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Abstract – This paper presents a numerical model for nonlinear analysis of masonry 

structural elements based on Continuum Damage Mechanics. The material is described 

at the macro-level, i.e. it is modelled as a homogeneous orthotropic continuum. The 

orthotropic behaviour is simulated by means of an original methodology, resulting from 

the concept of mapped tensors from the anisotropic field to an auxiliary workspace. The 

application of this idea to strain-based Continuum Damage Models is innovative and 

leads to several computational benefits. The suitability of the model for representing the 

behaviour of different types of brickwork masonry is shown via the simulation of 

experimental tests. 

Keywords: Continuum Damage Mechanics, Orthotropy, Mapping, Transformation 

Tensor, Masonry, FE analysis, Tensile Cracking. 

1.  Introduction 

The assessment of the structural capacity of masonry constructions is still a challenging 

task. Numerical approaches offer interesting possibilities to deal with such a difficult 

problem. At present, several methods and computational tools are available for the 

assessment of the structural behaviour [1] and the choice by the analyst depends on the 

searched information (serviceability, damage, collapse, failure mechanisms, etc.), the 

required level of accuracy (local or global behaviour of the structure), the necessary 

input data (detailed or rough information about material characteristics) and the 

computational cost (processing time and memory requirements for the analysis). 

Therefore, trying to individuate a unique model of general validity is not realistic. 
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Simplified modelling of masonry structures through the equivalent frame method [2] or 

two-dimensional macro-elements [3] ensures efficient computations, due to drastic 

reduction of the structure degrees of freedom, but provides only an approximate 

description of the masonry element behaviour. Contrariwise, micro-modelling [4-5] is 

considered the most accurate tool available to analyse masonry, since the discretization 

is carried down to the level of the constituents, viz. unit (brick, block, etc.), mortar and 

their mutual interfaces. Such high level of refinement requires intensive computational 

effort, which limits today’s micro-models applicability to the analysis of small elements 

(e.g. laboratory specimens) or to structural details. 

Macro-modelling is a valuable approach in practice-oriented analyses, where a 

compromise between accuracy and efficiency is needed. The material is regarded as a 

homogeneous orthotropic continuum and this implies considerable computational 

advantages due to reduced time and memory requirements as well as a user-friendly 

mesh generation. The mechanical behaviour of the continuum can be described by 

Plasticity or Continuum Damage Mechanics (CDM) constitutive laws. Macro-models 

have been extensively used with the aim of analyzing the seismic response of complex 

masonry structures, such as arch bridges [6], historical buildings [7] and cathedrals [8]. 

In the case of CDM finite element models, isotropic criteria are usually preferred 

because of their simplicity and the need for only few material parameters. Isotropic 

material models for masonry can be combined with sophisticated algorithms able to 

account for cracking localization and to achieve proper structural failure mechanisms 

[9]. 

The orthotropic macroscopic behaviour of masonry arises from the spatial organization 

of its constituents, their nature and the complex units-mortar interaction. Also, masonry 

exhibits geometrical irregularities in the form of weak planes along the bed and head 

joints. The degree of anisotropy may increase due to the presence of horizontal or 

vertical openings in blocks or bricks. 

According to the macro-modelling strategy, an appropriate relationship is established 

between average strains and stresses. The continuum parameters can be assessed by 

means of tests on specimens of sufficiently large size, under homogeneous states of 

stress, see for instance [10]. As an alternative to difficult laboratory tests, it is possible 

to assess experimentally the individual components or simple wallets and cores [11] and 

consider the obtained data as input parameters for numerical homogenization techniques 

[12].  
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Several failure criteria have been proposed [13-18] as phenomenological formulations 

based on the interpretations of comprehensive experimental tests. The difficulties in 

defining reliable and accurate surfaces for the description of the shape of the admissible 

field have been evident since the first attempts [19]. In spite of the mentioned problems, 

single failure surfaces have been considered to reproduce approximately the material 

strength [20-21]. On the other hand, the conventional formulations for isotropic quasi-

brittle materials [22] have been extended [23] to describe the orthotropic behaviour, 

with a material admissible field bounded by a Hill-type yield criterion for compression 

and a Rankine-type yield criterion for tension, according to different failure 

mechanisms, i.e. cracking and crushing. 

The inclusion of the orthotropic behaviour in the non-linear range causes intrinsic 

complexities to the macro-model formulation. In the framework of Plasticity, the model 

proposed in Refs. [10,23] considers the principal directions of damage fixed and aligned 

with the initial orthotropy axes. In tension an exponential softening law for the stress-

strain diagrams is adopted, with different fracture energies along each material axes. In 

compression, an isotropic parabolic hardening law is adopted, followed by a 

parabolic/exponential softening law with different compressive fracture energies along 

the material axes. In a similar way, but through a CDM model, the natural axes of the 

masonry (i.e. the bed joints and the head joints directions) are assumed coincident with 

the principal axes of the damage in Ref. [21]. Consequently, for x and y directions, two 

independent damage parameters are assumed, one for compression and one for tension. 

Their evolution is described by functions similar to those used for isotropic damage of 

concrete.  

Aiming at more accurate but still efficient macro-modelling approaches, this paper 

presents an implicit orthotropic model based on the classical CDM models. The 

orthotropic behaviour is simulated by means of an original methodology, which 

establishes a conveniently defined mathematical relationship between the anisotropic 

real space and an auxiliary mapped one. In this way, it is possible to solve the problem 

in the mapped space and to return the results to the real field, with considerable benefits 

in terms of simplicity and computational efficiency.  

The paper is organized as follows: first, the mapping theory at the basis of the proposed 

orthotropic CDM model is described; then, the implementation of the algorithm into the 

framework of standard nonlinear finite element programs is detailed; finally, the model 
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performance is demonstrated by means of the comparison between experimental and 

numerical results, with respect to orthotropic failure domains and a shear-wall testing. 

2.  Orthotropic Damage Model 

This section presents the formulation of a model based on CDM for the finite element 

analysis of masonry structures. The orthotropic behaviour of the material is simulated 

using the concept of mapped stress tensor, firstly introduced in [24] and refined in [25-

26] afterwards. The method consists in studying the behaviour of a real anisotropic solid 

by solving the problem in an auxiliary space. The two spaces are related by means of a 

linear transformation, defined by a symmetric and rank-four transformation tensor, 

which allows a one-to-one mapping of an image of the stress (or strain) tensor defined 

in one space into the other and vice versa. In this way, the different behaviour along 

each material axis can be reproduced by means of a very simple formulation, taking 

advantage of the well-known isotropic damage models and criteria, while all the 

information concerning the orthotropy of the material is included in the transformation 

tensor. 

2.1 Space Transformation Tensors 

The present methodology is based on assuming a real anisotropic space of stresses σ  

and a conjugate space of strains ε , such that each of these spaces has its respective 

image in a mapped space of stresses *σ  and strains *ε , respectively (see Figure 1). The 

relationship between these spaces is defined by 

* :σ A σ  (1) 

* :ε A ε  (2) 

Where 
A  and 

A  are the transformation tensors, for stresses and strains, respectively, 

relating the mapped space and the real one. These rank four-tensors embody the natural 

anisotropic properties of the material. 

In order to account for different material behaviour in tension and compression, a split 

of the stress tensor into tensile and compressive components is introduced, according to 

[27-33]: 

3

1

i i i

i





 σ p p  (3) 

  σ σ σ  (4) 
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where i  denotes the i-th principal stress value from tensor σ  and ip  represents the 

unit vector associated with its respective principal direction. The ramp function 

indicated by the Macaulay brackets   returns the value of the enclosed expression if 

positive, but sets a zero value if negative. The split shown by equations (3) and (4) can 

be expressed in an alternative compact form as follows 

: σ P σ  (5) 

  :  σ I P σ  (6) 

where I is the rank-four identity tensor and P is a projection operator such that 

 
3

1

i i i i i

i

H 


   P p p p p  (7) 

where  iH   denotes the Heaviside function computed for the i-th principal stress i . 

The following transformations of the tensile and compressive stress components from 

the real to the mapped space are introduced, according to [34-35]: 

* :  σ A σ  (8) 

* :  σ A σ  (9) 

Where  
A  and  

A  are the stress transformation tensors, for positive and negative 

components 
σ  and 

σ , respectively, relating the mapped and real spaces. Such tensors 

are non-singular and positive-definite. The assumption of two distinct stress 

transformation tensors permits to map the real stresses into the auxiliary space and solve 

the problem there, by adopting two different isotropic damage criteria for tension and 

compression. 

The stress transformations (8) and (9), making reference to the (local) material 

coordinate system (denoted by axes 1 and 2, see Figure 2), can be expressed in Voigt’s 

notation as follows: 

   
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σσ A σ  (10) 
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Such mapping transformations are related to in-plane stress conditions, even if the 

approach can be easily extended to the three dimensional case [26]. Note that from Eq. 

(10) on apex    denotes tensors referred to the material coordinate system. 

The parameters *

ijf   represent the intersections of the mapped failure surfaces with axes 

1, 2 and 3. Since two distinct isotropic criteria are assumed in the mapped space, it 

results that * * *

11 22f f f     and * * *

11 22f f f    . The choice of *f   and *f   is 

arbitrary. Parameters *

12f   and *

12f   derive from the particular isotropic criteria adopted 

for tension and compression. The parameters ijf   represent the intersections with axes 1, 

2 and 3 of the real orthotropic failure surfaces. 

Making ijr  =  cos ,i jx x , where ix  and ix   denote the global and local coordinates, the 

relationship between  
A  and    

A is defined as follows 

ijkl pi qj rk sl pqrsA r r r r A     (11) 

It is possible to relate the positive and negative stress transformation tensors to the 

global stress transformation tensor. In fact, after the definitions (8) and (9), the 

condition 

 
* * *  σ σ σ  (12) 

must still apply. Therefore, the previous expression yields 

: : :

: : : : ( ) :

  

  

   

 

 

 

A σ A σ A σ

A σ A P σ A I - P σ
 (13a, b) 

and hence 

: : ( )    A A P A I - P  (14) 

The strain space transformation tensor 
A  results after simple calculations: 

 
1

: : 


A C A C  (15) 

where C and 
C  are the (fourth-order) linear constitutive tensors in the real and mapped 

space, respectively. The former is expressed in the global reference system as follows: 

ijkl pi qj rk sl pqrsC r r r r C  (16) 
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2.2 Underlying Damage Model and Damage Criteria 

The constitutive model considered in the mapped space is based on the concept of 

effective stress tensor, introduced in connection with the hypothesis of strain 

equivalence [36]. The effective stresses σ  can be computed in terms of the total strain 

tensor, as 

:  σ C ε  (17) 

We recall that apex (  ) is assigned to variables related to the mapped space. 

The Tension-Compression Damage Model adopted in the mapped space is based on a 

split [27] of the effective stress tensor into tensile and compressive components, 
σ  

and 
σ . The constitutive equation is defined as 

   1 1d d       σ σ σ  (18) 

where the damage indexes d   and d   are internal variables, each related with the sign 

of the stress and thus with tension and compression. 

Individual criteria for tension and compression are considered in the mapped space, in 

order to describe different failure mechanisms for masonry, i.e. cracking and crushing 

of the material. The two damage criteria   and   are defined as follows 

 , 0r r          (19) 

 , 0r r          (20) 

Scalar norms    are postulated in order to identify loading, unloading or reloading 

situations:  

1    (21) 

 3 oct octK       (22) 

The former expression represents a tensile Rankine criterion, being 1
  is the largest 

principal effective stress. The latter equation is the compressive criterion proposed in 

[31], which is directly inspired on the Drucker-Prager criterion. Symbols oct   and oct   

are the octahedral normal stress and the octahedral shear stress obtained from   , 

while constant K controls the aperture of the inherent Drucker-Prager cone. 
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Variables r  and r  in equations (19) and (20) are the internal stress-like variables 

representing the current damage thresholds in tension and compression. Their values 

control the size of each (monotonically) expanding damage surface. The expansion of 

the damage bounding surfaces for loading, unloading and reloading conditions is related 

to the evolution law of the internal variable, explicitly defined in the following way: 

 0max ,maxr r    
 

 (23) 

where the initial values of the tensile and compressive damage thresholds are 

0r f   (24) 

 0

3
2

3
r K f    (25) 

Note that Eq. (24) allows one to compute the current values for r  in terms of the 

current values of    and   , which depend explicitly on the current total strains, see 

Equations (17), (21) and (22).  

2.3 Damage Surfaces in the Real Orthotropic Space 

Expressions (19)-(22) lead to the equations of two three-dimensional surfaces defined in 

the coordinates system denoted by axes , ,x y xy    
. Transformations of stresses (8) 

and (9) scale in distinct manners the two isotropic damage surfaces assumed in the 

mapped space. By means of such a mapping operation, the desired real orthotropic 

criteria are reproduced in the coordinate system denoted by axes , ,x y xy   . Owing to 

the choices of the Rankine and Faria isotropic criteria in the mapped space, the stress 

transformation tensors (10) take the diagonal forms in Voigt’s notation 

11
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f

f

f

f

f

f
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





 
 
 
      
 
 
 
  

A  (26) 
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 

11

22

12

0 0

0 0

2 6
0 0

f

f

f

f

f K

f
















 
 
 
 

       
 
 
 
  

A  (27) 

The choice of *f   and *f   is arbitrary. It is advisable to assume *

11f f   and 

*

11f f  , in order to obtain    11 11 1   
 A A . The transformation of space is 

feasible only if the six parameters 11 11 22 22 12 12, , , , ,f f f f f f      , i.e. the strengths of the real 

orthotropic material, are known. Such parameters also represent the intersections of the 

real damage threshold surfaces with axes 1, 2 and 3, see Figure 3. The first group of 

four strength parameters ( 11 11 22 22, , ,f f f f    ) can be estimated by means of uniaxial 

experimental tests. If such tests are performed under displacement control conditions, it 

is possible to obtain also the inelastic parameters that define the model, viz. the four 

independent fracture energies. The parameters 12f   and 12f   can be derived by the 

experimental tests proposed in [10], which weight the shear stress contribution to tensile 

and compressive failure. Finally, a biaxial compressive test is required in order to assess 

the value of the K parameter termed in (25). 

2.4 Evolution Laws for Damage Variables 

The damage indexes d   reported in (18) are monotonically increasing functions such 

that  0 1d r   . They are equal to zero when the material is undamaged and equal 

to one when it is completely damaged. In strict dependence to the definitions given in 

Section 2.2 for the thresholds r , appropriate evolution laws are considered for the 

damage variables d   to reproduce both the tensile softening and the compressive 

hardening/softening observable in masonry. In this work, we assume in the mapped 

space the detailed expressions given in [29-30] that will not be reiterated here. The post-

peak behaviour is defined by means of the fracture energies fG
, normalized with 

respect to the finite element characteristic length, in order to ensure the FEM solution 

mesh-independency [37-38]. For further details the reader is referred to the cited 

references and to the validation example of Section 4.1. 
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3.  Numerical Implementation of the Proposed Model  

The steps for implementing the orthotropic damage model into the framework of 

standard nonlinear finite element programs are given in Table 1.  

The proposed model adopts a strain-driven formalism consistent with standard 

displacement-based finite element codes. This feature provides high algorithmic 

efficiency, which is of primary importance when practice-oriented analyses are carried 

out.  

4.  Validation Examples 

The first example discusses the nonlinear behaviour in tension and compression of the 

proposed model. Then, the experimental failure domains found in literature for different 

types of orthotropic masonry are reproduced numerically. Finally, the structural 

application to a shear-wall is presented. 

Calculations are performed with an enhanced version of the finite element program 

COMET [39], developed at the International Center for Numerical Methods in 

Engineering (CIMNE, Barcelona). Pre- and post-processing is done with GiD [40], also 

developed at CIMNE.  

4.1 Inelastic orthotropic behaviour under tension and compression 

This example explores the capacity of the proposed model to model the inelastic 

orthotropic behaviour of masonry. 

For this purpose, a masonry element subjected to uniaxial tension is considered. The 

material properties, referred to the material axes 1 and 2, are listed in Table 2. The 

values chosen for the material parameters illustrate the fact that completely different 

behaviours along the two material axes can be reproduced.  

Figure 4a shows the stress-strain responses for angles of orthotropy equal to 0°, 45° and 

90°. The present model considers an exponential softening law, which is convenient for 

a quasi-brittle material such as masonry. Once the fracture energy is exhausted, a non-

tension material is recovered.  

As a second step, a masonry specimen subjected to uniaxial compression is considered. 

The same observations made for the tension test hold. The only exception concerns the 

compressive nonlinear behaviour. A parabolic hardening followed by exponential 

softening is considered for the stress-strain diagrams, according to the assumed 

compressive fracture energy, see Figure 4b. The peak strength value is assumed to be 
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reached simultaneously on both materials axes, i.e. isotropic hardening, followed by 

orthotropic softening as determined by the different fracture energies. The model allows 

one to set an ultimate value of the strain, from which the material begins to soften. 

As a third step, the behaviour of the proposed model under unloading/reloading 

conditions is studied. In compliance with the CDM classical theory, in case of 

unloading the damage does not rise and, consequently, unloading occurs until the origin 

according to a damaged Young modulus. The damage constitutive law differs from the 

plasticity constitutive law in that no plastic irreversible deformation occurs: all the 

deformation is recovered during the unloading, so that the unloading paths are not 

parallel.  

In addition, the two-parameter damage model is able to capture the unilateral behaviour 

exhibited by the material when passing from tension to compression [27-33]. This is 

due to the assumption of the stress split to the definition of two different variables to 

describe tensile and compressive damage, see Equation (18). This peculiarity of the 

model is emphasized in Figure 4c, which shows the numerical response of a masonry 

specimen subjected to tensile-compressive cycles. A cyclical displacement history is 

applied to the specimen with horizontal bed joints. As can be seen from Figure 4c, the 

unloading occurs until the origin of the stress-strain diagram, according to a damaged 

stiffness. A successive reloading follows the same unloading branch, until the damage 

threshold is reached again. When reversing the sign of the external loading, the 

constitutive model is able to distinguish tension from compression. In particular, the 

stiffness recovery upon loading reversal is correctly represented. For instance, when 

passing from tension to compression, the model accounts for the crack closure 

phenomenon in masonry. 

Concerning the representation of irreversible deformation upon unloading, which is not 

considered in the model at this stage, it is worth mentioning the CDM models of Refs. 

[31-32] that include inelastic strains in problems with reversal loading.  

4.2 Comparison with Experimental Data of Masonry Strength 

The capability of the proposed model to reproduce the strength of different masonry 

types is shown next. A comparison with different available experimental data is carried 

out.  

Firstly, the biaxial tests conducted by Page [16-17] on solid clay brick masonry are 

considered. The tests were conducted for five different orientations, 0°, 22.5°, 45°, 

67.5° and 90°, of the principal stress with respect to the direction of the mortar beds, in 
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order to assess the directional strength characteristics of masonry panels subjected to in-

plane monotonic loading. 

The values assumed for real orthotropic strengths are 11 0.43f MPa  , 22 0.32f MPa   

and 12 0.33f MPa   for tension and 11 8.74f MPa  , 22 8.03f MPa   and 

12 2.71f MPa   for compression. The parameter K of Equation (25) has been considered 

equal to 0.118. All the aforementioned values have been selected according to data 

given by Page [17] and parameters calibrated in Ref. [10]. The composite damage 

criterion features a low degree of anisotropy ( 1.34x yf f    and 1.09x yf f   ), as 

shown in Figure 5. For all the tests, the material properties in the 1-axis have been 

selected for the mapped isotropic behaviour. The comparisons between the experimental 

values and the model ones are given in Figures 6a-c, corresponding to orientations of 

the bed joints equal to 0°, 22.5° and 45°, respectively.  

Globally, good agreement is found. The results obtained by the proposed model are also 

consistent with the simulations obtained with the plasticity model of Lourenco et al. 

[23]. The Two-Parameters Damage Model benefits from more large efficiency, thanks 

to its intrinsic simplicity. Moreover, the favourable strain-driven format provides 

robustness and high algorithmic efficiency, avoiding the problem of possible ill-

conditioning of the return-mapping algorithm in stress-driven orthotropic plasticity 

models [41]. 

Secondly, the biaxial tests conducted by Ganz and Thürlimann [42] on hollow clay 

brick masonry are considered. The values assumed for real orthotropic strengths are 

11 0.28f MPa  , 22 0.01f MPa   and 12 0.04f MPa   for tension and 11 1.83f MPa  , 

22 7.63f MPa   and 12 3.41f MPa   for compression. The parameter K of Equation (25) 

has been considered equal to 0.072. All the aforementioned values have been selected 

according to data given by Ganz and Thürlimann [42] and parameters calibrated in Ref. 

[10]. The composite damage criterion features a high degree of anisotropy ( 28x yf f    

and 4.17y xf f   ). These high ratios are due to the high perforation of the clay bricks. 

For all the tests, the material properties in the 1-axis have been selected for the mapped 

isotropic behaviour. Figure 7 shows the shape of the adopted composite damage 

criterion both with the points representing the set of strength experimental data. It 

appears that the tension regime represents the majority of the composite damage surface 

domain. 
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The test results, the proposed model results and the ratio between experimental and 

predicted failure are given in Table 3. Notice that this ratio is a measure of the norm of 

the stress vector in the ( , ,x y xy   )-space which equals  
1 2

2 2 2

x y xy    . Panels K5 

and K9 are not included because the boundary conditions affected the failure mode of 

panel K5 and panel K9 included reinforcement. 

The model seems to be able to reproduce the strength behaviour of this type of 

anisotropic masonry with good accuracy. The error is bounded by a maximum value of 

5%, corresponding to test K8. The mean of the ratios is equal to 0.995. 

Finally, the biaxial tests conducted by Lurati et al. [43] on hollow concrete block 

masonry are considered. The values assumed for real strengths are 11 0.01f MPa  , 

22 0.01f MPa   and 12 0.01f MPa   for tension and 11 5.78f MPa  , 22 9.12f MPa   

and 12 3.98f MPa   for compression. This type of masonry is practically a no-tension 

material. The parameter K of Equation (25) has been considered equal to 0.0. All the 

aforementioned values have been selected according to data given by Lurati et al. [43] 

and parameters calibrated in Ref. [10]. The composite damage criterion features a 

reasonable degree of anisotropy in compression, with 1.58y xf f   . For all the tests, 

the material properties in the 1-axis have been selected for the mapped isotropic 

behaviour. Figure 8 shows the shape of the adopted composite damage criterion both 

with the points representing the set of strength experimental data. 

The comparison between experimental and numerical results is reported in Table 4. 

Panel ZSW3 is not considered because the head joints were not filled. The model has 

shown its ability to simulate the strength behaviour of this type of anisotropic masonry 

with good accuracy. The error is bounded by a maximum value of 7%, corresponding to 

test ZSW7. The mean of the ratios is equal to 0.993. 

4.3 TU Eindhoven Shear-Walls 

The shear walls J2G and J3G with a central opening tested at TU Eindhoven [44] are 

here considered. They have dimensions of 990×1000 mm
2
 and are constituted by 18 

courses, of which 16 courses are active and 2 courses are clamped in steel beams. The 

walls are made of wire-cut solid clay bricks with dimensions 210×52×100 mm
3
 and 10 

mm thick mortar, prepared with a volumetric cement:lime:sand ratio of 1:2:9. Vertical 

precompression uniformly distributed forces p=0.30 N/mm
2
 are applied to the walls, 

before a horizontal load is monotonically increased under top displacement control in a 
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confined way, i.e. keeping the bottom and top boundaries horizontal and precluding any 

vertical movement. 

For the numerical analysis, the wall is represented by 5982 bi-dimensional plane-stress 

3-noded linear triangular elements. The computational domain is discretized with an 

unstructured mesh with average mesh size of he=20 mm (3128 nodes). The discrete 

problem is solved incrementally, in a (pseudo) time step-by-step manner. The analysis 

is completed by means of 500 equal time steps. Within each step, a modified Newton–

Raphson method (using the secant stiffness matrix), together with a line search 

procedure, is used to solve the corresponding non-linear system of equations. 

Convergence at a particular time step is attained when the ratio between the norm of the 

iterative residual forces and the norm of the total external forces is lower than 1%. 

The values of the mechanical parameters used in the numerical analysis to describe the 

masonry behaviour are summarized in Table 5. Some of them are the mechanical 

characteristics of masonry provided in [44], others are data obtained via a 

homogenization procedure [45]. 

Figure 9a shows iso-contours for the tensile damage, which arises from the opening and 

propagates towards the top and the bottom of the wall. In addition, tensile damage arises 

from the vertical external sides of the wall, involving the top left pier next to the 

opening and the bottom right one. Such approximate representation of the tensile 

damage as a smeared phenomenon can be considerably improved resorting to the crack-

tracking technique proposed in Ref. [9], which forces the tensile damage to develop 

along a single row of finite elements. In this way, the tensile damage is represented in 

the form of localized cracks, similar to the ones typically observed on masonry 

structures. Figure 9b shows the discrete tensile cracks predicted by the proposed model 

combined with the aforementioned crack-tracking algorithm. Compared with the 

smeared approach, the localized one shows a better capacity to predict the real 

collapsing mechanism. Figure 9c depicts the compressive smeared damage contour. As 

shown, the model predicts correctly the location of the areas affected by material 

compressive failure. The failure mechanism is properly represented, with the 

compressed struts located next to the opening which fail at both of their ends. Figure 9d 

shows the computed deformed shape corresponding to an imposed horizontal 

displacement of 20 mm, with a displacement amplification factor of 30. 

The comparison between the calculated and experimental load-displacement diagrams is 

shown in Figure 10. Although both walls J2G and J3G were tested under the same 
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conditions, the latter one resisted a lower ultimate loading. The numerical results agree 

reasonably with wall J2G, as also found in other studies [5,46]. 

Finally, Figures 11a-b show the comparison between the result obtained in [5] with a 

micro-model including the distinct representation of constituents and the visualization 

of the maximum principal strain vectors both with the compressive damage iso-contours 

derived from the proposed model. The concentration of the displacement gradients 

(strains) in the elements lying along the computed crack is evident. Therefore, the 

resolution of the cracks is optimal for the mesh used. 

5.  Conclusions 

In the present paper, an original method is proposed for the finite element analysis of 

masonry structures. This working strategy, based on CDM and on the concept of space 

mapping, allows the establishment of an implicit orthotropic damage criterion in the real 

anisotropic space by using the damage criterion formulated in an auxiliary mapped 

space, with all the advantages implied by this. The model is able to capture the stiffness, 

the strength and the inelastic dissipation in each material direction. The implementation 

of this theory in finite element codes is straightforward. The procedure can be applied to 

the analysis of masonry structures, such as horizontally and vertically in-plane loaded 

masonry walls. 
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8.  Figures Captions 

Figure 1 Relationship between the real anisotropic space and the mapped isotropic 

space [26]. 

Figure 2 Global (x-y) and material (1-2) coordinate systems. 

Figure 3 Damage surfaces assumed in the real space and in the mapped space. 

Figure 4 Stress-strain responses to uniaxial tension (a) and unixial compression (b) for 

different angles of orthotropy. Uniaxial response under cyclical displacement history 

(c). 

Figure 5 Calculated damage surface for solid clay brick masonry (=0°), according to 

experimental tests conducted by Page [16-17]. 

Figure 6 Comparisons between the proposed model, the model of Lourenço et al. [23] 

and the experimental results from Page [17]: a) =0°; b) =22.5° and c) =45°. 

Figure 7 Calculated damage surface for hollow clay brick masonry and experimental 

results obtained by Ganz and Thürlimann [42]. 

Figure 8 Calculated damage surface for hollow concrete block masonry and 

experimental results obtained by Lurati et al. [43]. 

Figure 9 TU Eindhoven Walls [44]: a) smeared damage contour; b) localized damage 

contour [9]; c) compressive damage contour; d) deformed mesh (x30). 

Figure 10 Comparison between experimental and numerical load vs. displacement 

diagrams for walls J2G and J3G. 

Figure 11 Comparison between numerical results: a) micro-model [5] and b) proposed 

macro-model. 
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Table 1 Algorithm used for the proposed model 

START 

 LOAD INCREMENTAL LOOP: n = 1, NINCR 

 EQUILIBRIUM ITERATION LOOP: i = 1, NITER  

IF ( 1 1n or i  ) GOTO 2 

1) Define strengths, constitutive tensors and rotation tensors 

11 22 12 11 22 12, , , , ,f f f f f f       

11 22 12 11 22 12, , , , ,f f f f f f       

,C C  

2) Calculate the transformation tensors: 

   
A ,    

A ,  
A ,  

A  

3) Compute tangent stiffness: 

    
1 1

tan: :
n i n ie

V

dV
 

 K B C B  

    
11

1

n in i ene

e



K A K  

4) Compute displacement and strains: 

     
1 11

n in i n i

resid
  U K F  

     
1n i n i n i




   U U U  

   :
n i n i

ε B U  

5) Calculate real effective stresses and split: 

   :
n i n i

σ C ε  

   
3

1

i

j j j j j

j

H 


   P p p p p  

     :
n i i n i σ P σ  

         :
n i n in i i n i     

 
σ σ σ I - P σ  

6) Transform real effective stresses to the mapped space: 

   

   

*

*

:

:

n i n i

n i n i





  

  





σ A σ

σ A σ
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7) Compute damage indexes and total stresses in the mapped space: 

     1
n i n i

d   σ σ  

     1
n i n i

d   σ σ  

8) Return to the real orthotropic stress space: 

     
1

*:
n i n i




  σ A σ  

     
1

*:
n i n i




  σ A σ  

     
n i n in i   σ σ σ  

9) Compute residual forces: 

    :
n i n ie T

resid ext

V

dV F B σ f  

    1

n in i ene

resid e residF A F  

IF 
 

1

n i

resid

ext

tol i i   
F

f
 GO BACK TO 3 

else: 

 END EQUILIBRIUM ITERATION LOOP 

Converged solution for the n
th

 increment. 

Compute new incremental solution: 1n n   

 END LOAD INCREMENTAL LOOP 
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Table 2 Material properties for uniaxial tension/compression test. 

Material Properties 

E1=E* 3000 MPa  f11
+
=f 

+
* 0.35 MPa  f1

-
=f 

-
* 7.00 MPa 

E2 2000 MPa  f22
+
 0.15 MPa  f2

-
 3.00 MPa 

v12=v* 0.1  f12
+
 0.20 MPa  f12

-
 3.00 MPa 

v21 0.15  Gf,1
+
=G

+
* 100 J/m

2
  Gf,1

-
=G 

-
* 40000 J/m2 

G12 900 MPa  Gf,2
+
 13.8 J/m

2
  Gf,2

-
 5510 J/m2 
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Table 3 Comparison between the proposed model and the experimental results obtained by Ganz and 

Thürlimann [42]. 

Panel 

Experimental results Present Model 

Ratio x y xy x y xy 

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

K1 -0.08 -0.92 0.42 -0.08 -0.92 0.44 0.99 

K2 -0.17 -1.42 0.62 -0.17 -1.42 0.61 1.00 

K3 0.00 -7.63 0.00 0.00 -7.63 0.00 1.00 

K4 -1.83 0.00 0.00 -1.83 0.00 0.00 1.00 

K6 -0.32 -0.32 0.32 -0.32 -0.32 0.34 0.98 

K7 -0.39 -2.25 0.93 -0.39 -2.25 0.94 1.00 

K8 -0.22 -0.04 0.09 -0.22 -0.04 0.12 0.95 

K10 -2.11 -6.44 0.00 -2.15 -6.44 0.00 1.00 

K11 -2.04 -4.49 1.23 -2.04 -4.49 1.39 0.99 

K12 -2.03 -2.03 1.08 -2.03 -2.03 0.69 1.04 
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Table 4 Comparison between the proposed model and the experimental results obtained by Lurati et al. 

[43]. 

Panel 

Experimental results Present model 

Ratio x y xy x y xy 

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

ZSW1 0.00 -9.12 0.00 0.00 -9.12 0.00 1.00 

ZSW2 -6.12 -0.83 0.00 -6.01 -0.83 0.00 1.02 

ZSW4 -5.98 -9.13 0.00 -5.76 -9.12 0.00 1.01 

ZSW5 -3.06 -3.06 3.06 -3.06 -3.06 3.07 1.00 

ZSW6 -4.60 -4.60 2.93 -4.60 -4.60 3.06 0.99 

ZSW7 -6.12 -6.12 0.00 -6.60 -6.60 0.00 0.93 

ZSW8 -2.34 -0.40 0.97 -2.34 -0.40 0.98 1.00 

ZSW9 -0.97 -5.66 2.35 -0.97 -5.66 2.36 1.00 
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Table 5 Material properties adopted in the numerical analysis of TU Eindhoven Shear Walls [44]. 

Material Properties 

E1=E* 7520 MPa  f11
+
=f 

+
* 0.35 MPa  f1

-
=f 

-
* 6.30 MPa 

E2 3960 MPa  f22
+
 0.25 MPa  f2

-
 4.50 MPa 

v12=v* 0.09  f12
+
 0.30 MPa  f12

-
 3.00 MPa 

v21 0.05  Gf,1
+
=G

+
* 50 J/m

2
  Gf,1

-
=G 

-
* 20000 J/m2 

G12 1460 MPa  Gf,2
+
 48 J/m

2
  Gf,2

-
 19400 J/m2 
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