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1. THE PARTICLE FINITE ELEMENT
METHOD CONCEPT
In recent years fluid-structure interaction (FSI) has
become one of the ’hot-spots’ in the field of
computational mechanics. One of the techniques
developed by Oñate, Idelsohn et al. [1], that has
proven its competitiveness is the so-called Particle
Finite Element method. The Particle Finite Element
method adopts lagrangian framework for the
descritption of the fluid, where the mesh nodes are
treated as particles that can freely move and even
separate from the main fluid domain. The main idea of
the PFEM is that the variables of interest are stored at
the nodes instead of Gauss points. This results in a
hybrid between standard FEM and meshless methods.
The finite element mesh is created at every time step
of the dynamic problem and the solution is afterwards
stored at the nodes. The nodes move according to their
velocity obtaining their new position and then the
finite element mesh is recreated using Delaunay
triangulation (i.e. connectivities are updated in the
best possible manner). It is important to keep in mind
that the convective terms of the momentum equation
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disappear in the Lagrangian description, and thus the
numerical problems arising for convection dominated
flows disappear. The PFEM has especially proven its
applicability and robustness in treating FSI problems
involving free surface ows. The boundary at every
solution step is determined using the so-called ’alpha-
shape’ technique, which can be seen as a geometrical
criterion, that enables one to decide wether or not an
element needs to be preserved. Highly distorted
elements are thus eliminated by a geometrical filter.

Current work adopts the basic concepts of the
PFEM and the reader is re-ferred to [1] for the detailed
description of the method and [2] for its validation.

Here we propose an extension of the PFEM which
consists in modeling the incompressible fluid as the
limiting case of the compressible formulation. This is
often used in conjunction with explicit SPH methods,
but is utilized here in an implicit framework.
Introduction of the heuristic constitutive pressure-
displacement relation permits the definition of the
monolithic FSI systems formulated in terms of
displacements only. This enables effective treatement
of the FSI problems involving large deformations,
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where usual partitioned approaches suffer
convergence problems. The layout of the paper is the
following: first the advantages of monolithic approach
in application to fluid-membrane interactions are
discussed, then the membrane and the fluid
formulations are presented and the coupling issues are
addressed, finally three examples are provided to illus-
trate the functionality of the formulation.

2. MONOLITHIC VS. PARTITIONED
Generally there exist two ways of treating FSI-
problems - the partitioned approach and the monolithic
one. Partitioned approaches rely on the independent
solution of the fluid and the structural domain so that
the best available solvers for each sub-problem can be
chosen. The data is interchanged between the
subdomains across the interface boundary. Though this
approach is computationally cheaper (per iteration)
than the monolithic one, it suffers from stability
problems for light weight structures, or to be precise
once the ratio between the density of the fluid and the
structure approaches the unity. In the monolithic
approach the whole fluid-structure domain is
discretized at once and the total system is built and
solved at every time step. The monolithic solution is
the correct one for the original problem, and thus no
additional modeling error is introduced. Therefore it
provides the same “guarantee” as the standard FE.
Nevertheless, the discrete equation system describing
the problem is larger than the subsystems of the
partitioned approach. Another complication that can
arise in the monolithic approach in FSI comes from the
fact that the variables describing the fluid and the solid
are of different nature. Even if a possibility exists to
define a monolithic system in terms of velocities (or
displacements) and pressure, this would result
generally in badly conditioned system matrices. In the
present work we strive to derive a formulation with all
the advantages of the monolithic approach, but leading
to a well-conditioned global system.

In order to describe the fluid in terms of
displacements without using the pressure as a primary
variable, one needs to allow a slight compressibility.
This enables one to relate the fluid pressure to the
displacements via a constitutive law. In fact many
engineering fluids, such as water, are compressible,
but their compressibility coefficient, or the so-called
“bulk-modulus” K is very high ~ 1E9N/m2.
Nevertheless, water can be modelled in a realistic way
with a smaller bulk modulus, as long as the associated
volume variation is admissible, and the speed of wave
propogation in the medium where ρ is the

fluid density and c is the wave speed), is large enough
to represent desired phenomena. So, our objective is to
derive a compressible formulation that will allow us to
set up the global system in displacements only, but to
be able to represent the quasi-incompressible fluid
behavior by the choice of a large bulk modulus. We
propose to condense pressure at the level of element,
and thus to obtain the purely displacement
formulation. This is a computationally efficient
procedure, and the only limitation is the value of the
compressibility constant. In the current formulation,
the sensibility to the volumetric locking is diminished
by a pressure smoothing procedure. This allows us to
use “acceptable” values for the bulk modulus. Note
however that the physical value of the bulk modulus
for water still leads to locking.

3. MEMBRANE FORMULATION AND
WRINKLING
A membrane is a 2D solid that lives in a 3D
environment. Due to its low thickness it lacks bending
stiffness and can withstand normal loads only by
adjusting its shape. From the numerical point of view,
this results in an intrinsic geometrical non-linearity,
that has to be taken into account in the FE model. In
the current work a standard total Lagrangian
formulation is used. The detailed description of the
membrane element used can be found in [3] together
with the validation of the model.

Dou to their very low flexural stiffness, membranes
easily undergo local buckling phenomena leading to
“wrinkles” in the presence of compressive stresses.
Such a situation makes appealing the possibility of
enriching the element to introduce wrinkling effects in
the formulation. Large effort was spent in developing
simplified wrinkling models over the past decade.

In his landmark paper Roddeman [4], [5] observed
how the formation of wrinkles could be introduced
through an additional inelastic deformation gradient
describing the contraction of the average plane in
presence of compressive stresses. The additional term
leads to the introduction of an inelastic strain
component in the FE model [6]. Other more general
wrinkling models were developed in recent years. A
simple explicit wrinkling model was presented in [7].
In our work a simple implicit wrinkling model is used.
The model features a consistent linearization and is
suitable for the isotropic case. The entire derivation is
provided in [3]. Only the basic concepts are discussed
here.

When the membrane is subjected to a biaxial
tension state, its behavior is purely elastic. This state is
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where E is the Young’s modulus and v - the Poisson’s
ratio.

In order to guarantee quadratic convergence, we
need to perform consistent linearization. The resulting
algorithmic tangent operator in Voigt format reads

(3)

where A and B are defined as

and

where vIi stands for the i -spatial component of the
vector vI . Such an operator can then be used to form
the material part of the stiffness matrix for the
membrane element [3].

4. COMPRESSIBLE FLUID
FORMULATION
We start by deriving the FE equations of the slightly
compressible fluid by discretization of the momentum
equations. In the Lagrangian framework it can be
written as

(4)

where ρ is the fluid density, σ - the Cauchy stress
tensor and b - the body force, p is the fluid pressure.
Instead of the incompressibility condition ∇ · v = 0 we
use the modified mass conservation equation:

(5)

where V and δV are the volume and differential
volume change respectively, K is the bulk modulus, v
is the velocity and t - the time. Splitting the total stress
in the fluid into its volumetric and deviatoric parts
reads σ = –pI + 2µ ∇s v, where ∇s v is the symmetric
velocity gradient tensor, I - the identity tensor, and µ -
the dynamic viscosity. Substitution into the
momentum equation results in

*

*

known as taut. The situation in which the membrane is
subjected to multi-axial compression is known as
slack. In between, when tension remains in one
direction but the membrane buckles in the other, the
state is known as wrinkled.

Over the years different methods were proposed to
assess the state of a membrane subjected to a given
deformation. Early methods were based either on the
evaluation of the principal stresses or on the
assessment of the principal strains. Here a mixed
method is used, based both on stresses and strains, as
described in [7] and [8]. By considering the principal
elastic stresses (PK2) S , S and the principal strains EI,
EII the assessment is as follows

• SII > 0 → “TAUT”
• SII < 0 & EI > 0 → “WRINKLED”
• else “SLACK”

The stresses to be used in the assessment are the ones
obtained through the elastic constitutive law from the
given strains.

As stated before wrinkling effect can be included by
introducing a further strain Ew which describes the
behavior of the membrane outside of the taut domain.

The detailed derivation of the implicit wrinkling
model can be found in [3]. The fundamental concepts
are explained next. The elastic strain vector coming
directly from the FE discretization assumes a diagonal
form in a base identified by two vectors v�

I, v
�
II . The

corresponding elastic stress can be diagonalized, in a
base that is generally different from the one of the
strain, identified by vectors vs

I, vs
II. When the

constitutive law exhibits an isotropic behavior, the
principal direction of strains and stresses coincide with
vI, vII. Wrinkling effects can be taken into account by
considering a modified constitutive tensor Cmod which
relates the “wrinkled” stress tensor S

~
and the total

strain tensor E as S
~

= Cmod : E. This can be achieved
by defining

(1)

Or in practice

(2)
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(6)

4.1. Discretization of the momentum
equations
The momentum equation discretizied in space reads

(7)

where

(8)

(9)

(10)

(11)

Cµ is the viscous part of the constitutive tensor

(12)

where Γt is the Neumann boundary, t - is the surface
traction and b is the body force and B - is the standard
linear strain-displacement matrix. Note that since the
equations are written in the current configuration,
matrix B depends on the unknown position x and thus
Eq. 7 defines a geometrically non-linear problem. On
the other hand, it is important to note that in contrast to
solid mechanics the relationship between the strains
and the primary variable (velocity) is linear even for
large deformations of the fluid domain. In order to
write the equations in terms of displacements instead
of velocities, we substitute the time derivatives of the
displacements in a symbolic way and obtain the
following form of the momentum equation:

(13)

Time integration of the Eq.7 is performed with the
Newmark scheme, where the finite difference formulae
for displacments and velocities respectively are as
follows (h denotes the time step, i.e. h = tn+1 – tn):

(14)

(15)

From above equations we obtain the expressions for
the velocities and accelerations in terms of the current
positions xn+1 (that are unknown) and the velocities
and accelerations of the previous time step, vn = ẋn and
an = ẍn respectively :

(16)

(17)

Using the above formulae for the time derivatives and
applying the standard Newton-Raphson scheme for the
linearization of the geometrically non-linear problem,
one arrives to the following definitions of dynamic
residual RHS

(18)

Pressure in the residual is calculated from the
elemental volume changes using the discrete form of
Eq.5 and the tangent stiffness matrixHdyn:

(19)

where

(20)

and

(21)

where Kp is the linearization of the pressure term
of the fluid and Cvol is the

volumetric constitutive tensor.
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4.2. Coupling with the structure and
solution algorithm
On the structural side, the dynamic tangent stiffness is
described by a relation similar to Eq. 19 in the form:

(22)

where Ktan is the tangent stiffness matrix of the
membrane. This matrix and the residual terms for the
membrane are calculated in the standard manner as
described in [3] or [7]. The residuals represent the
unbalanced forces at the nodes. A standard FE
assembly process runs over all the fluid and structural
elements and leads naturally to a monolithic
formulation. The solution of the resulting system
guarantees the equilibrium of forces at the level of
each node in the same way as in a single-domain
problem. In this approach the pressure is calculated at
the level of Gauss points from the consitutive
equations in the standard manner. To allow fast
remeshing, a continuum pressure distribution at the
nodes is computed as

(23)

where Ml and Mcons are the lumped and consistent
“pressure” mass matrices, pn and pn+1 - the nodal
pressures at time steps n and n + 1 respectively. The
pressure increment is computed from Eq. 5, by the
variation of volume around each node. The impact of
this procedure will not be discussed here in detail.
Nevertheless we would like to remark that this
procedure acts as a rudimental pressure stabilization
due to the difference between the consistent and
lumped mass matrices. Consequently it affects
beneficially the sensitivity to locking. The entire
solution strategy can be summarized as follows:

• assemble the monolithic system
• start the non-linear solution loop
• solve the momentum equations for

displacements
• update the position of mesh nodes
• recover the pressures for the fluid elements
• move the nodes
• remesh

5. EXAMPLES
In previous sections, the fundamentals of the fluid and
membrane formulations used and the coupling strategy
were presented. In this section we illustrate the
functionality of the proposed monolithic method in
application to several test-cases.
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5.1. Floating ball
First, the motion of the inflatable within a fluid volume
is obtained. A ball of 0.15 m radius is immersed in the
middle of the cube with the edge length of 1m. The
ball is modelled as a membrane with 0.003 m
thickness, Poisson’s ratio of 0.1, Young’s modulus of
0.81 MPa, and density of 800 kg/m3. The internal
pressure of 15 KPa is applied to the sphere. The total
fluid-membrane domain is meshed with 80.000 linear
tetrahedra. Fig. 1 illustrates the ball motion. Initially
the ball expands, until the equilibrium with the
external pressure is achieved and then moves up
towards to the surface. First two figures illustrate a 2D
cut and the last two show a 3D view.

Figure 1. Motion of an in ated ball in water

5.2. Membrane cube filled with water
In this example a membrane initially having cubical
chape (edge size of 1m) is loaded with water subjected
to gravity. Membrane properties were chosen as
follows: 4 mm thickness, density of 1800 kg/m),
Young’s modulus 2100000 Pa, and the Poisson’s ratio
of 0.2. On Fig.2 the deformed membrane at four
different time instances is shown. The analysis was
performed on two different meshes. The coarser
discretization had 5300 tetrahedral fluid elements, and
3500 triangular membrane elements. The finer
discretization consisted of 32.000 tetrahedra and
13000 triangles for the fluid and the membrane
respectively. Fig. 3 depicts the displacement of the
membrane measured at the middle point of the lower
face of the cube. The curves exhibit good agreement.

(a) Position at t=0.0 s (b) Position at t=0.7 s

(c) Position at t=2.0 s (d) Position at t=5.0 s
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Figure 2. Deformation of a membrane filled with water

Figure 3. Y-displacement of the lower edge center obtained
with two different meshes

5.3. Membrane dam
Much interest exist in in atable structures for water
contention. A practical application of membranes is
the construction of in atable dams. An analysis of the
interaction between the dam and water reservoir is
presented below. We recall that the example is purely
academic, i.e. the dimensions do not correspond to any
real structure. Nevertheless it shows the potential of
the PFEM for this kind of problem. Here a tube

(a) P osit ion at t = 0.00 s (b) P osit ion at t = 0.15 s

(c) P osit ion at t = 2.40 s (d) P osit ion at t = 5.00

(modelled as a membrane of 2 mm thickness) is in ated
with internal pressure of 100Pa and subjected to the
water load. The radius of the tube is 0.25m and the
water level is 0.2 m. Fig. 4 shows the original and
deformed shapes of the membrane.

Figure 4. Interaction between an in atable dam and a water
reservoir

6. CONLUSIONS
The proposed methodology allows treating strongly
coupled fluid-membrane systems. In general the fluid
formulation described here permits a natural defi-
nition of a monolithic system with any structural
element having displacements as a primary variable. It
is especially advantageous in application to problems
where free surface ows are involved. The pressure
smoothing procedure leads to a reduction of locking
phenomena.
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