are considered. First, the flow of the material around the pin is characterized 

by very low values of Reynolds number (Re<<1), typically around 10−4, due to the very high viscosity of the material. For 

these values of Reynolds number, inertial effects and convection can be neglected. Thus a quasi-static analysis can be 

performed. Additionally, the flow can be considered incompressible as the volumetric changes including thermal deformation 

are found to be negligible. 

Taking the above considerations into account and splitting the stress tensor σ  into the volumetric and deviatoric parts, 

sσ  1p  (3.1) 

the mechanical problem (momentum and mass conservation) can be written as:  

0 fs p  (3.2) 

0 v  (3.3) 

where v  and p  are the velocity and the pressure. f  and s  are the body force and the stress deviator, respectively. 

In FSW, the temperature gradient and the strain rate are very high in the vicinity of the pin requiring the use of rate-

dependent constitutive models [17]. Several of these models are suitable for the simulation of FSW process. In the present 

work, the material behavior is modeled as rigid visco-plastic. In rigid visco-plastic models the constitutive equation is fully 

deviatoric. The relation between the stress deviator and the strain rate ( ε ) can be written as 

εs 2  (3.4) 

Where the deformation rate ( vε s ) is the symmetric part of the velocity gradient and   is the effective viscosity 

coefficient of the material. 

Based on the Norton-Hoff constitutive model, introduced originally by Norton [18]  and extended by Hoff [19], the 

effective viscosity is expressed as 

  1
3




m
   (3.5) 
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where m  and   are the rate sensitivity and viscosity parameters respectively, both temperature dependent.   is the 

equivalent strain rate defined as  

  21:3
2

3
2 εεε    (3.6) 

In the present work the mechanical problem is solved using stabilized mixed linear p/v  finite element formulation due 

to its good performance, especially for industrial simulations when triangular/tetrahedral meshes must be used for the domain 

discretization. The details on this formulation in the solid mechanics context can be found in [20-23]. 

3.2. Thermal model 

The thermal problem is governed by the energy balance equation, which in ALE framework obtains the following form 

DTC
t

T
C pp





qv*  (3.7) 

where vvv ˆ*   is the convective velocity arising from the difference between material velocity v  and mesh velocity v̂ . 

 , pC  and T are the density, specific heat and the temperature, respectively. The last term D  is the dissipation rate per unit 

of volume due to plastic deformation. The conductive heat flux q is defined according to the isotropic conduction law of 

Fourier as  

Tkq  (3.8) 

where k is the thermal conductivity.  

The dissipation rate D  depends on the plastic strain rate and the deviatoric stresses. Hence thermal and mechanical 

models become coupled [24, 25]. Therefore, the plastic dissipation D  is defined as product of the deviatoric part of stress 

and strain rate: 

εs  :D  (3.9) 

where   is the plastic power fraction4. 

Thermal contact: Thermal exchange by conduction between the work-piece and the pin takes place at the contact surface 

interface. This is expressed by the following equation: 

                                                            

4 Around 90% of the plastic dissipation is converted into heat [26]. 
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 pincond TThTk  n  (3.10) 

where  condh  is the conduction coefficient, n  is the unit vector normal to the surface, T is temperature of the work-piece 

and pinT  is the pin temperature in contact with the work-piece.  

At the free surfaces, convection and radiation heat fluxes responsible for heat loss to the environment must be considered. 

The thermal exchange with the environment due to convection can be computed using Newton’s law: 

 envconv TThTk  n  (3.11) 

where convh is the convection heat transfer coefficient and envT  is the surrounding environment temperature. 

The radiation heat flux is governed by the Stefan–Boltzmann law, which is a function of the surface temperature,  T  and 

envT :  

 44
0 envTTeTk  n  (3.12) 

where 0  is the Stefan–Boltzmann constant and e  is the emissivity factor.  

The thermal problem is solved using a linear stabilized finite element formulation in space and Backward Euler time 

integration scheme in time. 

4. Tracers 

In the FSW process, the plastic deformation is extremely high in the vicinity of the pin. Thus, the material stirring/mixing 

is encountered in that area. The extent of material mixing plays a critical role for the weld quality and the joint-strength. To 

produce a high quality and defect-free weld, it is essential to get an insight of the material deformation path due to mixing. 

However, it is difficult to observe this path directly in the solid-state. Several experimental and numerical techniques for 

predicting the material flow can be applied. Experimentally, the motion of the stirred material is usually tracked using the 

Marker Insert Technique (MIT). The markers are embedded into the path of rotating pin5 and their final position after 

welding is detected by metallographic means.  

In the numerical simulation, to visualize the trajectories of material particles due to stirring, a particle tracing technique 

can be used. Particle tracing is a method generally used to simulate the motion of large number of particles and track their 

trajectories. Therefore, it can be naturally applied to the simulation of the material flow around the pin in FSW. A set of 

                                                            

5 In practice, they are placed at different position at the center line. 
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nodes (not forming part of the computational mesh) is introduced in the area to be analyzed (Figure 4). These nodes represent 

the material particles to be tracked and are called tracers. 

  

Figure 4: Particle distribution 

The trajectories of the tracers are computed from the velocity field obtained at the end of each time step (purely Post-

Processing step) as  

     ttXV
Dt

tXD
,  (4.1) 

with initial conditions 00  ; ttXX  , where  tX  is the position of the tracer at time t and   ttXV ,  is the velocity of 

the tracer in the position  tX  and time t.  

The ordinary differential equation (4.1) must be solved for each individual particle. Its solution (a sequence of particle’s 

positions     ,..., 10 tXtX ) defines the trajectories of the stirred material. It can be solved by any conventional time 

integration methods (e.g. Forward Euler and Backward Euler). 

In this work a sub-stepping method is used as it is found to give superior results without leading to a computational 

overhead. According to the sub-stepping method, the particle position of the time step 1n  is computed in k sub-steps 

(Figure 5) as:  
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where t  is the time step,  it  is the thi  sub-step. 
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Figure 5: Particle movement at each sub-step 

As the velocity is known only at the mesh nodes, the velocity of the particles must be found via interpolation of the nodal 

values of the corresponding element. At each sub-step a spatial search algorithm must be performed in order to find the 

elements containing the particles. Once the element containing a given particle is found, corresponding values of the shape 

functions are computed to obtain the sub-step velocity i
n 1V  as 

   


 
3

1
111

j

i
n

jji
n

i
n N XvV  (4.3) 

where  i
n

jN 1X  is the shape function at the particle position.  

The nodal velocities i
n 1v  at sub-steps are unknown and thus need to be approximated from nodal velocities at time n  and 

1n  as well as the nodal displacements6. 
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5. Numerical simulations 

In this section three examples are chosen in order to show:  

 The validity of the method by comparing the result of a 3D simulation with the experimental results.  

 The suitability of the proposed kinematic framework for the simulation of noncircular pins under slip and stick 

condition 

 The performance of the proposed particle tracing method by comparison with experimental evidence. 

5.1. 3D FSW with circular pin  

                                                            

6 As the ALE approach is chosen for the area close to the pin, the nodal positions vary between sub-steps and needs to be updated. 
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This example is a 3D simulation of FSW process. Geometry data, process parameters and material properties used in the 

simulation are taken from [14, 27] and served for comparing their experimental results with the numerical ones obtained in 

this work.  

A cylindrical pin is considered in the analysis. The pin (Figure 6) is 8 mm in diameter and its depth inside of the plate is 

6.35 mm. The pin shoulder is 25.4 mm in diameter with a shoulder concavity angle of 8º and the height of the pin is 90 mm. 

The work-pieces have 300 mm length in the welding direction 150 mm width in the transversal direction and a thickness of 

9.53 mm. Back-plate has the same 300 mm length, 150 mm width as work-piece but a thickness of 25 mm.  

 

Figure 6: Geometry information of the pin 

The welding speed and rotational velocity of the pin are Vs = 3.39 mm/s and Vr = 650 RPM, respectively. The rotational 

velocity is prescribed as a constant tangential velocity at the pin volume. In the simulation, convection-radiation heat transfer 

to the ambience, heat conduction between the pin and the work-piece, work-piece and back-plate are taken into account. Heat 

generation through plastic dissipation and friction is considered. In the simulation, the initial and environmental temperatures 

are 20ºC. 
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The material used for the back-plate located underneath the work-piece is Al 6061-T6. The pin and the work-piece are 

made of steel and Al 6061, respectively. A Norton-Hoff constitutive law is used for the work-piece (Figure 7) while pin and 

the back-plate are simulated as thermo rigid materials (Table 1). Thermal material properties for work-piece, back-plate and 

pin are presented in Table 2.  

 

Figure 7: Norton-Hoff material properties [14]  

Parts Material Constitutive model 

Work-piece Al6061 Norton-Hoff 

Pin Steel Rigid 
Back-plate Al6061-T6  Rigid 
Table 1: Materials and constitutive laws 

Parts  (Kg/m3) Cp(J/kgºC) k(W/mºC) e 

Work-piece 2700 896 180 0.05 

Pin 7850 460 24.3 0.88 
Back-plate 2800 1230 250 0.05 
Table 2: Thermal properties 

The geometry is discretized with a mesh consisting of 59630 linear tetrahedral elements and 11157 nodal points (Figure 

8). Figure 9 shows a magnified view of the mesh discretization for the pin and the work-piece.  
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Figure 8: Finite Element mesh 

 

Figure 9: Finite Element mesh in detail for pin and work-piece 

The temperature contour field at the end of the simulation is shown in Figure 10. The heat near the pin can only dissipate 

throughout the work-piece which leads to a continuous increase of temperature farther away from the pin. In reality, heat also 

goes into the backing plate. More in detail, Figure 11 shows a cross section of the pin, work-piece and the back plate. The 

temperature field is compared with the one obtained from [14]  at time 60s. Very high temperature in the thickness direction 

of the work-piece under the pin shoulder is observed. Note that because of the strain rate concentration and sharp temperature 

gradient in the vicinity of the pin and shoulder, a refined mesh must be used in this area.  
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Figure 10: Temperature contour field at the end of simulation 

 

Figure 11: Temperature contour field on the cross section in welding line 

The results obtained exhibits asymmetry of the temperature profiles around the pin because of the rotational and linear 

motion of the pin and asymmetry of heat generation around the pin surface. 

Figures 12 compare the experimental results reported by Guerdoux [27] and the numerical results obtained in the current 

work. The temperature is indicated for 3 different parts of the tool which are the pin, the shoulder and the root. It can be seen 

that the numerical results are in a very good agreement with the experimental ones. 
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Figure 12: Temperature evolution compared with experiment on pin, shoulder and root 

5.2. 3D FSW with a Trivex pin  

In this example a plate and a pin with the same dimension as the one in section 5.1 are considered. The cross section of 

the pin is trivex. The Trivex pin design is approximately triangular; the three points of the pin form an equilateral triangle 

with the side lengths 6.93 mm and are connected by convex sides of 73º (Figure 13).  

 

Figure 13: Geometry of a trivex 

The contact conditions between the pin and the material are central to the FSW process. The objectives of this example 

are on one side, to study the effect of slip and stick boundary conditions on the temperature field at the contact interface and 

on the other side, to show the ability of the proposed method for the simulation involving non circular pins. The applied 

inflow velocity is 3.39 mm/s while the rotational pin velocity is 650 RPM. 

 The Norton-Hoff material constitutive law is assumed with constant parameters and the thermal properties summarized 

in the section 5.1.  
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The Figures 14 shows the temperature contour field on the trivex pin, ALE zone and plate. The uniform temperature field 

is obtained due to the heat generated by the plastic dissipation as a result of the material stirring and the friction at the 

pin/HAZ interface. 

  

Figure 14: Temperature field from left to right on trivex pin, ALE zone and Plate 

Figure 15 illustrates the temperature contour field for the fully stick, slip/stick and fully slip conditions, respectively. In 

the stick case, the material is stuck to the rotating pin, which leads to a higher strain rate and temperature than if the material 

is allowed to slip. 

 

Figure 15: Temperature contour field from left to right with fully stick, stick/slip and fully slip condition. 
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5.3. Particle tracing (2D case) 

This example uses the processing conditions and pin geometry described in the work of Seidel and Reynolds [28], where 

experimental evidence of the particle tracing is provided.  

A pin used is of 9.9 mm in diameter which is a cross section of the threaded bolt perpendicular to the axis.  

Process parameters are: welding speed Vs = 5.0833 mm/sec, rotational speed Vr = 500 RPM and room 

temperature . The welding plate’s material is Aluminum AA2195-T8. 

Figure 16 shows the final position of the particles, which is computed at mentioned rotational and translational speeds. 

Material from the retreating side is transported along with the rotating pin to the advancing side. Some parts of the material 

move even to the backward direction. Advancing side material is mainly transported backwards. The connection of 

advancing and retreating side behind the pin is not necessarily located at the centerline. 

 

Figure 16: Tracer visualization, simulation (left) experiment (right) 

The model is discretized with a mesh of 4986 triangular elements. Despite the fact that this 2D model does not consider 

vertical flow produced by the thread, the results show that the numerical particle tracing can reveal characteristic patterns of 

material flow in FSW. On the advancing side a flow pattern with sawing shape is seen, which qualitatively correlates with the 

experimental data. This result is encouraging and prompted us to construct a three dimensional model. 

6. Summary and conclusions  

In the current paper, a thermo-mechanical model for FSW simulation is proposed. Thermal analysis is assumed to be 

transient while a quasi-static approximation is used for the mechanical problem.  
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The apropos kinematic framework based on the combination of ALE, Eulerian and Lagrangian descriptions proposed in 

this work for different parts of the computational domain is found to be advantageous. It allows treating arbitrary pin 

geometries and conveniently applying the boundary conditions. A mesh moving strategy chosen for the ALE part of the 

domain facilitates coupling with the rest of the sub-domains (Lagrangian and Eulerian ones).  

A Norton-Hoff rigid thermo-visco-plastic constitutive equation is used to characterize the material. The thermal contact 

and heat convection-radiation through the boundaries are considered. Heat generated by plastic dissipation and friction is 

taken into account. The effect of slip and stick boundary conditions is studied. 

The material stirring is simulated by means of particle tracing method. The trends observed are consistent with the results 

of experiments, showing motion of markers inserted into the weld.  

In spite of the inherent complexities of the friction stir welding modelling (including constitutive and transient heat 

equations, various boundary conditions, etc.), the obtained numerical results provide some confidence that the method 

proposed here is a promising numerical tool for simulating FSW. This paper demonstrates the capability of the proposed 

numerical model to efficiently simulate different types of material flows that are encountered in FSW, and accurately 

compute the resulting thermo-mechanical fields. 
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