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Abstract - This work presents a procedure to simulate the growth and propagation of 

localized tensile cracks on quasi-brittle materials. The so-called smeared damage 

approach, which consists in standard finite elements and local nonlinear constitutive 

laws, is recovered and improved in order to represent crack localization and avoid 

spurious mesh-bias dependence in the discrete problem. This is achieved by means of 

the implementation of a local crack-tracking algorithm which can reproduce individual 

(discrete) cracks and ensure objectivity of the finite element problem solution. The 

performance of the localized damage model is stressed by means of the analyses of 

structural case-studies. Compared to the smeared crack approach in its original form, the 

presented procedure shows clearly a better capacity to predict realistic collapse 

mechanisms. The proposed tracking technique is relatively inexpensive. 
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Nomenclature 

eA  Finite element area 

C  Isotropic linear-elastic constitutive tensor 

d  Damage index 

D  Specific dissipated energy 

E  Young’s modulus 

0f  Uniaxial tensile strength 

fG  Tensile fracture energy 

eh  Average element size 

disH  Discrete softening parameter 

matH  Material softening parameter  

disl  Discrete crack characteristic width 

el  Finite element size 

matl  Material characteristic length 

ip  Unit vector associated with i-th principal direction 

r  Damage threshold internal variable 

exclr  Exclusion radius 

neighr  Radius of the neighbourhood where cV  is computed 

0r  Initial value of the damage threshold internal variable 

v Poisson’s ratio 

cV  Crack average direction vector 

,maxcV  Vector which forms an angle maxα  with vector cV  

eV  Crack direction vector for the current element 

α  Angle between cV  and eV  

maxα  Maximum curvature angle 

ε  Strain tensor 

Φ  Damage criterion 

Λ  Damage threshold surface shape tensor 

σ  Stress tensor 

σ  Effective stress tensor 
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,+ −σ σ  Tensile and compressive effective stress tensors 

iσ   i-th principal effective stress 

τ  Equivalent stress 

: Double contraction 

.   Macaulay brackets 

Acronyms 

CMOD Crack Mouth Opening Displacement 

DCA Discrete Crack Approach 

E-FEM Elemental enrichment Finite Element Method 

FE Finite Element 

FEM Finite Element Method 

SCA Smeared Crack Approach 

X-FEM eXtended Finite Element Method 

1.  Introduction 

The numerical modelling of tensile cracking phenomena on quasi-brittle materials is 

one of the key topics in Computational Failure Mechanics. Two main difficulties have 

to be overcome in the discrete finite element (FE) problem: the representation of the 

opening crack, both in terms of displacement and/or strain fields, and the prediction of 

the direction for crack propagation. 

With regard to the first issue, the most promising of the newly proposed methods are 

enhancements of the classical Discrete Crack Approach (DCA) and Smeared Crack 

Approach (SCA) [1]. 

In the Elemental enrichment Finite Element Method (E-FEM) [2-6] the displacement 

field at the crack is assumed to be discontinuous and the strain field is decomposed into 

a regular part, outside the crack, and a singular part at the crack. This, together with the 

explicit control on the energy dissipated in the formation of the crack, represents a link 

with the established tradition of Fracture Mechanics. Nevertheless, such approach does 

not really depart from the usual continuum framework. 

The eXtended Finite Element Method (X-FEM) [7-10], when combined with level sets 

[11], is able to represent the discontinuity geometry, the displacement field across the 

crack and the developed singular field at the crack tip in terms of nodal values at the 

nodes of the mesh. The accuracy and the versatility of the approach are remarkable but a 

disadvantage lies in the special integration rules required inside the affected finite 
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elements to account for what happens at and outside the discontinuity. An exhaustive 

review about recent advances in X-FEM is reported in [12]. 

It has been observed in [13] that the computational cost in X-FEM is higher than in E-

FEM and it increases even more in case of multiple cracks.  

Integrated strategies with transition from Continuum Damage to macro-cracks 

simulated by means of X-FEM [14] or E-FEM [15] have been also proposed in order to 

correct initial mispredictions of the crack direction during its evolution. 

Other options have been recently investigated. On one hand, in [16,17] the displacement 

discontinuity is replaced with a regularized approximation within the framework of the 

X-FEM. A meso-scale mesh-size independent “characteristic length” related to the 

process zone width is introduced. Therefore, the displacement and strain fields at the 

crack are continuous with continuous derivative, enabling one to adopt standard 

integration procedures instead of sub-elemental ones. On the other hand, in [18,19] a 

smeared-embedded continuum crack model is presented which incorporates the effect of 

the displacement jumps in the strain field of the elements, rather than the actual jumps 

themselves. Necessary corrections are introduced in the model to avoid mesh-size and 

mesh-bias dependency. The solution for the latter drawback is found in the form of a 

mesh corrected crack model, where the structure of the inelastic strain tensor is linked to 

the geometry of the cracked element. Such approach can be considered a particular case 

of the classical SCA, implemented at constitutive level.  

Figures 1-2 sketch the comparison between the different approaches described, with 

relation to the crack modelling in the discrete FE model. The differences among them 

are subtle when referred to a 1D situation, but the different implications in 2D and 3D 

are significant, since it is necessary to establish the functional relationships between the 

fields of displacements (continuous and discontinuous) and strains (bounded and 

unbounded), and then with those of stresses. The displacement and strain fields at the 

crack represented by the strong discontinuity theories of E-FEM [2] and X-FEM [9] are 

depicted in Figure 1a, whereas their regularized versions are reported respectively in 

Figures 1b and 1c. Oliver et al. [4] use a “small” regularization length to obtain a 

bounded strain field at the discontinuity defined in terms of the displacement jump, 

measured as the difference of the displacement field at both sides of the band, see 

Figure 1b. This length may decrease during the deformation process according to an 

evolution law. Benvenuti [16] introduces a regularization length related to the width of 

the process zone that remains constant during the dissipative process and inside which 
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both the displacement and strain fields are continuous, see Figure 1c. Such regularized 

versions of E-FEM/X-FEM recall, in a certain sense, the classical SCA of Rashid [1], 

depicted in Figure 2a, even if in this case the characteristic length is equal to the 

relevant dimension of the finite element where the crack is to be represented. This 

similarity is exploited in the embedded SCA proposed by Cervera [18,19], see Figure 

2b, where concepts developed for the E-FEM are incorporated in a SCA context. 

With regard to the second issue mentioned at the beginning of this introduction, i.e. the 

prediction of the direction for crack propagation, it is deemed as the main difficulty to 

be overcome in the discrete FE problem. 

In the classical SCA it has always been implicitly assumed that the criterion for the 

onset of cracking, which is established in terms of stresses/strains, also must 

automatically define the direction of propagation. This may be a natural assumption in 

the continuous problem, with proper evaluation of stress and strain values and 

directions. However, in the discrete problem the stress and strain fields evaluated in the 

vicinity of the crack tip differ greatly from being exact. Therefore, the computed 

damage distribution is incorrect, as it depends spuriously on the alignment of the finite 

element mesh. This error must be overcome if reasonable solutions are to be obtained 

with the SCA. 

On the other hand, the application of E-FEM or X-FEM invariably needs the use of 

discontinuity tracking algorithms, in order to establish which elements lie in the crack 

path and need to be enriched [20-23]. Successful applications of such techniques point 

to the potential advantages of using a crack tracking algorithm in the discrete format of 

the crack propagation problem, also if continuous displacement fields are used in the 

interpolation basis. 

The crack tracking technique marks the finite elements which can damage and prevents 

the others from failing. This essential feature  

 minimizes the number of possible solutions, so it helps to identify the expected 

one; 

 leads to a better representation of the expected solution for mixed-modes 

fracture problems, which are often characterized by curved cracks [24]; 

 avoids (or limits) the mechanical dissipation outside the crack track. A better 

description of the dissipative phenomenon is achieved by forcing the crack to 

develop along a single row of finite elements, since the elemental softening 

parameter is directly related to the fracture energy of the material. 
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The crack tracking algorithm to be used in crack propagation problems must be 

consistently linked to the cracking criterion, as this is the established cracking 

mechanism at continuum level. For a Rankine criterion based on the value of the 

maximum tensile principal stress, it is consistent to assume that the crack propagates in 

the plane orthogonal to the corresponding first stress eigenvector. 

Non-local tracking strategies determine the crack path making reference not to local 

variables values but to their non-local counterparts, accounting for the influence of the 

neighbourhood on a certain material point [25,26]. Non-local averaging techniques are 

rather cumbersome since the modular element-wise nature of finite element analyses is 

spoiled. As a consequence, the complexity of implementation is relatively high. 

A global crack tracking technique has been proposed by Oliver and co-workers [5,6] 

within the framework of E-FEM and combined with the SCA by Cervera & Chiumenti 

[24,27] afterwards. Such a methodology considers the evaluation of the propagation 

direction as a separate problem, independent from the local values of the discrete 

stress/strain fields. The direction of propagation is evaluated by solving a conduction-

like problem which, by definition, is sufficiently well-behaved and does not present any 

singular point in the vicinity of the advancing crack. However, the solution of such 

additional problem for each mechanical loading step involves some programming 

complexity and additional computational cost. As a remedy for these drawbacks, a 

partial domain crack tracking algorithm has been employed [15,28] in which the scalar 

field with isolines is constructed only for the domain which actually is or potentially 

will be affected by the discontinuity. A practical comparison between different crack 

path tracking techniques is reported in [29]. 

This work deals with an enhanced local crack-tracking algorithm, in which the 

propagation direction is evaluated locally and corrected opportunely depending on 

potentially damaging and already damaged elements on the crack [30]. Such innovative 

tool, combined with a continuum damage constitutive law with strain-softening, 

provides a numerical model for the solution of problems involving tensile cracking in 

quasi-brittle materials, such as concrete and masonry [31]. Unlike with the use of the 

standard SCA, the resulting damage in the ultimate conditions appears localized in 

individual cracks, represented via continuous paths. Moreover, the results do not suffer 

from spurious mesh-size or mesh-bias dependence. The proposed model is much less 

computationally intensive than the similar one used in [24,27], which is based on a 

global crack-tracking technique. 
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The paper is organized as follows: first, a brief review of the local continuum damage 

model is reported; then, the proposed local crack-tracking technique is discussed in 

detail. Finally, the numerical tool is validated via the FE analyses of relevant structural 

examples. 

2.  Local Continuum Damage Model 

In this work a constitutive model based on the Continuum Damage Mechanics theory is 

considered. Since the adopted formulation is mostly identical to the one described in 

[27], it will be briefly summarized hereinafter, referring the reader to the cited paper for 

any further detail.  

2.1 Constitutive Model 

The constitutive equation for the damage model is defined as 

( ) ( )1 1 :d d= − = −σ σ C ε  (1) 

where the effective stress σ  [32] can be computed in terms of the total strain tensor ε , 

C  is the usual (fourth order) isotropic linear-elastic constitutive tensor and d is the 

damage index, i.e. an internal-like scalar variable equal to zero when the material is 

undamaged and equal to one when it is completely damaged. 

As our aim is to use a scalar damage model sensitive only to tensile stresses 

contributions, a split of the effective stress tensor into tensile and compressive 

components is carried out according to [33]: 

3

1
andi i i

i
σ+ − +

=

= ⊗ = −∑σ p p σ σ σ  (2) 

where iσ  denotes the i-th principal stress value from tensor σ , ip  represents the unit 

vector associated with its respective principal direction and the symbols .  are the 

Macaulay brackets ( ), 0, 0, 0x x if x x if x= ≥ = < . 

The scalar positive quantity, termed as equivalent stress τ , is defined in order to 

identify “loading”, “unloading” or “reloading” situations for a general 3D stress state, 

according to:  

1 2
: :τ + + =  σ Λ σ  (3) 
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The shape of the damage threshold surface in the effective stress space is defined by the 

non-dimensional fourth order tensor Λ , which is assumed in this work equal to 

1 1 1 1= ⊗ ⊗ ⊗Λ p p p p  (4) 

leading to the well-known Rankine criterion in tension. 

If one designates by r the greatest values (here termed as threshold) ever reached until 

an instant t by the equivalent stress τ , increments of the damage variable d during time 

interval [ ],t t t+ ∆  are assumed to occur only when t t trτ +∆ >  (see [34] for details). 

Accordingly, the following damage criterion is introduced: 

( ), 0r rτ τΦ = − ≤  (5) 

Based on Equations (3) and (5), the initial elastic domain is defined by the condition 

0rτ = , where 0 0r f= , being 0f  the stress that defines the onset of nonlinearity on 1D 

tension.  

2.2 Strain softening and discrete crack width regularization 

The damage index ( )d d r=  is explicitly defined in terms of the corresponding current 

value of the damage threshold r, so that it is a monotonically increasing function such 

that 0 1d≤ ≤ . In this work, the softening law takes the following exponential form [35] 

( ) 0 0

0

1 exp 2 dis
r r rd r H
r r

  − = −   
   

 (6) 

where constant 0disH ≥  is the discrete softening parameter. 

Since Bazant and Oh [36] it was recognized that the use of constitutive laws with 

softening in the SCA leads to solutions strongly dependent on the mesh refinement. In 

order to ensure mesh-size objective results, the discrete softening law has to be 

modified in such a way that the energy dissipated over a completely degraded finite 

element is equal to a given value, which depends on the material fracture energy and on 

the element size. Accordingly, the specific dissipated energy D is adjusted for each FE 

in the crack band, so that the equation 

dis fD l G⋅ =  (7) 



 - 9 - 

applies, where fG  is the material tensile fracture energy and disl  is the discrete crack 

characteristic width, i.e. the computational width of the fracture zone. This can be 

derived according to the consistent methodology suggested by Oliver [37]. 

For the damage model with the exponential softening it can be proved that the specific 

dissipated energy is 

( )2
011

2dis

f
D

H E
 

= + 
 

 (8) 

and, therefore, using (7) and (8) the discrete softening parameter is defined as 

dis
dis

mat dis

lH
l l

=
−

  (9) 

where the material characteristic length is 1mat matl H= , with ( ) ( )2
0 2mat fH f E G=  

depending only on the material properties.  

It has to be remarked that this regularization procedure does not apply to the continuum 

format of the cracking problem. If discontinuous displacements are considered in the 

continuous problem, the nonlinear constitutive behaviour can be established in terms of 

a traction-versus-jump law. If the discrete problem reproduces the displacement jumps, 

as it happens in the E-FEM/X-FEM, then no regularization procedure is necessary 

(Figure 1a), although it is also used in the regularized versions of these formulations 

(Figures 1b and 1c). Contrariwise, in the SCA, mesh-size regularization is necessary 

because of the smearing of the displacement jump over the resolution length which the 

FE mesh is able to achieve (Figure 2). Obviously, this only refers to the discrete 

problem, and it depends on the element size. It is important to note that when the mesh 

is refined the continuous constitutive model is recovered as a limit case. 

In the framework of local models and FE analysis, the state variables are computed at 

the integration points in terms of the local strain (and/or stress) history. Therefore, the 

discrete crack characteristic width is related to the volume (or area) of each finite 

element [38]. For linear simplex elements, the discrete crack characteristic width can be 

taken as the representative size of the element, dis el l= . In this work, and assuming that 

the elements are equilateral, the size of the element will be computed as ( )2 4 3e el A=  

for triangular elements. 
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3.  Local Crack-Tracking Technique 

Although the problem of mesh-size dependence in SCA has been satisfactorily 

overcome, as mentioned in Section 2.2, the issue concerning the mesh-bias dependence 

of the FE solution still remains unsolved. It is well-known that only if the spatial 

discretization is designed in such way that an “appropriate” path for the advancing crack 

is available, the SCA solution results satisfactory. In this work, a solution to the 

problem is found by making use of a crack-tracking technique. 

The local crack-tracking algorithm detects the point where a crack is originated and then 

it lets the crack propagate perpendicularly to the trajectory of the first principal tensile 

stress. The algorithm marks the finite elements pertaining to the crack path which can 

experience potential damage. The crack is forced to develop along a single row of finite 

elements. The regularization procedure using the material properties and the element 

characteristic length ensures that dissipation will be element-size independent, see 

Equation (7). 

The proposed method is applied at every time step during the analysis, just before the 

stress evaluation. The method works with a flags system, where finite elements are 

labelled to delimit the zones where cracks will appear or develop. The criteria used to 

define these zones depend on the magnitude and direction of the principal stresses at 

each element. The algorithm has been implemented for 2D problems using three-noded 

standard elements with continuous displacement field. Despite their well-known 

approximability limitations, constant strain-triangles ensure an efficient implementation. 

The procedure is divided into two steps. First, new cracks are detected by checking the 

stress values at every finite element located on the boundary of the structure. Then, the 

track of finite elements pertaining to the crack path is marked by the algorithm, in order 

to compute the crack propagation direction. 

3.1 New Crack Detection 

The input data of this first stage of the procedure are (i) the principal tensile stress 

values of the elements located on the boundary of the mesh and (ii) the list of the 

elements labelled as “crack root”, all referred to the previous time step. 

Then, the following operations are carried out: 

1. New elements are labelled as potential crack roots. For this aim, we consider 

some criteria: 
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• The crack starts once the principal tensile stress value reaches the material 

strength, according to the Rankine tensile criterion. This check is performed 

only on finite elements located on the boundary of the mesh. Therefore, 

cracks are assumed to start only from the border of the structure.  

• When several neighbour elements reach the tensile strength at the same time 

step, the exclusion radius criterion is applied. This radius exclr  (defined by 

the user) is the minimum distance imposed between two crack root elements, 

and it is used to guarantee the creation of separated discrete cracks. Among 

all the elements which have reached the tensile strength at the same time 

step, and which are contained into the exclusion radius, the one with the 

greatest principal tensile stress is labelled as crack root. 

2. The spatial coordinates of the crack origin are computed. The midpoint of the 

element side located at the mesh boundary is considered. In case of corner 

elements, the centroid is assumed, see Figure 3. 

The output data of the new cracks detection procedure is the list of the potential crack 

root elements, together with their spatial coordinates. 

3.2 Crack Propagation 

The input data of this second stage of the procedure are (i) the list of the potential crack 

root elements, together with their spatial coordinates, (ii) the principal tensile stress 

values and directions of all the mesh elements and (iii) the list of the elements belonging 

to consolidated cracks referred to the previous time step. 

Then, the following operations are carried out: 

1. Determine the “tip of the crack element” for each existing consolidated crack. 

This is defined as the damaged element with only one neighbour damaged 

element. 

2. For each tip of the crack element, as well as for the new crack root elements, the 

following processes are executed: 

• Determine the exit point coordinates. A vector is drawn from the entry point 

coordinates (defined below), using the direction perpendicular to the 

principal tensile direction of the element. The exit point is defined as the 

intersection of that vector with the corresponding face of the element, see 

Figure 4a.  
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• Determine the next potential element on the crack for the current time step. 

This is the neighbouring element whose face in common with the current 

element corresponds with the face where its exit point is located. The 

element is marked as a potential element belonging to this crack. 

• Determine the entry point coordinates. The entry point of the new element 

on the crack is located at the same coordinates of the exit point of the 

previous element, see Figure 4b. 

• Repeat the three previous steps, taking the new potential element as the 

crack tip element. 

For each crack, the previous procedure is repeated until one of the following criteria is 

satisfied: 

• Stress threshold criterion. Element tracking and labelling is stopped when 

the principal tensile stress is lower than a threshold defined by the user. The 

experience has demonstrated that 75% of tensile strength usually works well.  

• Crack meeting criterion. The procedure stops when a previously damaged 

element, or an element marked as a potentially cracking one, is found along 

the current crack. This means that two cracks have met, and from then on 

they will be considered as a single one. 

• Boundary criterion. When the exit point of an element is on the boundary of 

the structure, the cracking process finishes. 

3. Once any of the previous criteria is reached, the current crack is considered 

totally developed and the next one is studied, by restarting the cycle. Finally, 

after applying this procedure to all the cracks, each element will have one of the 

three following labels: 

• Intact element, not able to damage (out of potential crack track; it will keep 

elastic behaviour during the current time step) 

• Intact element, able to damage (in a potential crack track; it will initiate 

inelastic behaviour if the material strength is reached) 

• Damaged element (belonging to a crack consolidated in previous time steps; 

it will develop inelastic behaviour during the rest of the calculations) 

The analysis procedure recognizes these labels and activates the corresponding 

constitutive law (elastic or damage) in each element for the current time step. Also, once 

the stresses have been updated and the damaged indexes are known, the elements with 

potential cracking that really suffer damage are relabelled as included in a consolidated 
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crack for the rest of calculations. Finally, elements potentially cracking that do not 

suffer damage are restored to their original status, i.e. unlabelled. 

The proposed algorithm, based on the directions of the stresses in the previous time 

step, is of first order accuracy (the error is proportional to the size of the time step). 

More accurate algorithms can be formulated. For instance, a second order prediction on 

the stresses at the current time step can be done in terms of the stresses at the two 

previous time steps. Such procedure would reduce the dependence of the computed 

crack track on the size of the time step significantly, particularly in the case of curve 

crack trajectories. 

3.3 Maximum Curvature Criterion 

The implementation of the crack tracking algorithm in the form described just in 

Sections 3.1.1 and 3.1.2 leads to some problems in case of bending stress states. Figure 

5 shows the FE simulation of an advancing flexural crack in the middle of a 3-point 

loaded concrete beam. The contour of tensile damage is zoomed in the proximity of the 

neutral axes, as well as the tensile principal directions (red arrows). As can be seen, 

since the algorithm assumes the direction of the crack to be perpendicular to the 

principal tensile stress, the track should propagate from the crack tip (element A) to 

element B and then to element C. This is obviously erroneous, because the vertical 

crack should go up to the element D. Therefore, the local crack tracking technique needs 

a specific device to overcome such a drawback.  

In this paper, the maximum curvature criterion is introduced in order to correct spurious 

changes of propagation direction. The procedure consists in identifying and correcting 

the sudden change of curvature in the crack track, before marking each potential 

element. Making reference to Figure 6a, the following parameters are considered: 

• Crack direction vector for the current element eV . 

• Crack average direction vector cV . It is equal to the vectorial sum of the 

elemental cracking vectors. The elements considered in the calculations are 

those potential at the current time step and those consolidated at the previous 

time steps whose centroids lie inside a neighbourhood of radius neighr . Such 

length is defined by the user and it is measured from the centroid of the current 

tip element (see Figure 6b). 

• Angle α  between cV  and eV . 
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• Maximum curvature angle maxα , defined by the user at the beginning of the 

calculations. 

• Vector ,maxcV  which forms an angle maxα  with vector cV . 

If it results that maxα α≤ , the considered element is marked as potential for the current 

time step with a corresponding direction eV . Then, the following element of the crack is 

considered. 

If it results that maxα α> , the crack direction is deflecting sharply (see Figure 6a) and a 

correction is carried out, using cV  instead of eV . This means to impose the crack the 

average direction exhibited until the step considered with respect to a specified 

neighbourhood of radius neighr  (see Figure 6b). In the case of problems involving 

straight or small curvature cracks, the choice of neighr  obviously does not affect 

particularly the crack direction prediction. In the case of problems with curved cracks, 

on the other hand, vector cV  has to be computed making reference to a limited number 

of FEs in order to simulate correctly the curvature of the propagating crack. Therefore, 

the choice of neighr  may influence the results accuracy, as it will be shown in 

Section 4.3. 

Once the crack direction correction is carried out, the standard procedure is followed, 

i.e. the element is marked as potential and the new one is considered. 

It is worth mentioning that crack tracking algoritms are sensitive to the precision 

achieved in the computed values of the stresses (or strains) at the root of the crack. 

Point-wise convergence on the stress (or strain) values for a given FE formulation is a 

research topic which deserves in-depth investigation. 

4.  Validation Examples 

In this Section, the proposed localized damage model based on a crack-tracking 

technique is validated by means of numerical structural examples. First, a simple 

benchmark example consisting in a holed strip subjected to uniaxial tension is analyzed. 

The second validation example is a three point bending test on a concrete beam. Then, a 

more complicated case study is considered, that is the simulation of a mixed-mode 

bending test on a concrete beam. Finally, the analysis of a masonry semicircular arch is 

presented, for the particular case of asymmetrical vertical load. 
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Calculations are performed with an enhanced version of the finite element program 

COMET [39], developed at the International Centre for Numerical Methods in 

Engineering (CIMNE, Barcelona). The problem is solved incrementally in a (pseudo) 

time step-by-step manner. Within each step, a modified Newton–Raphson method 

(using the secant stiffness matrix), together with a line-search procedure, is used to 

solve the corresponding non-linear system of equations. Convergence of a time step is 

attained when the ratio between the norm of the iterative residual forces and the norm of 

the total external forces is lower than 1%. Pre- and post-processing are done with GiD 

[40], also developed at CIMNE. 

4.1 Holed Strip under Uniaxial Traction 

The numerical analysis of a holed strip subjected to uniaxial stretching is considered, in 

order to point out the difference between a traditional smeared damage model and its 

enhanced version improved by a crack tracking algorithm. 

This example has been already solved in [27] making use of a global crack-tracking 

technique. The same material data are considered: Young’s modulus 30 GPaE = , 

Poisson’s ratio 0.2v = , tensile strength 0 2 MPaf =  and mode I fracture energy 

2100 J mfG = . The specimen size is 200 x 400 mm2 and the radius of the perforation is 

equal to 10 mm. Axial vertical displacements are applied to both the strip ends. Since 

the problem is symmetrical, only the right half of the computational domain is 

considered and discretized in two different unstructured meshes with average mesh 

sizes of 5 mmeh =  (2023 nodes) and 2.5 mmeh =  (7648 nodes). The problem is 

analyzed assuming two-dimensional plane strain conditions. 

First, the traditional smeared damage model is considered in calculations. Figure 7 

shows the computed deformed shapes and tensile damage contours in the two different 

meshes for a (half)-imposed vertical displacement of 0.1 mm. As shown, the crack 

grows from the perforation, then it propagates horizontally and it suddenly deviates 

from the expected correct path, following a line of FEs inclined of about 30°. This result 

is definitely spurious and strongly dependent on the considered spatial discretizations. 

Then, the damage model based on a local crack-tracking technique is adopted in the 

analyses. The choice of the tracking parameters is irrelevant in this example. In fact, 

exclr  definition is not necessary since a unique crack is expected. No correction of the 
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crack direction is required because the stress field is uniformly uniaxial, so maxα  and 

neighr  are irrelevant.  

Figure 8 shows how the crack propagates correctly along the horizontal axis of 

symmetry, without following any “favourable” path given by the considered meshes. 

Figure 9 shows the (half)-load vs. (half)-imposed vertical displacement curves obtained 

in the two analyses with local crack-tracking technique. As shown, the results are 

remarkably mesh-size independent. 

It is worth noticing that the results presented in Figures 8-9 are identical to the ones 

obtained in [27] by a global crack-tracking technique because the meshes used are the 

same and both the algorithms predict exactly a horizontal crack. Nevertheless, the 

global tracking approach is more computationally expensive than the local one, since it 

is necessary to solve a conduction-like problem at each step of the analysis. The local 

crack-tracking algorithm, on the other hand, stands out because of its efficiency and 

lower computing time. In fact, if the analysis with 2.5 mmeh =  is run in a standard PC 

equipped with a single Pentium 4 – 3.2 GHz, 2 GB Ram – processor, the absolute CPU 

time results equal to 194.97 seconds using the global tracking and equal to 148.19 

seconds using the local tracking. Since the computing time for the classical SCA is 

equal to 132.98 seconds, the additional calculation effort for the local crack-tracking is 

only 24.5 % of that required for the global one. 

4.2 3-point Bending Beam 

The second example is a three point bending test on a notched concrete beam [41] 

whose dimensions and boundary conditions are given in Figure 10. The behaviour of 

the proposed local crack-tracking algorithm in bending problems is investigated, as well 

as the influence of the load step size.  

The mesh is constituted by 2380 elements and 1248 nodes. The FEs average size is 

2 mmeh =  in the proximity of the cracking zone. The two adopted load incrementation 

strategies consist of 100 and 1000 load steps; accordingly, the vertical displacement 

1 mmδ =  is applied in the midpoint through steps of magnitude 21 10 mm−×  and 
31 10 mm−× . The material data are: Young’s modulus 20 GPaE = , Poisson’s ratio 

0.2v = , tensile strength 0 2.4 MPaf =  and mode I fracture energy 2113 J mfG = . The 

beam has thickness equal to 100 mm and it is analyzed under two-dimensional plane 

strain assumptions. 
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As explained in Section 3.3, the maximum curvature criterion is necessary in the case of 

flexure problems to avoid the crack “about-turn” phenomenon (Figure 5). Accordingly, 

several FE analyses have been executed in order to assess the influence of maxα  on the 

results. With a step magnitude of 21 10 mm−× , values max 50α ≤ °  predict the correct 

crack direction, see Figure 11. For greater values of maxα , the predicted crack suffers 

from sharp changes of direction during its propagation, leading to incorrect results. For 

a smaller step magnitude of 31 10 mm−× , the aforementioned upper limit increases to 

max 60α ≤ ° .  

Figure 12 shows the comparison between the experimental [41] and the numerical load-

displacement curves. Note that the curves obtained with the two different load step sizes 

tally very closely. Good agreement is achieved, both in terms of load peak value and 

energy dissipation in the nonlinear range. 

Definition of exclr  is not necessary in this example since it presents a unique crack. Also, 

an adequate number of neighbour elements is selected with 10 mmneighr ≥  in order to 

reproduce the correct straight direction of the crack. 

4.3 Mixed-Mode Bending Beam 

The third example is a plane-strain notched beam subjected to mixed-mode bending 

test. The experimental evidence reported in [42] is simulated by means of the proposed 

model. Figure 13 depicts the geometry of the problem and the boundary conditions 

applied to the concrete beam. In a first case the stiffness at the upper left support is 

assumed equal to zero ( 0K = , i.e. a three point bending beam), while in a second case 

is infinite ( K = ∞ , i.e. a four point bending beam). The load P is applied by imposing 

vertical displacements. The following material properties are assumed for concrete: 

Young’s modulus 38 GPaE = , Poisson’s ratio 0.2v = , tensile strength 0 3 MPaf =  and 

mode I fracture energy 269 J mfG = . The computational domain is discretized in 

13443 triangular elements, with a total number of 7028 nodes. The average mesh size in 

the zone interested by the tensile fracture is 2.5 mmeh = .  

Figure 14 shows the computed deformed shapes at collapse obtained assuming 

max 20α = °  for the specimen 1 (three point test) and max 32α = °  for the specimen 2 (four 

point test). In the former analysis it is assumed 5 mmneighr =  while in the latter 

10 mmneighr = . The definition of exclr  is not necessary in these examples since they 
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present a unique crack. Figure 15 shows the comparisons between the experimental and 

the numerical crack tracks, in which it is possible to appreciate a remarkable agreement. 

Figure 16 presents the Load vs. CMOD curves for specimens 1 and 2. In the first case 

(Figure 16a), the numerical curve is quite similar to the experimental ones, even if the 

numerical model slightly underestimates the strength in the last part of the calculus. In 

the second test (Figure 16b), the concordance of numerical result with the experimental 

evidence is clear, until a sudden collapse occurs for CMOD 0.11 mm= . 

For specimen 2, a maximum curvature angle max 32α = °  has been chosen in order to 

avoid sharp changes of the crack direction. Since the crack is straight, the assumed 

value 10 mmneighr =  is irrelevant for the result shown in Figure 14b. 

A sensitivity analysis regarding the parameters used for the tracking algorithm has been 

carried out for specimen 1, because it presents an interesting case of a crack with a 

certain curvature. The first parameter which has been investigated is maxα  because it 

plays a key role in the crack direction correction through the maximum curvature 

criterion, as shown in Section 4.2. Values of max 55α ≤ °  are necessary to avoid sharp 

changes of the crack direction. Below this upper-bound value, some variations in the 

numerical crack track can be appreciated for max 40α = °  and then for max 20α = ° . It is 

noticed that there is an initial length of the crack of about 40 mm which is insensitive to 

the variation of the tracking parameters. It is at this distance from the notch where the 

algorithm comes into play. This is evident in Figure 17, where the computed crack 

tracks (depicted by the damaged elements) can be compared to the experimental 

envelope. Once the crack “about-turn” phenomenon is avoided, thanks to the restriction 

imposed by maxα , the effect of the choice of neighr  is investigated. Results corresponding 

to values of neighr = 20, 10 and 5 mm are shown. Values of 20 mmneighr >  yield the same 

results as with 20 mmneighr = . On one hand, Figure 17 shows that for 20 mmneighr =  the 

resulting crack track is almost straight. Values of 10 mmneighr =  or 5 mmneighr = , on the 

other hand, allow the crack to change direction during propagation. For max 20α = °  and 

5 mmneighr =  the numerical crack track lies entirely inside the experimental envelope. 

4.4 Asymmetrically Loaded Semicircular Arch 

The fourth example consists in a semicircular arch with thickness and width equal to 

1 m and a radius of 5 m. Both the supports are fixed and a vertical load is applied 
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according to the scheme reported in Figure 18a. The following material properties are 

considered for masonry: Young’s modulus 5 GPaE = , Poisson’s ratio 0.2v = , tensile 

strength 0.2 MPaf =  and mode I fracture energy 210 J mfG = . All the numerical 

analyses are carried out under the hypothesis of plane strain, with unitary thickness 

assumed. Gravitational loads are applied to the arch, before a vertical load is 

monotonically increased by considering load steps of 3 kN in the case of force control 

or increments of 0.05 mm under displacement control. The computational domain is 

discretized in 11324 triangular elements, with a total number of 5989 nodes and a 

average mesh size 50 mmeh = . 

Before the numerical analyses, a static limit analysis has been carried out in order to 

assess the ultimate load value (about 150 kN) and the position of the plastic hinges, 

defined by letters A-D in Figure 18b. Such results have been also validated through the 

RING software [43]. 

Then, the masonry arch behaviour is studied by means of the traditional smeared 

damage approach, considering both the load and the displacement control analyses. 

Figure 19 shows the curve of load vs. vertical displacement in the application point of 

force P. As can be seen, the ultimate load calculated value is quite similar to the one 

derived by the limit analysis.  

Figure 20 presents the damage distribution at stages 1-5 (refer to Figure 19) of the 

calculus carried out under force control. The attention is focused on the locations where 

a hinge development is expected, i.e. the points A-D of Figure 18b. The structural 

behaviour remains linear until 110 kNP = , which corresponds to stage 1. Damage 

occurs first at points B and D, which are subjected to the highest values of tensile stress. 

Then, a sudden extension of the damaged zone arises in such points, as shown at stage 

3. At stage 4, cracks B and D still remains radially oriented, while at points A and C a 

quite distributed damage occurs at the extrados. At stage 5, crack C progresses 

downwards and spreads over a quite extended region, similar to a bulb. After stage 5, as 

soon as crack A occurs, sections B, C and D damage completely and the arch collapse 

mechanism is activated. No more equilibrium points are found under load control. 

Figure 21 presents the results of the analysis under displacement control. Compared to 

the previous analysis, it is possible to detect the unloading occurring after the formation 

of cracks B and D (branch 1-2 of Figure 19). At stage 2, crack B is not as spread as the 

equivalent one obtained under load control. Therefore, it is possible to conclude that in 

the smeared damage approach the solution depends on the particular loading path 
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followed. Another unloading occurs after the formation of cracks A and C (branch 4-6 

of Figure 19). As shown in Figure 21, both the cracks follow a path given by the spatial 

discretization adopted. Therefore, it is evident the spurious mesh-bias dependence of the 

solution. After stage 6, the structure still presents a low stiffness, until another 

unloading is discovered (point 7 of Figure 19), which corresponds to the formation of a 

hinge in B (see Figure 21, in which crack B is shown before and after the jump).  

Finally, the arch is analyzed by considering the localized damage model with crack-

tracking technique. The following correction parameters are assumed for the maximum 

curvature criterion: max 30α = °  and 300 mmneighr = . The former has been chosen in 

order to avoid spurious changes of cracks direction, whereas the latter is the minimum 

value necessary to reproduce correctly the radial direction of cracks. The exclusion 

radius exclr  has been assumed equal to 3000 mm, making reference to the positions of 

the plastic hinges derived from the previous limit analysis. However, values within the 

wide range 1500mm 3200mmexclr≤ ≤  lead to a correct prediction of the hinges 

positions. 

Figure 22 shows the curve of load vs. vertical displacement in the application point of 

force P. In the case of displacement control, the model is able to capture the unloading 

occurring after the formation of the first crack, denoted by branch 2-3. It is worth 

noticing that from point 4 the response of the analyses under force or displacement 

control are almost the same, as well as the cracks growth (Figure 23a) and the collapse 

mechanism (Figure 23b). Moreover, the damage distribution computed thanks to the 

tracking technique does not follow the mesh-bias, ensuring the correct expected solution 

of radial cracks. 

5.  Conclusions 

This paper presents a local crack-tracking technique for the numerical modelling of 

tensile cracks in quasi-brittle materials. The classical smeared crack approach is 

improved by forcing the crack to develop along a single row of finite elements, as a 

function of the direction of the principal tensile stress. The algorithm works with a flag 

system where the finite elements which are allowed to damage during the current time 

step are appropriately labelled. 

The proposed model has shown the following remarkable features: 

 The simulation of the damage distribution in ultimate conditions is more realistic 

than in the classical SCA. The localized cracks predicted by the tracking model 



 - 21 - 

reproduce consistently the ones usually experienced by concrete or masonry 

structures, which develop gradually and lead to the full collapse mechanism. 

 Compared to the classical SCA, it does not require a significant additional 

computation cost. Compared to the global crack-tracking techniques, the 

proposed algorithm requires a less intensive computational effort. 

 The dissipation is element-size independent due to the regularization procedure 

dependent on the material properties and the characteristic length. 

 The analysis results are mesh-bias independent, ensuring the solution objectivity 

when different orientations of the mesh are considered in the discrete problem. 

 The crack track correction, performed according to a maximum curvature 

criterion, avoids the spurious changes of propagation direction which are usual 

in bending dominated problems. 

 The validation examples have shown the efficiency and the robustness of the 

local crack-tracking technique, which turns out to be suitable for tension and 

mixed-mode cracking problems. 

The sensitivity analyses with respect to the tracking parameters maxα , neighr  and exclr  

have assessed their influence on numerical solutions: 

 The maximum curvature angle maxα  is the most influential parameter, since it 

prevents the crack from turning back in bending problems. The relative 

independence of the results with respect to the chosen value for maxα  has been 

demonstrated, even for different load steps.  

 The definition of neighr  is useful to reproduce the correct track of curved cracks. 

It can be interpreted as a refinement parameter for crack track correction. 

 The exclusion radius exclr  is necessary in multi-crack problems in order to 

represent the correct failure mechanism. 

Given the sensitivity of the obtained crack paths on the selected parameters ( maxα  in 

particular), sensitivity analyses similar to the ones conducted in the paper are advisable 

when the proposed tracking algorithm is used to predict crack tracks without the help of 

known experimental results. This remark is of course applicable to any of the existing 

crack tracking algoritms. Sensitivity analyses are almost mandatory in nonlinear 

computations in order to assess the reliability of the results obtained. 
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8.  Figures Captions 

Figure 1 Recent FEM approaches to crack modelling: a) X-FEM/E-FEM without 

regularization; b) regularized E-FEM [4]; c) regularized X-FEM [16]. 

Figure 2 SCA: a) classical [1] and b) embedded [18,19]. 

Figure 3 Location of cracks origin coordinates. 

Figure 4 Exit point of element I (a); new potential element J and its entry point (b). 

Figure 5 Crack “about-turn” in the proximity of the neutral axis, under bending 

conditions. 

Figure 6 Maximum curvature criterion: a) tip element correction and b) neighbour 

elements chosen to compute cV  (with thickened sides). 

Figure 7 Deformed mesh (x100) and tensile damage contour with a smeared damage 

model: mesh with average size 5 mmeh =  (a) and mesh with average size 2.5 mmeh =  

(b). 

Figure 8 Deformed mesh (x100) and tensile damage contour with the localized damage 

model: mesh with average size 5 mmeh =  (a) and mesh with average size 2.5 mmeh =  

(b). 

Figure 9 Load vs. displacement for holed strip with the localized damage model. 

Comparison among different mesh sizes. 

Figure 10 Three point bending test setup [41]. 

Figure 11 a) Damage in the bending beam, b) detail of crack and c) deformed 

mesh (x35). 

Figure 12 Load vs. displacement for bending beam. Comparison among different 

magnitudes of the analysis step. 

Figure 13 Mixed-mode bending test setup [42]. 

Figure 14 Numerical deformed shapes (x100 and x300) at collapse and details of 

cracks: a) specimen 1 (three point test) and b) specimen 2 (four point test). 

http://www.shef.ac.uk/ring
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Figure 15 Comparison between the experimental and numerical crack tracks for the 

specimens 1 and 2. 

Figure 16 Load vs. CMOD for the specimen 1 (a) and the specimen 2 (b). 

Figure 17 Specimen 1: numerical crack track sensitivity to neighr  and maxα . 

Figure 18 Semicircular masonry arch: a) geometry [m]; (b) thrust line and plastic 

hinges obtained via limit analysis [43]. 

Figure 19 Comparison between Load vs. Vertical Displacement curves for limit 

analysis and smeared damage model under load or displacement control. 

Figure 20 Smeared damage model (analysis under force control): cracks growth at 

different stages of the calculus and final collapse mechanism (amplification of mesh 

deformation: x100). 

Figure 21 Smeared damage model (analysis under displacement control): cracks growth 

at different stages of the calculus and final collapse mechanism (amplification of mesh 

deformation: x100). 

Figure 22 Comparison between Load vs. Vertical Displacement curves for limit 

analysis and localized damage model under load or displacement control. 

Figure 23 Localized damage model: a) detail of cracks at collapse and b) collapse 

mechanism (amplification of mesh deformation: x100). 



 
Figure 1 Recent FEM approaches to crack modelling: a) X-FEM/E-FEM without regularization; b) regularized E-FEM [4]; c) 

regularized X-FEM [16]. 

 
Figure 2 SCA: a) classical [1] and b) embedded [18,19]. 



 
Figure 3 Location of cracks origin coordinates. 

 
Figure 4 Exit point of element I (a); new potential element J and its entry point (b). 

 
Figure 5 Crack “about-turn” in the proximity of the neutral axis, under bending conditions. 



 

Figure 6 Maximum curvature criterion: a) tip element correction and b) neighbour elements chosen to compute cV  (with thickened 

sides). 

 
Figure 7 Deformed mesh (x100) and tensile damage contour with a smeared damage model: mesh with average size he = 5 mm (a) 

and mesh with average size he = 2.5 mm (b). 



 
Figure 8 Deformed mesh (x100) and tensile damage contour with the localized damage model: mesh with average size he = 5 mm (a) 

and mesh with average size he = 2.5 mm (b). 

 
Figure 9 Load vs. displacement for holed strip with the localized damage model. Comparison among different mesh sizes. 

 



 
Figure 10 Three point bending test setup [41]. 

 
Figure 11 a) Damage in the bending beam, b) detail of crack and c) deformed mesh (x35). 

 
Figure 12 Load vs. displacement for bending beam. Comparison among different magnitudes of the analysis step. 

 



 
Figure 13 Mixed-mode bendig test setup [42]. 

 
Figure 14 Numerical deformed shapes (x100 and x300) at collapse and details of cracks: a) specimen 1 (three points test) and  b) 

specimen 2 (four points test). 

 
Figure 15 Comparison between the experimental and numerical crack tracks for the specimens 1 and 2. 



 

     

 
Figure 16 Load vs. CMOD for the specimen 1 (a) and the specimen 2 (b). 

 

Figure 17 Specimen 1: numerical crack track sensitivity to neighr  and maxα . 

 
 
 



     
Figure 18 Semicircular masonry arch: a) geometry [m]; (b) thrust line and plastic hinges obtained via limit analysis [43]. 

 
 
 

 

 
Figure 19 Comparison between Load vs. Vertical Displacement curves for limit analysis and smeared damage model under load or 

displacement control. 

 
 
 



 
Figure 20 Smeared damage model (analysis under force control): cracks growth at different stages of the calculus and final collapse 

mechanism (amplification of mesh deformation: x100). 

 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

 
Figure 21 Smeared damage model (analysis under displacement control): cracks growth at different stages of the calculus and final 

collapse mechanism (amplification of mesh deformation: x100). 

 
 



 

 
Figure 22 Comparison between Load vs. Vertical Displacement curves for limit analysis and localized damage model under load or 

displacement control. 

 
Figure 23 Localized damage model: a) detail of cracks at collapse and b) collapse mechanism (amplification of mesh 

deformation: x100). 
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