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Abstract

The purpose of this paper is to present a finite element approximation of the scalar hyperbolic wave equation written in mixed form,
that is, introducing an auxiliary vector field to transform the problem into a first-order problem in space and time. We explain why the
standard Galerkin method is inappropriate to solve this problem, and propose as alternative a stabilized finite element method that can
be cast in the variational multiscale framework. The unknown is split into its finite element component and a remainder, referred to as
subscale. As original features of our approach, we consider the possibility of letting the subscales to be time dependent and orthogonal to
the finite element space. The formulation depends on algorithmic parameters whose expression is proposed from a heuristic Fourier
analysis.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In most engineering problems dealing with waves, the
wave equation is written in irreducible form, that is, with
a single scalar unknown g depending on the spatial variable
x and time t, so that if c is the wave speed this equation
reads

1

c2
o

2
ttg� Dg ¼ f ; ð1Þ

where o
2
tt � otot is the second order time derivative, D is the

Laplacian operator and f is a given forcing term. This
equation needs to be solved in a spatial domain X � Rd

(d ¼ 1, 2 or 3) with appropriate boundary conditions and
in a time interval ½0; T �, giving gðx; 0Þ and otgðx; 0Þ as initial
conditions.

However, in some cases it is convenient to consider the
mixed form of (1), which consist in solving for g as well

as for a vector function uðx; tÞ the problem
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lgotgþr � u ¼ fg; ð2Þ
luotuþrg ¼ f u; ð3Þ

where lg > 0 and lu > 0 are coefficients such that c2 ¼
ðlgluÞ

�1 and the forcing terms fg and f u must be such that
luotfg �r � f u ¼ f . Another possibility to transform (1)
into a first order system is to define n ¼ otg and u ¼ rg.
This is the natural option in elastodynamics [4], although
in many other physical applications, such as acoustic waves
or gravity waves in fluids, the original problem is in fact
(2)–(3) and its irreducible form (1). We shall briefly discuss
an example of each situation in the following section. It is
clear however that the linear problem (2)–(3) is only a mod-
el for more involved situations, either in solid mechanics or
in nonlinear waves in shallow waters, cases in which the
mixed form is mandatory.

The differential operator in (1) is of second order in both
space and time, whereas (2)–(3) is a first order evolution
problem with first order spatial derivatives. The most pop-
ular approach to deal with (1) is to use the Galerkin
method for the spatial discretization and then to integrate
in time using a finite difference scheme (see for example
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[15]). Numerical difficulties are considered to be concen-
trated on the time integration scheme, giving for granted
that the Galerkin method is optimal for the spatial discret-
ization of the Laplace operator. Therefore, research has
been focused on devising time integration schemes for (1)
(or vector counterparts) with given design properties.

Much less attention has been paid to the mixed form (2)
and (3) of the wave problem. As in most mixed problems,
there is a compatibility condition between the interpolation
spaces for g and u which can be expressed as an inf–sup con-
dition (see [5] for background, for example). As mentioned
in Section 3, this condition on the interpolation of g and u is
in fact similar to the condition for pressure and velocity in
the case of the Stokes problem or the Darcy problem, but
even if it is satisfied it does not guarantee stability of g in
the space where it must belong. Our objective will be to
present a formulation allowing equal and continuous inter-
polation for g and u. Apart from simplifying the numerical
implementation, this has two additional benefits. On the
one hand, we will show that improved stability on g can
be obtained with respect to some classical methods that sat-
isfy the inf–sup condition. On the other hand, the classical
Lagrange interpolation naturally allows for mass lumping
through the use of special quadrature rules, a requirement
to design explicit time integration schemes and not always
possible using some interpolations satisfying the inf–sup
condition (see, e.g., [4] and references therein).

Our formulation is based on the variational multiscale
approach in the format introduced in [16,17]. The basic
idea is to split the unknowns into a resolvable component,
which can be reproduced by the discretization method (in
our case finite elements) and the remainder, which we will
call sub-grid scale or subscale. Rather than solving exactly
for the latter, the formulation results from a closed form
approximation for the subscales, which is designed in order
to capture their effect on the discrete finite element solu-
tion. This leads to a formulation that allows the use of
equal g–u interpolations. We prove analytically this fact
in a particular case, only aiming to explain the stabilization
mechanism introduced by the approximation of the
subscales.

This paper is organized as follows. In Section 2, we state
the initial and boundary value problem to be solved, both
in its differential and in its weak form. We also present two
examples of wave problems that will serve us to illustrate a
discussion on the way to scale the equations. The Galerkin
space discretization is presented in Section 3, where the rea-
sons for its failure are explained. The main contribution of
this work is presented in Section 4, where a stabilized finite
element method is proposed. After presenting the basis of
the formulation, its application to the mixed form of the
wave equation is studied in detail. The algorithmic param-
eters on which the formulation depends are designed on the
basis of a Fourier analysis of the problem, similar to that
proposed already in [8] for the incompressible Navier–
Stokes equations, although extended to general first-order
systems. A stability estimate is then proved in the particu-
lar case in which the space of subcales is orthogonal to the
finite element space, a possibility introduced in [10] to sta-
bilize velocity–pressure interpolations in the Stokes prob-
lem (see also [9] for a full analysis of the method applied
to the linearized Navier–Stokes equations). Section 5 pre-
sents the results of some numerical experiments only
intended to demonstrate that the stabilized formulation
proposed in fact suppresses the instabilities of the Galerkin
method. Some concluding remarks close the paper.

2. Problem statement

2.1. Initial and boundary value problem

The differential equations (2) and (3) need to be supplied
with adequate initial and boundary condition to define the
problem to be solved.

As for the boundary conditions, we consider two possi-
bilities. Let the boundary oX be split into two disjoint sets
CI and CR. On the former, we consider prescribed the scalar
g and on CR the normal component of vector u is assumed
to be given. Without loss of generality, we will consider
both boundary conditions as homogeneous. The initial
conditions to be considered are of the form gðx; 0Þ ¼
g0ðxÞ and uðx; 0Þ ¼ u0ðxÞ.

The differential form of the initial and boundary value
problem to be considered consists therefore in finding
gðx; tÞ and uðx; tÞ such that

lgotgþr � u ¼ fg; in X; t > 0; ð4Þ
luotuþrg ¼ f u; in X; t > 0; ð5Þ
g ¼ 0; on CI; t > 0; ð6Þ
n � u ¼ 0; on CR; t > 0; ð7Þ
gðx; 0Þ ¼ g0ðxÞ; in X; ð8Þ
uðx; 0Þ ¼ u0ðxÞ; in X: ð9Þ

Eqs. (4) and (5) can be re-written as

lg 0

0 luI

� �
ot

g

u

� �
þ

0 r � ð�Þ
rð�Þ 0

� �
g

u

� �
¼

fg

f u

� �
;

where I is the d � d identity matrix.
At this point it is convenient to introduce some nota-

tion. Given X, a space of functions defined on X, its norm
will be denoted by k � kX , and the space of functions such
that their X-norm is Ck continuous in the time interval
½0; T � will be denoted by Ckð½0; T �; X Þ. We will be interested
only in the cases k ¼ 0 and k ¼ 1. Three particular spaces X

will be relevant in the presentation: L2ðXÞ, H 1ðXÞ, the space
of functions in L2ðXÞ with derivatives also in L2ðXÞ, and
Hðdiv;XÞ, the space of vector functions with components
and divergence in L2ðXÞ. A bold character will be used to
denote the vector counterpart of the first two spaces.

As it will be explained below, for regular enough
data the problem is well posed for g 2 C0ð½0; T �; V gÞ\
C1ð½0; T �; L2ðXÞÞ and u 2 C0ð½0; T �;VuÞ \ C1ð½0; T �;L2ðXÞÞ,
where
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V g ¼ fn 2 H 1ðXÞjn ¼ 0 on CIg; ð10Þ
Vu ¼ fv 2 Hðdiv;XÞjn � v ¼ 0 on CRg: ð11Þ

The force terms are assumed to be fg 2 C1ð½0; T �; L2ðXÞÞ
and f u 2 C0ð½0; T �; Hðdiv;XÞÞ. If we define the spaces

V ¼ V g � Vu;

L ¼ L2ðXÞ � L2ðXÞ;

problem (4)–(9) can be cast into the following abstract
framework: find U 2 C0ð½0; T �; V Þ \ C1ð½0; T �; LÞ such that

lotU þAU ¼ F; ð12Þ
Uð0Þ ¼ U0; ð13Þ

where l ¼ diagðlg; luIÞ, F ¼ ðfg; f uÞ, U0 ¼ ðg0ðxÞ; u0ðxÞÞ
and A : V ! L is defined by

U ¼
g

u

" #
7!AU ¼

r � u

rg

" #
:

2.2. Variational problem

2.2.1. Scaling

Let us start noting that the way in which we have written
Eqs. (2) and (3) allows us to guarantee that the pointwise
work U tF is dimensionally well defined. Here and in what
follows U , possibly with a subscript, denotes an element in
the domain of A as a subspace of L, whereas F, perhaps
also with a subscript, denotes an element in the range of
A, which is also in L. The components of U will be gener-
ically denoted as U ¼ ðg; uÞ, and the components of F as
F ¼ ðfg; f uÞ.

In most problems, making U tF well defined usually
implies a scaling of the original equations and a redefini-
tion of the unknowns of the problem if the temporal deriv-
ative is written without any coefficient. In our case, if ½��
denotes a dimensional group we have that

½U tF� ¼ 1

L
½g�½u� ¼ 1

T
½lg�½g�

2 ¼ 1

T
½lu�½u�

2
; ð14Þ

where L is a length dimension and T a time dimension.
We will also need to scale properly the inner product of

forces in L or, more precisely, to introduce a scaling matrix
M so that the pointwise product F t

1MF2 is dimensionally
well defined, with F i, i ¼ 1; 2, two vectors of forces in L.
The choice of this scaling is equivalent to choose the way
the equations are written in dimensionless form, if this
is the option adopted. Let us describe a possibility to do
this. If we choose the scaling matrix of the form
M ¼ diag ðmg;muIÞ, we will have that

½F t
1MF2� ¼

1

L2
½mg�½u�2 ¼

1

L2
½mu�½g�2: ð15Þ

Let CL be a characteristic length of the domain. In view of

(14), if we take mg ¼ CL

ffiffiffiffiffiffiffiffiffiffiffiffi
lu=lg

q
, mu ¼ CL

ffiffiffiffiffiffiffiffiffiffiffiffi
lg=lu

q
, that is, if
M ¼ diagðmg;muIÞ; mg :¼ CL

ffiffiffiffiffi
lu

lg

r
; mu :¼ CL

ffiffiffiffiffi
lg

lu

r
;

ð16Þ
condition (15) will hold and, moreover, ½U tF� ¼ ½F t

1MF2�
(although this condition is not mandatory).

Finally, we also need to define a scalar product in L for
two elements U1 and U2 in the domain of A. It can be eas-
ily checked that a way to define this product in a dimen-
sionally consistent manner is to use M�1 as scaling
matrix, since in this case

½U t
1M�1U2� ¼

1

½CL�

ffiffiffiffiffi
lg

lu

r� �
½g�2 ¼ 1

½CL�

ffiffiffiffiffi
lu

lg

r" #
½u�2

¼ 1

½CL�
½g�½u�: ð17Þ

It is observed that for CL a characteristic length we have
that ½U t

1M�1U2� ¼ ½U tF�. However, this is in fact not nec-
essary, and we could take CL ¼ 1. We will see that the final
formulation to be proposed does not depend on CL.

The different scalings defined according to the variables
being multiplied define different inner products in L, that
we denote as follows:

ðU ;FÞL :¼
Z

X
U tF dx ¼

Z
X

gfg dxþ
Z

X
u � f u dx; ð18Þ

ðF1;F2ÞL;M :¼
Z

X
F t

1MF2 dx ¼ CL

ffiffiffiffiffi
lu

lg

r Z
X

fg;1fg;2 dx

þ CL

ffiffiffiffiffi
lg

lu

r Z
X

f u;1 � f u;2 dx; ð19Þ

ðU1;U2ÞL;M�1 :¼
Z

X
U t

1M�1U2 dx ¼ 1

CL

ffiffiffiffiffi
lg

lu

r Z
X

g1g2 dx

þ 1

CL

ffiffiffiffiffi
lu

lg

r Z
X

u1 � u2 dx; ð20Þ

where M is given by (16). It is observed that if the coordi-
nates were curvilinear, M would play the role of the metric
that transforms the ‘‘natural” covariant character of forces
F into contravariant, and likewise M�1 transforms the
‘‘natural” contravariant character of U into covariant.

It remains to define the way to scale the inner product in
V (and its associated norm). We do this as follows:

ðU1;U2ÞV :¼ 1

CL

ffiffiffiffiffi
lg

lu

r Z
X

g1g2 dxþ CL

ffiffiffiffiffi
lg

lu

r Z
X
rg1 � rg2 dx

þ 1

CL

ffiffiffiffiffi
lu

lg

r Z
X

u1 � u2 dx

þ CL

ffiffiffiffiffi
lu

lg

r Z
X
ðr � u1Þðr � u2Þdx: ð21Þ

We finally set kUkV :¼ ðU ;UÞ1=2
V , kFkL;M :¼ ðF;FÞ1=2

L;M ,
kUkL;M�1 :¼ ðU ;UÞ1=2

L;M�1 .

2.2.2. First variational formulation
Problem (12)–(13) is equivalent to find U 2

C0ð½0; T �; V Þ \ C1ð½0; T �; LÞ such that
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ðlotU ;VÞL þ ðAU ;VÞL ¼ ðF;VÞL 8V ¼ ðn; vÞ 2 V ; ð22Þ

ðUð0Þ;VÞL ¼ ðU0;VÞL 8V ¼ ðn; vÞ 2 L; ð23Þ

which is the first variational form of the problem we will
consider. Note that, because of the density of V in L, the
test function in (22) can be taken directly in L. In expanded
form, this equation reads:

lgðotg; nÞ þ ðr � u; nÞ ¼ ðfg; nÞ 8n 2 V g; ð24Þ

luðotu; vÞ þ ðrg; vÞ ¼ ðf u; vÞ 8v 2 V u: ð25Þ

The well-posedness of problem (22)–(23) relies on the fol-
lowing properties:

1. A is monotone: ðAU ;UÞL P 0.
2. A is maximal. In the case A is monotone and L reflex-

ive, as in our case, this is implied by the existence of con-
stants C1 and C2 such that

kAUkL;M P C1kUkV � C2kUkL;M�1 8U 2 V :

In our case, monotonicity and maximality of A are triv-

ially checked. Since AV 2 L for all V 2 V , with the sca-
lings introduced (see (18)–(21)) we have that

ðAU ;UÞL ¼
Z

X
gr � udxþ

Z
X
rg � udx ¼ 0;

kAUk2
L;M ¼ CL

ffiffiffiffiffi
lu

lg

r Z
X
jr � uj2 dxþ CL

ffiffiffiffiffi
lg

lu

r Z
X
jrgj2 dx

¼ kUk2
V � kUk

2
L;M�1 ;

that is, the constants C1 and C2 can be taken both equal
to 1.

If these two conditions hold, Hille–Yosida theorem
guarantees that there exists a unique solution to the
problem that can be bounded as follows (see, for example,
[14]):

sup
t2½0;T �

kUkL;M�1 6 C kU0kL;M�1 þ T sup
t2½0;T �

kFkL;M

 !
; ð26Þ

sup
t2½0;T �

kotUkL;M�1 6 C kU0kV þ T sup
t2½0;T �

kotFkL;M

 !
; ð27Þ

sup
t2½0;T �

kUkV 6 C kU0kV þ T sup
t2½0;T �

kotFkL;M

 !
: ð28Þ

Here C denotes a positive constant which may depend on
the coefficients lg and lu.

Let us indicate how to prove these bounds. Bound (26) is
obtained by taking V ¼ Uð�; tÞ in (22), using the monoto-
nicity of A and integrating from t ¼ 0 to an arbitrary t0.
Bound (27) follows using a similar argument applied to
the equation differentiated with respect to t. The important
point is bound (28). It follows taking V ¼MAU in the
variational equation:
kAUk2
L;M ¼ ðAU ;MAUÞL
¼ ðF;MAUÞL � ðlotU ;MAUÞL

6 kFk2
L;M þ CklotUk2

L;M þ
1

2
kAUk2

L;M

6 kFk2
L;M þ CkotUk2

L;M�1 þ
1

2
kAUk2

L;M ;

and then using the maximality of A and bounds (26) and
(27).

It is important to note that estimates (26)–(28) are
meaningless for the long term time behavior ðT !1Þ
and other techniques to prove stability are required in this
case. However, they are enough for our purpose to explain
the failure of the Galerkin method and of designing a sta-
bilized finite element formulation.
2.2.3. Second variational formulation

Similarly to what is done for the mixed approximation
of the standard Poisson problem (see [5]), it is possible to
prescribe the boundary conditions for g weakly and to
reduce the regularity requirements. This can be done inte-
grating by parts the second term in the left-hand-side of
(25), using that n � v ¼ 0 on CR and prescribing g ¼ 0 on
CI weakly. Noting that no spatial derivatives of g appear,
the resulting variational formulation is, instead of (24)
and (25): find gð�; tÞ 2 �V g ¼ L2ðXÞ, uð�; tÞ 2 V u such that

lgðotg; nÞ þ ðr � u; nÞ ¼ ðfg; nÞ 8n 2 �V g ¼ L2ðXÞ; ð29Þ
luðotu; vÞ � ðr � v; gÞ ¼ ðf u; vÞ 8v 2 V u: ð30Þ

The regularity in time required is the same as in the previ-
ous formulation.

The advantage of (29)–(30) is that discontinuous
approximations can be employed for g. In fact, classical
elements used to approximate the Poisson problem in
mixed form can be used for the spatial approximation of
(29)–(30) (see, for example, [2,4]).
2.3. Two examples

To close this section, let us state two examples of wave
problems that will serve to explain the scaling described
previously.
2.3.1. Waves in an elastic bar

Let us consider an elastic bar of length ‘, elastic modulus
E, constant section of area A and made of a material of
density q. If the bar is fixed at x ¼ 0, free at x ¼ ‘ and
loaded with an axial load pðxÞ, 0 < x < ‘, the initial and
boundary value problem to be solved is

qotv� oxr ¼ p; 0 < x < ‘; t 2 ð0; T Þ;
1

EA
otr� oxv ¼ 0; 0 < x < ‘; t 2 ð0; T Þ;

v ¼ 0; x ¼ 0; t 2 ð0; T Þ;
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r ¼ 0; x ¼ ‘; t 2 ð0; T Þ;
v ¼ v0; 0 < x < ‘; t ¼ 0;

r ¼ r0; 0 < x < ‘; t ¼ 0:

In these equations, v is the temporal derivative of the axial
displacement u ðv ¼ otuÞ, r ¼ EAoxu is the axial stress and
v0ðxÞ and r0ðxÞ are the initial conditions for vðx; tÞ and
rðx; tÞ, respectively. Identifying these equations with prob-
lem (4)–(9) it is seen that g � v, u � �r, CI ¼ f0g,
CR ¼ f‘g. The important point is that in this case lg � q
and lu � ðEAÞ�1. As it is well known, the wave speed is
c ¼

ffiffiffiffiffiffiffiffiffiffiffi
EA=q

p
. The scaling matrix in (16) is now given by

M ¼ diag CL

ffiffiffiffiffiffiffiffiffi
1

qEA

s
;CL

ffiffiffiffiffiffiffiffiffi
qEA

p !
;

where CL may be either taken as CL ¼ ‘ or as CL ¼ 1, if we
allow the three different products (14), (15) and (17) to have
different dimensions (which is the natural choice in un-
bounded domains).
2.3.2. Gravity waves in shallow water flows

In this case the problem to be solved can be written as

1

H
otgþr � u ¼ fg; in X � R2; t > 0;

1

g
otuþrg ¼ f u; in X; t > 0;

with the same form of boundary and initial conditions as in
(6)–(9). Thus, the equations to be solved are exactly (4)–(9),
now g having the physical meaning of being the water ele-
vation relative to the boundary conditions on CI, u the
mean velocity, fg and f u come from non-homogeneous
boundary conditions typically imposed for the water eleva-
tion on CI, H is the water depth (here assumed to be con-
stant for simplicity) and g is the gravity acceleration.

Also in this case, the important point is the form of the
scaling. Now lg � H�1, lu � g�1, c ¼

ffiffiffiffiffiffiffi
gH
p

(wave speed)
and the scaling matrix is given by

M ¼ diag CL

ffiffiffiffi
H
g

s
;CL

ffiffiffiffi
g
H

r
I

 !
:

Similarly to the previous case, CL may be either taken as
CL ¼ diamðXÞ (if X is bounded) or as CL ¼ 1.
3. Space discretization using the Galerkin method

3.1. Galerkin method

Let us consider the variational formulation (22), which
is supplied with the initial condition (23). In order to dis-
cretize it using the standard Galerkin method, we simply
have to approximate space V by a finite element space
V h � V (conforming approximation). For the moment, let
us assume that the interpolations of both g and u are con-
tinuous, so that they are conforming using the two varia-
tional formulations described in the previous section.

The discrete problem using the Galerkin method is: find
Uh 2 C1ð½0; T �; V hÞ such that

ðlotUh;VhÞL þ ðAUh;VhÞL ¼ ðF;VhÞL 8Vh 2 V h:

Note that the test function and trial solution spaces are the
same.

Bounds (26) and (27) can be proved for the discrete
problem exactly as for the continuous one. However, bound

(28) does not hold for the discrete problem. The reason is
quite simple: AUh cannot be taken as test function, since
for Uh 2 V h, AUh 62 V h. Observe also that from the
numerical point of view, (28) is what prevents oscillations,
since in our case it gives control on the divergence of u
and the gradient of g. As a conclusion, the standard Galer-
kin method may yield oscillations.

3.2. Compatibility conditions

The previous argument explains a fact known from
numerical evidence: the Galerkin formulation fails to solve
wave problems in mixed form unless special care is put in
the selection of the interpolating spaces for g and u. Let
us denote them by V g;h and Vu;h, respectively.

Using the first variational form given by (24)–(25),
several ways to overcome the instability of the Galerkin
method can be found in the literature, particularly in the
context of gravity waves in shallow water flows. Referring
for example to the Boussinesq model for shallow waters,
an early finite difference approximation can be found in
[1] and another popular finite difference model in [22].
Finite element approximations were introduced later, see
for example [18,20,21,23]. In these references, high fre-
quency oscillations over the grid used to discretize the
domain are mentioned, and methods to overcome them
by ad-hoc filtering techniques or by the addition of numer-
ical viscosity are reported for example in [21] and refer-
ences therein. In the finite difference context, different
grids can be used for the approximation of velocity and
water elevation (see [18], for example). Surprisingly, there
seems to be no explicit association between the instability
problems encountered and the lack of stability of the
Galerkin method. In [19] spurious propagating modes for
the one dimensional linear equations are found from a clas-
sical dispersion analysis, both using continuous and dis-
continuous interpolations for the unknowns (for the
continuous Galerkin method there are also spurious sta-
tionary modes).

The second variational form given by (29)–(30) has been
studied for example in [2] (see also [4,3] for several exten-
sions, including elastic waves). The way to obtain a stable
formulation is based on choosing V g;h and Vu;h as for a sta-
ble mixed interpolation of the Poisson problem. Classical
examples of these type of elements are the Raviart–Thomas
(RT) and the Brezzi–Douglas–Marini (BDM) families (see
[5] for background). For these elements, the interpolation
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for g is discontinuous, although this keeps conformity for
formulation (29)–(30). In [2] it is shown that stability can
be obtained for the wave equation as for the mixed Poisson
problem. First, the divergence of uh (the finite element
approximation to u) can be bounded in terms of the data
by using the commutation of the divergence and the projec-
tion onto the appropriate finite element space, and then the
L2 norm of gh (the approximation to g) can be bounded by
using an inf–sup condition known to hold for the elements
under consideration. Obviously, this approach does not
lead to stability for rgh.

3.3. Matrix formulation

To close this section, let us formulate the discrete Galer-
kin approximation to problem (24)–(25) in matrix form
and compare it with the irreducible form that would arise
from (1).

Let Mg and Mu be the mass matrices arising from the
interpolation of g and u, respectively, D the matrix arising
from the divergence term in (24) and Fg the resulting right-
hand-side (RHS) vector. Let also G be the matrix arising
from the gradient term in (25) and Fu the resulting RHS
vector. If Xg and Xu are the arrays of nodal unknowns of
g and u, respectively, the matrix form of the discrete ver-
sion of (24) and (25) is

lgMg 0

0 luMu

" #
_Xg

_Xu

" #
þ

0 D

G 0

" #
Xg

Xu

" #
¼

Fg

Fu

" #
;

where the dot denotes time derivative. It is understood that
boundary conditions are already incorporated in this ma-
trix expression. Taking the time derivative of the first equa-
tion and using the second it is found that

1

c2
Mg

€Xg � DM�1
u GXg ¼ lu

_Fg � DM�1
u Fu; ð31Þ

where, as in the Introduction, we have defined c2 ¼
ðlgluÞ

�1.
On the other hand, if we had started directly from (1)

the discrete algebraic equation would have had the matrix
structure

1

c2
Mg

€Xg � LXg ¼ F; ð32Þ

where L is the standard matrix arising from a Galerkin dis-
cretization of the Laplacian operator D (using continuous
interpolation functions for g, as we are assuming) and F
is the array that results from weighting f in (1) with the test
functions corresponding to the interpolation of g.

Comparing (31) and (32) it is observed that the differ-
ence in the finite element approximation of the mixed
and the irreducible wave equation relies on two different
approximations to the Laplacian operator, namely,
DM�1

u G in the case of the mixed form and the classical
approximation L for the irreducible form (provided an ade-
quate identification of the forcing terms is done).
4. Stabilized finite element method

4.1. General framework

In this section, we present a stabilized finite element
method aimed to overcome the instability problems of
the standard Galerkin method when using equal and contin-

uous interpolation for the unknowns g and u. We start con-
sidering an abstract linear first order partial differential
equation of the form

lotU þ AioiU ¼ F; ð33Þ

where Ai are nunk � nunk matrices, oi is the partial derivative
with respect to the i-th coordinate, i ¼ 1; 2; . . . ; d, repeated
indexes in AioiU imply summation up to d, and F is a vec-
tor of nunk components, nunk being the number of scalar un-
knowns in U and d the space dimension.

The wave equation is mixed form can be recast as a
problem of type (33) by taking nunk ¼ d þ 1 and, for exam-
ple for d ¼ 2,

U ¼
g

u1

u2

264
375; l ¼

lg 0 0

0 lu 0

0 0 lu

264
375; A1 ¼

0 1 0

1 0 0

0 0 0

264
375;

A2 ¼
0 0 1

0 0 0

1 0 0

264
375: ð34Þ

In spite of its ‘‘convective” look, the instabilities of the
Galerkin method applied to Eq. (33) are not due to convec-
tion, but to the mathematical structure dictated by matrices
(34) and by the different functional setting of the variables
in play. For an application of the present ideas to the sim-
ple convection–diffusion equation, see [8].

Appropriate boundary conditions have to be appended
to (33). The resulting problem is of the abstract form
(12), with AU ¼ AioiU , and the Galerkin method applied
to it suffers from the instability problems described in the
previous section.

The stabilized finite element method we will present has
its roots in the variational multiscale decomposition pro-
posed in [17]. Our arguments here are completely heuristic,
and are only intended to motivate a numerical formulation.
Once it is stated, it will be clear why is it consistent and
where does the stabilization mechanism introduced come
from.

Let us split the unknown U as U ¼ Uh þU 0, where Uh

is the finite element solution we are looking for and U 0 the
component of U that cannot be captured by the finite ele-
ment mesh. We will call it subgrid scale or, simply, subscale.
The idea is that an approximation for U 0 will lead to a
problem for Uh with enhanced stability problems with
respect to the standard Galerkin method.

Let us consider the problem posed for Uð�; tÞ in an ade-
quate subspace of L2ðXÞ that depends on the boundary
conditions, so that AioiUð�; tÞ 2 L2ðXÞ (which corresponds
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to L in the previous section). Now we will simply denote
the inner product in this space by ð�; �Þ.

The weak form of the problem consists in finding Uh

and U 0 such that

ðlotUh;VhÞ þ ðlotU
0;VhÞ þ ðAioiUh;VhÞ þ ðAioiU

0;VhÞ
¼ ðF;VhÞ; ð35Þ

ðlotUh;V
0Þ þ ðlotU

0;V 0Þ þ ðAioiUh;V
0Þ þ ðAioiU

0;V 0Þ
¼ ðF;V 0Þ; ð36Þ

for all Vh in the finite element space and V 0 in the space of
subscales. This set of equations is obviously equivalent to
the classical weak form of the problem.

The objective is to introduce some approximations to
compute U 0 and, as a consequence, leading to the stabilized
finite element problem for Uh. First of all, we consider that
both Uh and U 0 are continuous across interelement bound-
aries. Problem (35)–(36) can be written as

ðlotUh;VhÞ þ ðAioiUh;VhÞ þ ðlotU
0;VhÞ � ðU 0;At

ioiVhÞ
¼ ðF;VhÞ; ð37Þ

lotU
0 þ P 0ðAioiU

0Þ ¼ P 0ðF � ðlotUh þ AioiUhÞÞ ¼: Rh;

ð38Þ

where P 0 is the L2-projection onto the space of subscales.
The time derivative of U 0 could be neglected assuming that
U 0 varies in time much more slowly than Uh. This is defined
in [8] as the assumption of quasi-static subscales. However,
here we will keep this time derivative, leading to what is
termed in [13,12] in the context of the incompressible
Navier–Stokes equations as dynamic subscales. It is shown
in the references indicated that it improves considerably the
time stability of the resulting formulation. The assumption
of quasi-static subscales will be used in this section when
explaining the stabilization in space introduced by the for-
mulation proposed.

It could also be possible to approximate U or some of its
components using discontinuous finite element functions,
and therefore Vh would also be discontinuous. In this case,
it would be necessary to approximate also the subscales on
the element boundaries.

Eq. (38) needs to be approximated to obtain a closed-
form expression for U 0 which, once inserted into (37), will
lead to the stabilized finite element problem for Uh.
Observe that Rh in (38) can be considered as the residual
of the finite element approximation projected onto the
space of subscales.

The basic heuristic idea is to consider that since U 0 is the
component of the unknown unresolved by the finite ele-
ment space, its Fourier transform in space must be domi-
nated by wave numbers of the form 1

h k, where
k ¼ ðk1; . . . ; kdÞ is dimensionless and of order Oð1Þ and h

is the mesh size.
As done in the previous section for the wave equation,

let M be a symmetric and positive matrix that defines an
inner product in the space of forcing terms, and let j � jM
be the norm with respect to this matrix, that is,
jFj2M ¼ F tMF (recall that F tF in general is not even dimen-
sionally meaningful, see (15)). Likewise, let k � kK;M be the
L2ðKÞ-norm of j � jM , where K is the domain of a generic ele-
ment of the finite element mesh. Similar definitions apply
for the inner product in the space of unknowns weighted
with M�1.

The objective is to approximate the spatial operator
P 0ðAioiU

0Þ in (38). Neglecting boundary values of U 0 on
the element boundaries, its Fourier transform can be
approximated by

dP 0ðAioiU
0Þ �SðkÞcU 0 � �i

1

h
kjAj

cU 0 ;
where the Fourier transform of a function f has been de-
noted by f̂ and i ¼

ffiffiffiffiffiffiffi
�1
p

. Taking the M-norm of SðkÞcU 0
yields

cU 0 tSðkÞtMSðkÞcU 0 ¼ cU 0 t 1

h2
kikjA

t
iMAj

� �cU 0 ;
where SðkÞ is the complex conjugate of SðkÞ. Neglecting
again boundary values of U 0 on the element boundaries,
Plancherel’s formula yields

kP 0ðAioiU
0ÞkK;M � k dP 0ðAioiU

0ÞkM

�
Z
jSðkÞcU 0 j2M dk

6

Z
jSðkÞj2M jcU 0 j2M�1 dk

¼
Z
jSðk0Þj2M jcU 0 j2M�1 dk

¼ jSðk0Þj2MkcU 0k2
M�1

� jSðk0Þj2MkU 0k
2
K;M�1 ; ð39Þ

where k0 is a wave number whose existence is guaranteed
by the mean value theorem and the integrals extend over
the wave number space.

Let us consider now the approximation P 0ðAioiU
0Þ �

s�1U 0, where s is a symmetric and positive definite matrix
to be determined. Clearly, a sufficient condition for (39)
to hold also for this approximation is that js�1j2M 6
jSðk0Þj2M . In particular, our proposal is to design s so that

the equality holds, that is to say,

sup
jXjM�1¼1

X ts�1Ms�1X ¼ sup
jX jM�1¼1

X t 1

h2
ðk0

i k0
j At

iMAjÞX : ð40Þ

Of course k0 is unknown, and their components have to be
understood as algorithmic constants. The hope is that the
approximated subscale will bound the residual of the finite
element solution as the exact subscale bounds the residual
of the finite element component of the exact solution. This
bound will not be exactly the same, but will have the same
asymptotic behavior in terms of h and the coefficients of the
equation to be solved.

A practical way to impose condition (40) is to compute
the spectrum of matrices s�1Ms�1 and h�2ðk0

i k0
j At

iMAjÞ
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with respect to matrix M�1 and impose that at least the
spectral radius be the same.

The final problem for the finite element component of
the unknown is obtained by inserting the approximation
P 0ðAioiU

0Þ � s�1U 0 into (38), which leads to the ordinary

differential equation

lotU
0 þ s�1U 0 ¼ Rh; ð41Þ

which needs to be solved at each integration point of each
element. The most natural way to do this is to use the same
time integration scheme for the subscale U 0 as for the finite
element unknown Uh. Note that U 0 needs to be stored at
the integration points. An efficient way to do this is
explained in [12]. The expression for U 0 at each time step
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Fig. 1. Propagation of the solitary wave using the backward Euler scheme for
Euler time integration.
inserted into (37) yields the stabilized finite element prob-
lem for Uh.

In the particular case of quasi-static subscales, that is,
when lotU

0 � 0, the problem can be simplified. Noting that
the approximation for the subscale is local to each element
and using the notation h�; �iK for the integral of the product
of two functions on a generic element K, the final discrete
variational equation is

ðotUh;VhÞ þ ðAioiUh;VhÞ � ðF;VhÞ
þ
X

K

hAt
ioiVh; sP 0ðotUh þ AioiUh � FÞiK ¼ 0; ð42Þ

where the sum extends to all elements of the finite element
partition. We will apply now this general framework to the
6 8 10

C = 1.0
C = 0.01

6 8 10

C = 0.001
C = 0.0

different values of the constant in the stabilization parameter. Backward
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problem we are considering. The first step is to design ma-
trix s.

4.2. Application to the mixed form of the wave equation

4.2.1. Stabilization parameters
Our objective now is to design the matrix of stabilization

parameters s so that (40) is satisfied. In fact, the optimal
situation would be to choose s satisfying s�1Ms�1 ¼
h�2ðk0

i k0
j At

iMAjÞ. However, we will also try to choose s as
simple as possible. In particular, we shall see that it is pos-
sible to take s diagonal and satisfy condition (40), although
the equality just mentioned will not hold.
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Fig. 2. Propagation of the boundary effect for a one dimensional wave. Top: n
evolution of the profile in the unstable case. Crank–Nicolson time integration
For the sake of simplicity in the notation, we will
consider the case d ¼ 2, although the final result
applies also to d ¼ 3. For the matrices given by (34) it is
found that

1

h2
k0

i k0
j At

iMAj ¼
1

h2

mujk0j2 0 0

0 mgðk0
1Þ

2 mgk0
1k0

2

0 mgk0
1k0

2 mgðk0
2Þ

2

264
375;

where mg and mu are defined in (16). This matrix is singular.
This is due to the fact that it does not contain the informa-
tion on the boundary conditions that allows to invert the
differential operator from where it comes.
6 8 10

6 8 10

umerical results for C ¼ 0:005 (stable) and C ¼ 0:001 (unstable). Bottom:
in both cases.
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Let us denote by SpecM�1ðBÞ the spectrum of a matrix B
with respect to the inner product M�1, that is, the set of
eigenvalues k of the generalized eigenvalue problem
BU ¼ kM�1U . It turns out that

SpecM�1ðh�2k0
i k0

j At
iMAjÞ ¼

C2
L
jk0j2

h2
; 0;

C2
L
jk0j2

h2

( )
:

Obviously, k0 is unknown, so that we may consider its
norm as an algorithmic constant.

Let us assume now that s is diagonal. Since the two sca-
lar equations for the components of u have the same form,
we may take it as s ¼ diagðsg; su; suÞ. Clearly, s�1Ms�1 will
also be diagonal, and it is impossible that it behaves as
h�2ðk0

i k0
j At

iMAjÞ. However, since SpecM�1ðs�1Ms�1Þ ¼
fs�2

g mg; s�2
u mu; s�2

u mug, a way to choose s satisfying (40) is
to take sg and su satisfying
Fig. 3. Galerkin solution of the propagation of a wave over an
s�2
g mg ¼

C2
L
jk0j2

h2
; s�2

u mu ¼
C2
L
jk0j2

h2
:

Calling the algorithmic constant Cs � jk0j�1, it follows
that

s ¼ ðsg; suIÞ; sg ¼ Csh
ffiffiffiffiffi
lu

lg

r
; su ¼ Csh

ffiffiffiffiffi
lg

lu

r
: ð43Þ

This is the expression we were looking for. Note that it
does not depend on the choice of the lengthscale CL, as it
has been anticipated before.

It can be readily checked that, when d ¼ 1, s�1Ms�1 ¼
h�2ðk0

i k0
j At

iMAjÞ, which is the optimal situation,
whereas in the case d ¼ 2 matrix h�2ðk0

i k0
j At

iMAjÞ has two
eigenvalues equal to the diagonal entries of s�1Ms�1,
and the third one is zero. Condition (40), however, is
satisfied.
obstacle. From the top to the bottom: t ¼ 1, 2, 3, 4 and 5.
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4.2.2. Stabilized formulation

Once the matrix of stabilization parameters has been
designed, the stabilized formulation is now complete. Let
us see which is the final discrete variational form for the
wave problem in mixed form. Assuming for simplicity that
the subscales are quasi-static (that is to say, using (42)) and
taking the mesh size uniform, so that the stabilization
parameters in (43) are the same for all the elements of
the finite element mesh, the equations for ðgh; uhÞ are

0 ¼ lgðotgh; nhÞ � ðuh;rnhÞ � ðfg; nhÞ
þ luðotuh; vhÞ þ ðrgh; vhÞ � ðf u; vhÞ
þ sgðP 0ðlgotgh þr � uh � fgÞ;r � vhÞ
þ suðP 0ðluotuh þrgh � f uÞ;rnhÞ; ð44Þ

which must hold for all test functions nh and vh in the
appropriate spaces. The terms in the first row of this varia-
tional equation correspond to the Galerkin contribution,
Fig. 4. Stabilized solution (C ¼ 0:01) of the propagation of a wave ov
whereas those multiplied by sg and su should provide
stabilization.

Let us comment two possible projections P 0 that are also
used in other applications of stabilized finite element
methods:

	 P 0 ¼ I (identity). This could be considered the most
common option in stabilized finite element methods
(see [6] and references therein).
	 P 0 ¼ P?h , where P h is the projection onto the adequate

finite element space. Stabilized formulations arising
from subscales orthogonal to the finite element space
were first proposed in [7].

In this paper we will concentrate in the second option,
although similar stability properties hold for the first. We
will see in the next subsection that the terms added to the
Galerkin formulation indeed provide additional stability,
er an obstacle. From the top to the bottom: t ¼ 1, 2, 3, 4 and 5.
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and in Section 5 this enhanced stability will be numerically
demonstrated.

4.2.3. Stability estimate

Let us consider the case P 0 ¼ P?h , that is to say, the space
of subscales is orthogonal to the finite element space and,
as before, that the subscales are quasi-static. It has to be
noted that in this case P 0ðotghÞ ¼ 0, P 0ðotuhÞ ¼ 0. The mass
matrix of the linear system will not be modified with respect
to the Galerkin method.

We assume that g and u are interpolated using equal con-
tinuous functions. We will obtain in this situation a stability
estimate for the finite element unknowns ghðx; tÞ and uhðx; tÞ,
solution of the semidiscrete problem (continuous in time).
For that purpose, it is enough to consider the case without
forcing terms in (44). The problem to be considered is then

0 ¼ lgðotgh; nhÞ � ðuh;rnhÞ þ luðotuh; vhÞ þ ðrgh; vhÞ
þ sgðP?h ðr � uhÞ;r � vhÞ þ suðP?h ðrghÞ;rnhÞ: ð45Þ

If at each time t we take nh ¼ gh, vh ¼ uh, it is found that
Fig. 5. Stabilized solution (C ¼ 0:01) of the propagation of a wave ov
1

2
lg

d

dt
kghk

2 þ 1

2
lu

d

dt
kuhk2 þ sgkP?h ðr � uhÞk2

þ sukP?h ðrghÞk
2 ¼ 0:

Here and in what follows, we use the abbreviation k � k �
k � kL2ðXÞ. Integrating from t ¼ 0 to any time t0 one gets

1

2
lgkghðt0Þk

2 þ 1

2
lukuhðt0Þk2 þ sg

Z t0

0

kP?h ðr � uhðtÞÞk2dt

þ su

Z t0

0

kP?h ðrghðtÞÞk
2dt ¼ 1

2
lgkghð0Þk

2 þ 1

2
lukuhð0Þk2

:

ð46Þ

If now we differentiate (45) with respect to time and at each
time t we take nh ¼ otgh, vh ¼ otuh we get

1

2
lg

d

dt
kotghk

2 þ sgkP?h ðr � otuhÞk2 þ 1

2
lu

d

dt
kotuhk2

þ sukP?h ðrotghÞk
2 ¼ 0;

which after integration from t ¼ 0 to any time t0 yields
er an obstacle. From the top to the bottom: t ¼ 6, 7, 8, 9 and 10.
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1

2
lgkotghðt0Þk

2 þ 1

2
lukotuhðt0Þk2

þ sg

Z t0

0

kP?h ðr � otuhðtÞÞk2dtþ su

Z t0

0

kP?h ðrotghðtÞÞk
2dt

6
1

2
lgkotghð0Þk

2 þ 1

2
lukotuhð0Þk2

: ð47Þ
Fig. 6. Some details of the vector field u for the stabilized solution of the propa
and 6.
We assume now that the family of finite element meshes is
quasi-uniform, so that there exists a constant Cinv such that

krvhk 6
Cinv

h
kvhk ð48Þ

for all functions vh in the finite element spaces, either of g
or of u.
gation of a wave over an obstacle. From the top to the bottom: t ¼ 3, 4, 5
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Evaluating (45) at t ¼ 0, taking nh ¼ otghð0Þ,
vh ¼ otuhð0Þ, using Young’s inequality ab 6 1

2a a2 þ a
2
b2 for

all constants a > 0, and using the inverse estimate (48)
and the expression of sg and su in (43), we obtain

lgkotghð0Þk
2 þ lukotuhð0Þk2

6 kr � uhð0Þkkotghð0Þk þ sgkr � uhð0Þkkr � otuhð0Þk
þ krghð0Þkkotuhð0Þk þ sukrghð0Þkkrotghð0Þk

6
1

2a1

lgkotghð0Þk
2 þ a1

2

1

lg

kr � uhð0Þk2

þ 1

2a2

lukotuhð0Þk2 þ a2

2

ðCsCinvÞ2

lg

kr � uhð0Þk2

þ 1

2a3

lukotuhð0Þk2 þ a3

2

1

lu
krghð0Þk

2

þ 1

2a4

lgkotghð0Þk
2 þ a4

2

ðCsCinvÞ2

lu
krghð0Þk

2
:

Taking the constants ai, i ¼ 1; . . . ; 4, sufficiently large, it
follows that there exists a constant C for which

lgkotghð0Þk
2 þ lukotuhð0Þk2

6 C
1

lg

kr � uhð0Þk2 þ 1

lu
krghð0Þk

2

� �
: ð49Þ

Here and in what follows, C will denote a generic constant,
not necessarily the same in different appearances, but now
independent of the coefficients lg and lu.

To obtain stability for r � uh and rgh it is seen from
(46) that we need to bound only their component in the
appropriate finite element space. For that, we can take as
tests functions in (45)

nh ¼ sgP hð�nhÞ; �nh ¼ r � uh; vh ¼ suP hð�vhÞ; �vh ¼ rgh;

which yields

sgkP hð�nhÞk2 þ sukP hð�vhÞk2

6 sglgkotghkkP hð�nhÞk þ sulukotuhkkP hð�vhÞk
þ sgsukP?h ð�nhÞkkP?h ðr � P hð�vhÞÞk
þ sgsukP?h ð�vhÞkkP?h ðrP hð�nhÞÞk

6
1

2a1

sgkP hð�nhÞk2 þ a1

2
sgl

2
gkotghk

2

þ 1

2a2

sukP hð�vhÞk2 þ a2

2
sul

2
ukotuhk2

þ 1

2a3

sukP hð�vhÞk2 þ a3

2
ðCinvCsÞ2sgkP?h ðnhÞk2

þ 1

2a4

sgkP hð�nhÞk2 þ a4

2
ðCinvCsÞ2sukP?h ð�vhÞk2

:

Once again, taking the constants ai, i ¼ 1; . . . ; 4, sufficiently
large, it follows that there exists a constant C for which

sgkP hð�nhÞk2 þ sukP hð�vhÞk2
6 Cðsgl

2
gkotghk

2 þ sul
2
ukotuhk2

þ sgkP?h ð�nhÞk2 þ sukP?h ð�vhÞk2Þ
which combined with (46), (47) and (49), and noting that
sglg ¼ sulu, yields

sg

Z t0

0

kP hð�nhÞk2dt þ su

Z t0

0

kP hð�vhÞk2dt

6 Cðlgkghð0Þk
2 þ lukuhð0Þk2 þ sgkr � uhð0Þk2t0

þ sukrghð0Þk
2t0Þ:

This, together with (46), implies the stability estimates we
were looking for:

lg max
0<s<t
kghðsÞk

2 þ lu max
0<s<t
kuhðsÞk2

6 lgkg0
hk

2 þ luku0
hk

2
;

ð50Þ

sg

Z t

0

k�nhðsÞk2dsþ su

Z t

0

k�vhðsÞk2ds

6 Cðlgkg0
hk

2 þ luku0
hk

2 þ sgkr � u0
hk

2t þ sukrg0
hk

2tÞ:
ð51Þ

From the numerical point of view, estimate (50), which
bounds the C0ð0; T ; L2ðXÞÞ norm of the unknowns, is weak-
er that (51), since in this last case we have some control on
the divergence of uh and the gradient of gh.

5. Numerical examples

In this section we present the results of two very simple
numerical examples. Our intention is only to show that the
Galerkin formulation applied to the mixed form of the
wave equation is unstable and that this instability can be
overcome by using the stabilized formulation proposed
here. For two more elaborate examples, with application
to nonlinear oscillations of the water elevation in harbors,
the reader is referred to [11] where, in particular, an accu-
racy test is presented.

Since our objective is to point out a instability in space of
the Galerkin method, we will also use very simple time inte-
gration schemes. In particular, to make sure that the source
of instability is not the integration in time, we will use in
both examples the backward Euler scheme, in spite of its
poor accuracy. Our conclusions apply to all the schemes
we have tested, in particular the accurate fourth order
scheme described in [11]. In the first example we will also
present results for the second order Crank–Nicolson
scheme. Likewise, we have tried different element types (tri-
angles and quadrilaterals, linear and quadratic), although
here we will only present results for linear elements in 1D
and bilinear quadrilateral elements in 2D. Again, for
numerical results obtained in unstructured triangular
meshes, see [11]. It will be seen that the stabilization simply
removes the oscillations and the unphysical behavior of the
Galerkin method, without changing the mean amplitudes
and the mean phases of the propagated profiles.

Quasi-static orthogonal subscales have been used in
both examples. In order to deal with the orthogonal projec-
tion of a discrete function fh at time step nþ 1 we have
computed it as P?h ðfhÞnþ1 � f nþ1

h � P hðf n
h Þ. This explicit
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treatment of the second term makes the formulation inex-
pensive and does not spoil stability, as we have observed
from numerical experiments. This is in accordance with
the stability analysis presented in [10] for the pressure sta-
bilization of the incompressible Navier–Stokes equations.

5.1. Solitary wave

In this first example we have solved the apparently triv-
ial problem of propagating the profile g0ðxÞ ¼ 0:02 sinðpxÞ
for 0 6 x 6 1, g0ðxÞ ¼ 0 for x > 1, in a one-dimensional
domain ½0; 10�. We have taken the equation parameters
lg ¼ lu ¼ 1 and the forcing terms fg ¼ fu ¼ 0, so that the
profile g0ðxÞ has to propagate in time with a speed c ¼ 1.
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Fig. 7. Evolution of the y ¼ 1:5 section (top) and the x ¼ 2 section (bottom)
In this one-dimensional problem we have used 40 linear
elements to discretize the interval ½0; 10� and we have
taken the time step size dt ¼ 0:02, so that cdt < h ¼
0:025. For the values of the physical properties chosen,
the stabilization parameters in (43) simply become sg ¼
su ¼ Ch. Obviously, the case C ¼ 0 corresponds to the
Galerkin method.

We have experimentally observed that for C P C0

results are virtually identical for a wide range of values of
the constant C. In this one-dimensional example, the solu-
tion is perfectly stable for C P C0 ¼ 0:005. Fig. 1 (top)
shows the results obtained for C ¼ 0:01 and C ¼ 1 using
the backward Euler method. They are almost identical
and perfectly smooth and stable. Note that no special
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treatment of the boundary x ¼ 10 has been used. Spurious
boundary effects begin to be noticeable for C ¼ 103.

For C < 0:005 results are unstable. In this case, the insta-
bility is manifested by a spurious effect of the boundary that
is more pronounced the smaller the value of C. Fig. 1 (bot-
tom) shows the results for C ¼ 0:001 and C ¼ 0 (Galerkin
method), also using the backward Euler scheme.

In order to see in more detail which is the temporal evo-
lution of the solution we have plotted in Fig. 2 the solution
for C ¼ 0:001 and C ¼ 0:005 (top) and shown how the for-
mer is increasingly affected in time by the above mentioned
spurious effect of the boundary layer (bottom). In this case
we have used the second order Crank–Nicolson scheme to
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Fig. 8. Evolution of the y ¼ 1:5 section (top) and the x ¼ 2 section (bottom)
integrate in time. As expected, the stable case (C ¼ 0:005)
has some overshoots and undershoots, typical of the
Crank–Nicolson method.

5.2. Wave propagation over an obstacle

In this second example we have computed the propaga-
tion of the same profile as before, namely g0ðxÞ ¼
0:02 sinðpxÞ for 0 6 x 6 1, g0ðxÞ ¼ 0 for x > 1, in the rectan-
gle ½0; 10� � ½0; 2�with an obstacle represented by the rectan-
gle ½4; 6� � ½0; 1�. This domain has been meshed with a
uniform mesh of 200� 40 bilinear elements (h ¼ 0:05). Once
the obstacle is excluded, the final number of elements is 7200.
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Similar conclusions to those drawn in the previous exam-
ple apply. In particular, the Galerkin solution turns out to be
unstable, instabilities being generated mainly on the right
boundary x ¼ 10. However, some oscillations in the solution
can also be observed in the interior of the computational
domain. Contour lines of the scalar field g obtained using
the backward Euler method are shown in Fig. 3.

As in the one-dimensional example, the solution
obtained for values of the stability constant larger than
0.005 are perfectly stable. The evolution of the scalar field
g is plotted in Fig. 4 and Fig. 5. Results are completely
smooth and free of any spurious boundary effect. This is
also so for the vector field u, some details of which are plot-
ted in Fig. 6. Note that once again no special treatment of
the boundary x ¼ 10 has been used.

Finally, in order to have a better understanding of the
evolution of g in time we have plotted it at different time
instants along sections y ¼ 1:5 and x ¼ 2 in Fig. 7 for the
Galerkin method and in Fig. 8 using the stabilized formu-
lation proposed. It is clearly observed how the instabilities
of the Galerkin case appear mainly on the boundary,
although results are also oscillating in the interior of the
computational domain.
6. Conclusions

As for all mixed problems, the wave equation requires a
compatibility condition for the interpolation of the
unknowns when it is written in mixed form. In this paper
we have presented a particular and original point of view
to describe the need for such a compatibility condition
and we have proposed a stabilized finite element method
to avoid the need to comply with it.

Our formulation is based on the variational multiscale
formalism. Even though we have used a space of subscales
orthogonal to the finite element space, our conclusions also
apply to the more classical approach of taking the sub-
scales directly proportional to the residual of the finite ele-
ment solution. This alternative displays similar numerical
properties, yielding fully stable numerical schemes. How-
ever, the stability analysis presented in this paper for
orthogonal subscales is slightly more involved when the
orthogonality does not hold.

The method depends on a matrix of stabilization param-
eters. A Fourier analysis has allowed us to formally justify
that it is possible to take this matrix diagonal, and also to
obtain an expression for the stabilization parameters enter-
ing the formulation.

Even though the main ideas of the formulation rely on
previous work, several aspects are novel contributions of
this paper. Apart from the extension of the orthogonal-
subscale and dynamic-subscale concepts to the mixed wave
equation, the heuristic Fourier analysis applied to systems
is new, as well as the discussion on the proper scaling it
requires. The validity of the formulation is justified from
the numerical examples and its stability analysis.
The resulting formulation certainly possesses the
stabilization properties is was designed for. This can be con-
cluded both from the stability analysis performed in a sim-
ple setting and also from the numerical examples presented
here. In other much more complex situations the formula-
tion also behaves perfectly well, from the point of view of
stability. We believe that the objective of developing a stable
finite element method for the wave equation written in
mixed form has been fully accomplished.
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