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Abstract

This paper recovers the original spirit of the continuous crack approaches, where displacements jumps across the crack are smeared
over the affected elements and the behaviour is established through a softening stress–(total) strain law, using standard finite element
displacement interpolations and orthotropic local constitutive models. The paper focuses on the problem of shear locking observed in
the discrete problem when orthotropic models are used. The solution for this drawback is found in the form of a mesh corrected crack
model where the structure of the inelastic strain tensor is linked to the geometry of the cracked element. The discrete model is formulated
as a non-symmetric orthotropic local damage constitutive model, in which the softening modulus is regularized according to the material
fracture energy and the element size. The resulting formulation is easily implemented in standard non-linear FE codes and suitable for
engineering applications. Numerical examples show that the results obtained using this crack model do not suffer from dependence on the
mesh directional alignment, comparing very favourably with those obtained using related standard isotropic or orthotropic damage
models.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Tensile cracking is an essential feature of the behaviour
of concrete structures and, therefore, tensile fracture must
be taken into account in predicting their ultimate load
capacity as well as service behavior.

With the advent of digital computers and computational
mechanics, two different formats have evolved to model the
phenomenon of tensile cracking in the context of finite ele-
ment analysis: the discontinuous and the continuous crack

approaches. In the discontinuous crack models, displace-
ments jumps across the crack are explicitly considered
and the behaviour is established through a softening trac-
tion-jump law. In the continuous crack models, displace-
ments jumps across the crack are smeared over the
affected elements and the behaviour of the crack is estab-
lished through a softening stress–(total) strain law.
0045-7825/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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Nowadays, we live a curious situation. On one hand,
most structural engineers and FE codes for computational
solid mechanics are decanted in favor of the second smeared
crack approach. On the other, the observed mesh-size and
mesh-bias dependence exhibited by these models make the
academic world very suspicious about this format. Hence,
a lot of effort has been spent in the last 30 years to investi-
gate and remedy the observed drawbacks of this approach.

However, the most promising of the newly proposed
methods resign from the smeared approach and turn back
to the discontinuous format. On one hand, Belytschko and
co-workers [1–3] have introduced the so-called extended

finite element method (X-FEM), which allows to model
the propagation of a crack without remeshing, at the
expense of enriching the nodal degrees of freedom with
new ones that represent both the displacement jumps across

the crack and the developed singular field at the tip of the
advancing crack. On the other, the so-called strong discon-

tinuity approach [4–15] leads to enhanced formulations for
finite elements with embedded displacement discontinuities.
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But there is still one option to investigate: the adoption
of smeared models that incorporate the effect of the dis-
placement jumps in the strain field of the elements, rather
than the actual jumps themselves. These could be termed
as embedded–smeared crack models. In such models, all
computations would be made at constitutive level and this
would allow the use of standard elements with continuous
displacement fields, making the implementation of these
models straight-forward in any nonlinear FE code. There-
fore, these would be the updated versions of the classical
orthogonal crack models as introduced by Rashid in
1968 [16], but introducing the necessary corrections to
avoid mesh-size and mesh-bias dependency. Following this
line of thought, we present in this paper a mesh corrected
crack model, formulated with the aim of covering this gap.

The objectives of this paper are three-fold: (i) to formu-

late, at continuum level, an orthotropic Rankine damage

model as the basis of the corresponding discrete crack
model, (ii) to propose a mesh corrected crack model as the
discrete version of the orthotropic continuum damage
model, and (iii) to assess the performance of the proposed
crack model by means of selected numerical examples that
exhibit tensile cracking.

The outline of the paper is as follows. In the next sec-
tion, we briefly review the main features of crack models
as used in the last decades, both at continuum and discrete
levels. Then, an orthotropic Rankine continuum damage
model, suitable for degradation under tensile straining, is
presented. Later, the corresponding implementation of
the damage model in a discrete FE framework is discussed.
Finally, selected numerical examples are presented to assess
the present formulation and to show the attained benefits
as compared to the ‘‘straight” use of the standard orthotro-
pic and isotropic damage based crack models.

2. Discontinuous and continuous, true and embedded crack

approaches

Since the earliest applications of the FEM to concrete
structures, back in the 1960s, the modelling of cracks has
been a hot topic in the FE literature, both professional
and academic. Many approaches have been suggested
and new terminology has been coined. In this section, we
distinguish between the formulation at continuum level
and its discrete counterpart, the FE implementation.

2.1. Continuum level

Consider the body X, as shown in Fig. 1a, crossed by a
discontinuity S, which represents a crack. Regions Xþ and
X� are the parts of the body located ‘‘in front” and ‘‘behind”

the crack.
The discontinuous continuum crack model is represented

in Fig. 2a. The top graph shows the normal displacement
along a line normal to the crack, with a discontinuous jump
w, which represents the normal opening of the crack,
occurring at S. The corresponding normal strain compo-
nent is shown in the bottom graph, with a singularity
occurring at S. The behaviour of the crack must be estab-
lished through a softening traction-jump law.

Alternatively, the continuous continuum crack model is
represented in Figs. 1b and 2b. Here, Sþ and S� are two
lines that run parallel to S, at a relative distance h. In this
model, the normal jump w occurring at S is smeared over
the distance h. The top graph in Fig. 2b shows the normal
displacement along a line normal to the crack, with the
normal jump w smeared continuously between S� and
Sþ. The corresponding normal strain is shown in the bot-
tom graph, with no discontinuity occurring at S. The
behaviour of the crack can be established through a soften-
ing stress–(total) strain law.

2.2. Discrete level

Let us now consider a FE discretization of the body X,
as shown in Fig. 3, crossed by a discontinuity S. There is
the option of discretizing both the discontinuous or the
continuous continuum approaches.

The true discontinuous discrete crack model reproduces
the behaviour of Fig. 2a. Cracks are modelled by separa-
tion of nodal points initially occupying the same spatial
position, with the obvious restriction that cracks can only
form along the element boundaries (Fig. 3a). This was
the model adopted in the earliest applications of the
FEM to concrete structures, back in the 1960s [17–19]
and it is still widely favored in Computational Fracture
Mechanics.

Alternatively, the true continuous discrete crack model
reproduces the behaviour of Fig. 2b. In this discrete model,
Sþ and S� are two lines of nodes that run parallel to S, at a
relative distance h, related to the element size, and the crack
crosses the elements located inside that band (Fig. 3b). This
smeared approach was first used by Rashid in his 1968 his-
torical paper [16] to study prestressed concrete pressure
vessels. As the behaviour of the crack is established
through a softening stress–(total) strain law, this approach
can be implemented in any nonlinear FE code by simply
writing a routine for a new material constitutive model.
Even today, more than 35 years later, most of the commer-
cial FE codes use this approach, with little refinement over
the original Rashid’s ideas.

However, this two options, traditional in the FE litera-
ture, do not exhaust all the possibilities for discrete FE
crack models. Let us consider two more:

The embedded–discontinuous discrete crack model incor-
porates discontinuous displacement fields inside the finite
elements crossed by the discontinuity in order to reproduce
the displacement and strain behaviour of its continuum
parent model, as shown in Fig. 4a. The displacement field
inside the affected elements is assumed to be discontinuous,
and the strain field is decomposed into a regular part, out-
side the crack, and a singular part at the crack. This is the
idea behind the so-called strong discontinuity approach [4–
15]. A similar idea supports the so-called extended finite ele-



Fig. 1. Modellization of a crack at continuum level: (a) discontinuous approach and (b) continuous (smeared) approach.

Fig. 2. Continuum and ‘‘true” discrete approaches to crack modellization: (a) discontinuous displacement and (b) continuous (smeared) displacement.

Fig. 3. Modellization of a crack at discrete level: (a) discontinuous approach and (b) continuous (smeared) approach.
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ment method (X-FEM) [1–3], which is based on enriching
the nodal degrees of freedom with new ones that represent
the displacement jumps across the crack.

The main disadvantage of this approach is that it
requires special integration rules inside the affected finite
elements to take into account what happens at and outside
the discontinuity. At the discontinuity, the natural option
in this embedded–discontinuous approach is to establish
the behaviour of the crack through a softening traction-
jump law, although regularizations of the jump have also
been used. Outside the discontinuity, the behaviour is usu-
ally assumed to be elastic and driven by the regular part of
the strain in the affected elements.

In the last years, Mosler and Meschke [10,11], working
within the framework of these embedded–discontinuous
models, have pointed to the similar behaviour that they



Fig. 4. Embedded discrete approaches to crack modellization: (a) discontinuous displacement and (b) continuous (smeared) displacement.
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present when compared to the traditional smeared models
in some circumstances and to the convenience of imple-
menting them at elemental or ‘‘material” level [12].

All this evidence suggests that embedded–continuous dis-

crete crack models may also be postulated, on the basis of
the behaviour represented in Fig. 4b. Here, the displace-
ment field is continuous in the affected elements but the
strain field is decomposed into its elastic and inelastic part,
the latter due to the crack. Once the inelastic part is dis-
counted, the behaviour is elastic. The contribution of the
crack to the displacement field can be evaluated from the
corresponding component of the inelastic part of the strain
field.

The advantages of this approach are, on one hand, that
the treatment of the crack is formulated at constitutive
level in a stress–strain format and standard integration
rules are maintained (as in the smeared approaches) and,
on the other, that the decomposition of the strains into
elastic and inelastic parts allows the a posteriori identifica-
tion of the displacement jump (as in the discontinuous
approaches).

2.3. The discretization error

At first sight, the previous discussion may seem rather
scholastic and speculative. Certainly, the difference
between the models in Fig. 4a and b is subtle. Even the dif-
ference between the models in Fig. 4 and their simpler
counterparts of Fig. 2 may seem of little practical rele-
vance. However, such point of view must be revised, as
the pertinence of the different models cannot be fully
apprehended unless their application in 2D or 3D situa-
tions is considered.

In the first place, the application of the true discontinu-

ous discrete crack model of Fig. 2a requires the use of reme-
shing techniques, and this motivates the apparition of the
embedded–discontinuous discrete crack models of Fig. 4a,
which still require the use of non-standard integration tech-
niques. This is a significant drawback for the dissemination
and practical implementation of these models.

Contrariwise, the true continuous discrete crack model of
Fig. 2b is of straight-forward implementation and does not
require remeshing but, unfortunately, in a multi-dimen-
sional setting, its original format based on orthotropic
models is known to suffer from serious stress locking. In
Ref. [20], the detailed analysis of the discrete rotating crack
model reveals that it necessarily leads to the development
of spurious shear strains that grow linearly with the crack
opening, inducing stress locking. This evidence led in the
1990s to the progressive neglect of the orthotropic models
in favor of isotropic models, both in damage or plasticity
frameworks. Even if smeared isotropic models largely mit-
igate the problem of stress locking, they cannot reproduce
locally the directional nature of cracking.

In any case, the analysis of the classical smeared mod-
els reveals the key point of the matter: the problem does
not reside in the underlying continuum crack model,
which may be discontinuous or continuous, isotropic or
orthotropic, but in the discrete version of the models, in
their FE implementation. In short, the real problem
comes from the limitations and shortcomings of the spa-
tial discretization.

The discretization error is responsible for two separate
deficiencies observed in the crack problem:

� The mesh bias inherent to the determination of the direc-

tion of propagation of the cracks. This issue is not
directly addressed by any of the crack models even if
all of them suffer from it. It is not yet generally realized
that this is a problem of the discrete model and not of
the continuum model. Tracking algorithms, formulated
outside the constitutive model, are a partial solution
[21,22], but they are not robust enough in certain situa-
tions, like bending.
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� The inappropriate modelling of the inelastic strain and

stress fields associated to cracking. This issue is directly
related to the stress locking observed in the classical
orthotropic crack models and it applies even if the crack
path is known in advance. In this regard, much knowl-
edge has been accumulated in the last decade through
the use of the embedded–discontinuous discrete crack
models. In this work, we intend to transfer this know-
how to the formulation of embedded–continuous dis-
crete crack models.

The situation described is similar to what happens when
using incompressible von Mises type softening models,
either in a plasticity or damage format. In those cases,
the discrete problem has to be modified appropriately, or
‘‘mesh corrected”, to obtain mesh independent results
[23,24].

3. Orthotropic rankine damage model

3.1. Fixed and rotating orthotropic rankine models

Continuum damage models have been frequently used in
the last 20 years to simulate tensile fracture, although, com-
monly, isotropic models were used [21,22,25–28]. However,
anisotropic models have also been formulated [29]. In fact,
the framework of Continuum Damage Mechanics is very
similar to the format of the original smeared crack models
[30].

In this section, we present an orthotropic damage model
that depends on the definition of one physical direction
aligned with the unit vector n, orthogonal to the damaged
plane. We will also use a second unit vector m to determine
the structure of the inelastic strains.

For a classical Rankine model, damage occurs in a plane
orthogonal to the major principal strain/stress and, there-
fore, this is the direction of vector n. At continuum level,
the inelastic deformation is aligned with the major princi-
pal stress, so m ¼ n. As it will be shown below, in the dis-

crete problem, when the behaviour of finite elements is
taken into account, it is convenient to consider vector mh

as a mesh dependent approximation to vector nh, so we
can write that, in the discrete problem, mh ’ nh.

As a Rankine model induces orthotropic behaviour in
an initially isotropic medium, it has been largely debated
if the axes of orthotropy should be kept fixed after the
inception of damage or if they should rotate as the princi-
pal strains do. The adoption of a co-rotational model
avoids the question of shear transfer on the damaged plane.
It has been argued that only fixed models have physical
meaning. However, it was soon observed that, in the dis-
crete problem, fixed models lead to locking caused by spu-
rious shear strains. This has favored the use of rotating
models and, even, the abandonment of orthotropic models
and the adoption of isotropic models. If the difficulty of
spurious shear straining was solved, the possibility of using
fixed models could be considered again.
3.2. Inelastic strains and deformation

Let e be the total strain tensor, computed as e ¼ rsu,
where u are the displacements, and let m be a unit vector
associated to a physical direction in space. The deforma-
tion vector in this direction is defined as

d ¼ e �m ¼M : e; ð1Þ

where M is a third order tensor defined as Mijk ¼ 1
2
ðdjkmiþ

dikmjÞ from the components of vector m. The symbols (�)
and (:) denote simple and double contractions, respectively.

Consider the usual decomposition of the total strain ten-
sor into its elastic and inelastic components:

e ¼ ee þ ei: ð2Þ

As our aim is to define an orthotropic damage model, let
us define the following structure for the inelastic strain
tensor:

ei ¼ ðm� eÞS ¼M � e; ð3Þ

where m is a unit vector pointing in a physical direction to be
defined and e is an inelastic deformation vector. The symbol
ð�Þ denotes the tensor product and ð�ÞS ¼ symmð�Þ. Tensor
M in Eq. (3) has the same structure as the one in Eq. (1).
3.3. Constitutive equation

In a strain-based formulation, a continuum damage

model is usually based on the definition of the effective
stress, which is introduced in connection with the hypoth-
esis of strain equivalence [31]: the strain associated with a
damaged state under the applied stress r is equivalent to
the strain associated with its undamaged state under the
effective stress �r. In the present work, the effective stresses
�r is computed in terms of the total strain tensor e as

�r ¼ C : e; ð4Þ

where C is the usual (fourth order) isotropic linear-elastic
constitutive tensor.

The constitutive equation for the orthotropic damage
model is defined as

r ¼ ðI4 �DÞ : �r ¼ ðI4 �DÞ : C : e; ð5Þ

where I4 is a symmetric fourth order unit tensor
(I4 : C ¼ C, I ijkl ¼ 1

2
ðdikdjl þ dildjkÞ) and we have intro-

duced D; the fourth order damage tensor, whose definition
and evolution is given below.

Introducing the strain decomposition in Eq. (2), we can,
alternatively to Eq. (5), write:

r ¼ �r� ri ¼ C : ðe� eiÞ: ð6Þ
3.4. Orthotropic damage

The evolution of the orthotropic damage tensor D will
be associated to a physical direction in space identified by
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a unit vector n and the plane orthogonal to it. The traction
vector acting on this plane is

t ¼ r � n ¼ N : r; ð7Þ
where N is a third order tensor defined as Nijk ¼ 1

2
ðdjkniþ

diknjÞ from the components of vector n. Note that tensor
N has the same structure as M in Eq. (1).

Using Eqs. (7), (6) and (3), we can write:

t ¼ N : r; ð8aÞ
t ¼ N : ½C : e� C : ei�; ð8bÞ
t ¼ N : ½C : e� C : M � e�; ð8cÞ
t ¼ �t� ½N : C : M� � e; ð8dÞ

where we have introduced the effective traction vector
�t ¼ �r � n ¼ N : �r. Note that N : C : M ¼ n � C �m.

To proceed, the traction vs. inelastic deformation, t vs.
e, relationship must be established. This is the continuum
equivalent of a discrete traction–separation law. We can
write, for instance,

t ¼ bC�1 � bC � e ¼ bH � e; ð9Þ

where bC is a second order symmetric traction compliance
tensor, which may be either a function of the traction or
the inelastic deformation vector, and bC is a second order
symmetric reference stiffness tensor. Substituting law (9)
into the equilibrium condition (8d) leads to:

e ¼ ½ bH þN : C : M��1 ��t ¼ bA ��t: ð10Þ
Symmetry arguments lead to the condition that, in local

coordinates for which the first axis is aligned with vector n,
the reference stiffness tensor must be diagonal. Therefore, a
natural option is to take bC ¼ N : C : N, which relates the
reference stiffness of the crack to the elastic moduli of the
undamaged material.

Note that as the traction compliance tensor is defined as
a function of the traction, bC ¼ bCðtÞ, or of the inelastic
deformation vector, bC ¼ bCðeÞ, Eq. (10) is non-linear, and
it has to be solved iteratively.

Once the inelastic deformation vector is known, Eq. (3)
defines the inelastic strain tensor as

ei ¼M � e ¼M � bA ��t ¼ ðM � bA �NÞ : �r ¼ ðM � bA �NÞ : C : e;

ð11Þ

and the inelastic stress tensor is then:

ri ¼ C : ei ¼ C : ðM � bA �NÞ : C : e: ð12Þ
Relating Eq. (12) to its definition in (5), the damage ten-

sor is finally obtained as

D ¼ C : ðM � bA �NÞ: ð13Þ

Note that in the continuum setting, the direction m,
which defines the structure of the inelastic strains, coincides
with the direction n, which defines the tractions, so that
M ¼ N, and the damage tensor D is symmetric.
3.5. The traction compliance and damage tensors

It is clear from the previous section that the essence of
the orthotropic damage model lies in the definition of the
traction compliance tensor, as this defines the relation
between the inelastic deformation and the traction acting
on the plane orthogonal to vector n. In the context of a
damage model, it is natural to define this relation in terms
of damage rather than compliance. The traction compli-
ance tensor can be related to a corresponding traction dam-

age tensor defined asbD ¼ ½Iþ bC�1��1
; ð14Þ

so that:bC�1 ¼ bD�1 � I: ð15Þ
For the definition of these tensors, it is convenient to

work in an orthonormal basis in which the first direction
coincides with n and the other two axes are orthogonal to
n. We will refer to this basis as natural basis in the following.

In the natural basis, the simplest traction damage and
compliance tensors take the diagonal forms:

bD ¼ dI; bC ¼ d
1� d

I ð16Þ

where d, the damage index, is a scalar internal-like variable
whose definition and evolution is discussed below.

This simple definition of bD implies that the normal and
tangential components of the traction degrade in the same
way. The model may be refined by adopting a still diagonal
form for bD, but with different damage indices, dn and dt,
for the normal and tangential components, respectively.
The tangential damage index can be an explicit function
of the normal damage index, dt ¼ dtðdnÞ.

Using Eq. (16) and bC ¼ N : C : N, tensor bA ¼ 1
d
bCþh

N : C : ðM�NÞ��1 and the damage tensor is

D ¼ C : M � 1

d
bC þN : C : ðM�NÞ

� ��1

�N
 !

: ð17Þ

Note that if M ¼ N, the damage tensor is

D ¼ d½C : ðN � bC�1 �NÞ�; ð18Þ
which can be recognized as the definition of a standard
orthotropic damage model.

3.6. Isotropic damage model

It is convenient to recall that the orthotropic nature of
the proposed model resides in the structure of the inelastic
component of the strains, Eq. (3). The structure of the
model changes by changing this. For instance, the standard
isotropic damage model is recovered by postulating that
the inelastic strain tensor is proportional to the total strain:

ei ¼ de; ð19Þ

which corresponds to a diagonal damage tensor D ¼ dI4.
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3.7. The damage index

In order to define a damage model sensitive only to ten-
sile stresses, we define the equivalent stress in the form:

s ¼ hrni ¼ hn � r � ni; ð20Þ

where rn is the normal stress acting on the plane orthogo-
nal to direction n. The symbols h�i are the Macaulay brack-
ets (hxi ¼ x, if x P 0; hxi ¼ 0, if x < 0).

With this definition for the equivalent stress, the damage
criterion, U, is introduced as

Uðs; qÞ ¼ s� qðrÞ 6 0; ð21Þ

where the function q ¼ qðrÞ is the stress-like softening func-

tion. It is clear that the definition in Eq. (21) corresponds to
the Rankine criterion. Fig. 5a shows a schematic represen-
tation of the defined damage criterion in the stress space.

Variable r is an internal stress-like variable representing
the current damage threshold, as its value controls the size
of the damage surface. The initial value of the damage
threshold is r0 ¼ r0, where r0 is the initial uniaxial damage
stress.

In this work, we will use following softening laws q ¼
qðrÞ:

� Linear softening:

qðrÞ ¼
r0 � H Sðr � r0Þ; r0 6 r 6 ru;

0; r P ru:

�
ð22Þ

� Exponential softening:

qðrÞ ¼ r0 exp �2H S
r � r0

r0

� �� �
; r0 6 r ð23Þ

where HS P 0 is a constant. Fig. 5b shows a schematic
representation of both these functions.

The damage index d ¼ dðrÞ is explicitly defined in terms
of the corresponding current value of the damage threshold:
Fig. 5. Rankine damage model: (a) damag
dðrÞ ¼ 1� qðrÞ
r
; r0 6 r; ð24Þ

so that it is a monotonically increasing function such that
0 6 d 6 1.

The evolution of the damage bounding surface for load-
ing, unloading and reloading conditions is controlled by
the Kuhn–Tucker relations and the damage consistency
condition, which are

_r P 0 Uðs; rÞ 6 0; _rUðs; rÞ ¼ 0; ð25aÞ
if Uðs; rÞ ¼ 0 then _r _Uðs; rÞ ¼ 0: ð25bÞ

Because the value of the normal stress in (21) depends on
the damage tensor and this, in turn, depends on the dam-
age index, these equations must be solved iteratively at
the same time as the equilibrium equation (10).

3.8. Mechanical dissipation

In the continuum setting, vectors m and n coincide, so
that M ¼ N, and the damage tensor D is symmetric. Then,
the mechanical free energy for the orthotropic damage
model is defined in the form:

W ¼ 1

2
e : ðI4 �DÞ : C : e P 0: ð26Þ

The condition W P 0 must be verified for any given struc-
ture of tensor D. The condition is verified if D is positive
definite and kDk 6 1. From Eq. (13), taking M ¼ N, it is

D ¼ C : ðN � bA �NÞ; ð27Þ
so, the necessary conditions will verify if bA is positive def-
inite and kAk 6 1. From Eqs. (9) and (10), and takingbC ¼ N : C : N, it isbA ¼ ½bD�1 � bC��1 ¼ bC�1 � bD; ð28Þ
so, bD must be positive definite and kbDk 6 1.

From expression (26), the constitutive equation is
obtained, applying Coleman’s method, as

r ¼ ðI4 �DÞ : C : e: ð29Þ
e surface and (b) softening functions.



Fig. 6. Implementation of the mesh corrected crack model in a CST
triangle.
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Also, by the same procedure, the rate of mechanical dissi-
pation is obtained as

_D ¼ 1

2
e : _D : C : e P 0: ð30Þ

The condition _D P 0 will be verified provided that the rate
of the damage tensor _D is positive definite. In view of Eqs.
(27) and (28), this reduces to the condition that the rate of
the traction damage tensor

_bD must be positive definite.
The necessary conditions on bD and

_bD depend on the

actual definition of bD. For the simple case bD ¼ dI; it is
_bD ¼ _dI and, therefore, the conditions reduce to 0 6 d 6 1

and _d P 0.
In the discrete setting, vector mh is a mesh dependent

approximation to vector nh, so mh ’ nh. Without resorting
to a full convergence analysis, but in the spirit of all discret-
ization methods, we will assume that the discrete counter-
parts of Eqs. (29) and (30) will converge to the
continuum values on mesh refinement, in a global sense.
This does not require that mh converges to nh pointwise.

3.9. Strain-softening and fracture energy release

In order to relate the specific dissipated energy D,
defined per unit volume, to the mode I fracture energy of
the material Gf , defined per unit area of damaged material,
let us introduce a characteristic length h, such that:

Dh ¼ Gf : ð31Þ
This makes the softening modulus HS , which defines the
softening response, dependent on this length.

Let us now consider an uniaxial tensile experiment in
which the tensile strain increases monotonically and quasi-
statically from an initial unstressed state to another in
which full degradation takes place. The specific energy dis-
sipated in the process is

D ¼
Z t¼1

t¼0

_Ddt ¼ 1

E

Z r¼1

r¼r0

qdr; ð32Þ

where E is the Young’s modulus. Using Eqs. (22) and (23),
it can be shown that both for the linear and exponential
softening cases, it results:

D ¼ 1þ 1

H S

� �
r2

0

2E
; ð33Þ

and equating D ¼ Gf =h, we have:

HS ¼
HSh

1� H Sh
P 0; ð34Þ

where HS ¼ r2
0=ð2EGf Þ depends only on the material prop-

erties. Defining the material length lS ¼ 1=HS , Eq. (34) can
be rewritten as

HS ¼
h

lS � h
’ h

lS

; ð35Þ

where the approximation holds for lS � h.
It must be remarked that the above computation of the
total specific dissipation has been obtained for an uniaxial
stress state. In a more general case, the total dissipated
energy may be larger than that in expression (33). In the
continuum case and a rotating model, the principal direc-
tions of strains and stress coincide and there is no addi-
tional dissipation due to shear on the damaged plane,
even if these directions vary during the loading process.
In other cases, there may be additional dissipation due to
shear straining.
4. The mesh corrected crack model. Finite element
formulation

In this section, we describe the implementation of the
continuum orthogonal Rankine damage model described
above in a FE framework. We will refer to the resulting dis-
crete model as the mesh corrected crack model. Let us recall
that in the orthotropic Rankine damage model vector n

defines the direction for which the tractions (�t and t) and
the deformation vector e are defined, while vector m defines
the structure of the inelastic strains ei.

For simplicity, we will restrict our discussion to the
three-noded linear triangle (CST). Let us consider the
CST shown in Fig. 6. Let us assume that the triangle is
crossed by a crack (discontinuity) with a unit vector nh

pointing in the direction normal to the crack. Let mh be
another unit vector that is selected as the normal to the
three element sides that maximizes the value of the product
jnh �mhj. Let us call i� and j� to the nodes that define this
side, and kþ to the remaining node. We will assume that the
crack does not intersect the side i� � j� and that it sepa-
rates this side from node kþ (solitary node). We direct vec-
tor nh so that it points to kþ and vector mh so that
nh �mh > 0.

In the FE implementation of the embedded–continuous
damage model we will take the width of the localization
band, h, as the distance from the solitary node kþ to the
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opposite side i� � j�. This allows to identify the contribu-
tion of the crack to the displacement field inside the ele-
ment as w ¼ he. Note that this ‘‘displacement jump” is
not co-axial with vector n, nor with vector m. The appro-
priate selection of length h is very important in the FE
implementation of a smeared model, as it determines the
discrete softening parameter, HS in Eq. (35). In an ortho-
tropic model, where damage is associated to a specific
direction of stress/strain, h must be selected according to
this. In an isotropic model, it is usual to select length h

related to the element diameter. However, in this work,
the same determination of h as for the orthotropic model
will be used for comparison.

With these definitions, we can define three different
crack models as the discrete versions of different orthotro-
pic Rankine damage models:

� Take n ¼ nh and m ¼ nh. This model is statically consis-
tent and symmetric and it is often referred to as SOS
(statically optimal symmetric) in the literature of embed-
ded–discontinuous models [7]. It is totally equivalent to
the classical fixed or rotating crack models and, there-
fore, it can be shown to lock due to spurious shear
(see [20]).
� Take n ¼ mh and m ¼ mh. This model is kinematically

consistent with the spatial discretization and symmetric
and it is often referred to as kinematically optimal sym-
metric (KOS) in the literature of embedded–discontinu-
ous models. It does not lock, but it does not satisfy the
consistency condition for the stresses on the surface of
the discontinuity.
� Take n ¼ nh and m ¼ mh. This model is statically and

kinematically consistent but it is non-symmetric and it
is often referred to as statically and kinematically opti-
mal non-symmetric (SKON) in the literature of embed-
ded–discontinuous models. It does not lock and it
satisfies the consistency condition for the stresses on
the surface of the discontinuity. We will refer to this
model as mesh corrected crack model.

Using the standard matrix notation, we can write the
internal force vector for the element Xe as

f int ¼
Z

Xe

BTrdXe ¼ BTrAe; ð36Þ

where B is the usual displacements–strain matrix, r is the
stress vector and Ae is the element area. For the CST, B

and r are constant over the element. Using the constitutive
relationship:

r ¼ Csece ¼ CsecBd; ð37Þ

where Csec ¼ ðI�DÞC, e is the strain vector and d is the
vector of nodal displacements. C is the elastic constitutive
matrix and D is the damage matrix. Therefore:

f int ¼ ½BTCsecBAe�d: ð38Þ
This can also be written as

f int ¼ ½BTCBAe�d with B ¼ ðI� C�1DCÞB; ð39Þ
which sets the present discrete model inside the framework
of the enhanced assumed strain (EAS) or B-bar methods.

5. Numerical examples

The formulation presented in the preceding sections is
illustrated below by solving two different benchmark prob-
lems. Performance of the standard continuous displace-
ment finite elements is tested considering 2D plane-stress

three-noded linear triangular meshes. As the study of the
problem of crack propagation is out of the scope of this
work, we will consider that the path of cracking is known
in advance; due to the symmetry of the test cases consid-
ered, this is not difficult.

The discrete problem is solved incrementally, in a (pseu-
do)time step-by-step manner. In all cases 100 equal time
steps are performed to complete the analyses. Within each
step, a modified Newton–Raphson method, together with a
line search procedure, is used to solve the corresponding
non-linear system of equations. Convergence of a time step
is attained when the ratio between the norm of the iterative
and the incremental norm of the computed displacements is
lower than 10�5.

Calculations are performed with an enhanced version of
the finite element program COMET [32], developed at the
International Center for Numerical Methods in Engineer-
ing (CIMNE). Pre and post-processing is done with GiD,
also developed at CIMNE [33].

5.1. Rectangular strip under tension

The first example is a plane-stress rectangular strip sub-
jected to axial vertical straining imposed at both ends.
Dimensions of the strip are 100 � 200 mm � mm (width �
height) and the thickness of the strip is 10 mm. The follow-
ing material properties are assumed: Young’s modulus E =
2 GPa, Poisson’s ratio m ¼ 0:3, tensile strength r0 ¼ 1 MPa
and mode I fracture energy Gf = 250 J/m2.

The computational domain is discretized in two different
structured meshes with different preferential alignments.
Mesh A (Fig. 7a.1) consists of rectangular triangles with
predominant directions at �45�, 0� and +90� with the hor-
izontal axis. As the strip cracks along an horizontal line,
the elements in this mesh have one of their sides parallel to
the opening crack. On the other hand, mesh B (Fig. 7b.1)
consists mostly of equilateral triangles with predominant
directions at �30�, +30� and +90� with the horizontal axis.
Therefore, the elements in this mesh do not have any of their
sides parallel to the opening crack. Both meshes consists of
about 900 nodes and 1800 elements, although the results
obtained are independent from mesh refinement.

This example is selected because it represents a sort of
patch test for pure mode I fracture, as the stress field is uni-
form before cracking and it should remain so after crack-



Fig. 7. Meshes A and B and deformed shapes for the rectangular strip under tension.
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Fig. 8. Vertical reaction versus vertical displacement in rectangular strip
for: (a) mesh A and (b) mesh B.
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ing. On the other hand, the uniform strain field before
cracking bifurcates into two uniform but different strain
fields inside and outside the localization band after crack-
ing. The example is used to assess the ability of the isotropic

(ISO), standard orthotropic (ORT) and mesh corrected

orthotropic (MCO) damage models to reproduce these ideal
conditions. Because the direction of applied straining does
not change during the loading process, we will use the fixed

versions of the orthotropic models, with the directions of
orthotropy determined and fixed at the onset of cracking.

The expected and computed deformed shapes of the
strip using meshes A and B are shown in Fig. 7a.2 and
b.2, respectively ((half)-imposed vertical displacement
d = 0.05 mm, with a displacement amplification factor of
50; the other half-imposed displacement is applied at the
opposite end of the strip). As shown, the opening crack
in both analyses follows exactly the horizontal axis of sym-
metry of the strip, and the deformation mode obtained is
globally correct for the three models used and both meshes.
However, subtle and not so subtle differences are revealed
when a detailed analysis of the results is undertaken.

Figs. 8a and 9 show the results obtained with the three
constitutive models using the well-aligned mesh A. Fig. 8a
shows the load vs. displacement curve, identical for the three
models and coincident with the analytical response. Fig. 9a
shows the strains developed inside an element inside the
crack trajectory; as expected, the three models coincide with
the analytical solution: (a) the longitudinal strain grows lin-
early before bifurcation and faster and almost linearly after
bifurcation, (b) the transverse strain grows linearly before
bifurcation due to Poisson’s effect and decreases afterwards
due to elastic unloading and (c) the shear strain remains

always null. Fig. 9b and c shows the corresponding stresses:
the longitudinal stress grows linearly before bifurcation and
decreases exponentially after cracking; the transverse and
shear stresses remain null for the orthotropic models but
they do not do so in the isotropic model, because isotropic
damage affects Poisson’s effect.

In fact, the performance of both the standard and mesh
corrected orthotropic models is identical and exact as, for
this mesh, the crack is parallel to one of the element sides.
The behaviour of the isotropic damage model is almost per-
fect, apart from one subtle aspect: it is unable to reproduce
correctly Poisson’s effect after cracking. To visualize this,
Fig. 11 (top) shows different contours for this analysis when
the (half)-imposed vertical displacement is d = 0.05 mm.
Fig. 11 ISO-A.a shows contours for the vertical displace-
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ment; all variation is contained inside the localization band.
Fig. 11 ISO-A.b shows contours for the horizontal displace-
ment; here, a small amount of ‘‘necking” can be observed. It
is due to the fact that, on one hand, the isotropic model pre-
serves the value of the Poisson’s ratio, while on the other, the
longitudinal strain is different inside the localization band
than outside. The effect of this necking is clear in the con-
tours of the longitudinal stress (Fig. 11 ISO-A.c), the trans-
verse stress (Fig. 11 ISO-A.d) and the shear stress (Fig. 11
ISO-A.e). Particularly, Fig. 11 ISO-A.d shows how the cen-
tral band is under transverse tension as it is pulled out by the
unloading elastic part of the strip. The values of the longitu-
dinal stress are globally correct, but instead of being uni-
form they present oscillations of about 10% (Fig. 11 ISO-
A.c). The values of the transverse and shear stress, which
should be exactly null, oscillate between ±25% of the cor-
rect value of the longitudinal stress (Fig. 11 ISO-A.d and
ISO-A.e).

Figs. 8b and 10 show the results obtained with the same
three constitutive models using miss-aligned mesh B.
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Fig. 8b shows the load vs. displacement curve, where the
orthotropic mesh corrected model provides the exact solu-
tion, identical to the one obtained with mesh A, while the
other two models give a slightly overestimated response,
with coincident curves for both of them. The explanation
for this is found in Fig. 10. Here, the top plot shows the
strains developed inside an element inside the crack trajec-
tory: (a) the longitudinal strain is very similar, although not
identical, for the three models, and it behaves like in mesh
A, (b) the transverse strain is also very similar (not identi-
cal) for the three models and to what happens in mesh A,
but (c) the shear strain is not null and it grows linearly with

the increasing longitudinal strain. This is the crucial point
that relates to the miss-alignment of the mesh and causes
the deficient response of the isotropic and standard ortho-
tropic models. The middle and bottom curves show the
corresponding stresses: (a) the longitudinal stress is only
exactly correct for the MCO model, while the other two
do not soften exactly as expected, (b) the transverse stress
is only null in the MCO model, and not in the other two
(for the ORT model it increases monotonically after crack-
ing) and (c) the shear stress is only null for the MCO
model, while reaching significant values in the other two.

Let us consider in detail the behaviour of the three
models. Fig. 11 (bottom) shows different contours for the
analysis using the isotropic model and mesh B, when the
(half)-imposed vertical displacement is d = 0.05 mm.
Fig. 11 ISO-B.a shows contours for the vertical displace-
Fig. 11. Results for rectangular strip using the isotropic model (top: mesh A
displacement, (c) vertical normal stress, (d) horizontal normal stress and (e) s
ment; all variation is contained inside the zig-zagging local-
ization band. Fig. 11 ISO-B.b shows contours for the
horizontal displacement; a small amount of ‘‘necking” can
be observed, more pronounced in the top half of the strip
than in the bottom half. The effect of this necking is also
clear in the contours of the longitudinal stress (Fig. 11
ISO-B.c), the transverse stress (Fig. 11 ISO-B.d) and the
shear stress (Fig. 11 ISO-B.e). The values of the longitudinal
stress are overestimated by 40% with respect to the correct
uniform value, with oscillations of 35% (Fig. 11 ISO-B.c).
The values of the transverse and shear stress, which should
be null, oscillate between ±30% of the correct longitudinal
stress value (Fig. 11 ISO-B.d and ISO-B.e).

Fig. 12 shows the corresponding contours for the analy-
ses using the orthotropic models and mesh B, also when the
(half)-imposed vertical displacement is d = 0.05 mm. The
top contours correspond to the standard model (ORT)
and the bottom pictures to the mesh corrected model
(MCO). Fig. 12 ORT.a and MCO.a shows contours for
the vertical displacement, both correct and identical to
the results obtained with the isotropic model; all variation
is contained inside the zig-zagging localization band.
Fig. 12 ORT.b shows contours for the horizontal displace-
ment; here, a small amount of transverse ‘‘stretching” can
be observed in the localization band, spurious and com-
pletely dependent on the orientation of the mesh. The effect
of this stretching is also clear in the contours of the longi-
tudinal stress (Fig. 12 ORT.c), the transverse stress (Fig. 12
, bottom: mesh B). Contours of: (a) vertical displacement, (b) horizontal
hear stress.



Fig. 12. Results for rectangular strip using the orthotropic models in mesh B (top: standard, bottom: mesh corrected). Contours of: (a) vertical
displacement, (b) horizontal displacement, (c) vertical normal stress, (d) horizontal normal stress and (e) shear stress.

Fig. 13. Geometry and loading of notched slab. Dimensions in (mm).
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ORT.d) and the shear stress (Fig. 12 ORT.e). The values of
the longitudinal stress are overestimated by 40% with
respect to the correct uniform value, with oscillations of
10% (Fig. 12 ORT.c). The values of the transverse and
shear stress, which should be null, oscillate between
±15% of the value correct longitudinal stress (Fig. 12
ORT.d and ORT.e). On the other hand, Fig. 12MCO.b
shows exact contours for the horizontal displacement
obtained with the mesh corrected model. The correspond-
ing contours for the longitudinal stress (Fig. 12MCO.c),
the transverse stress (Fig. 12MCO.d) and the shear stress
(Fig. 12MCO.e) are also correct, almost completely uni-
form, the only deviations from the analytical values being
due to the tolerance used in the non-linear solution
procedure.

5.2. Notched slab

The second example is a plane-stress notched slab sub-
jected to mode I stretching. Fig. 13 depicts the geometry
of the problem; dimensions of the slab are 300 �
360 mm � mm (width � height), the length and width of
the notch are 167 and 3 mm, respectively, and the thickness
of the slab is 10 mm. The load is applied at two bottom
(rigid) pins (at 86.5 mm from the center of the beam) by
imposing horizontal displacements of opposite sign at the
left and right pins. The following material properties are
assumed for the slab: Young’s modulus E = 2 GPa, Pois-
son’s ratio m ¼ 0:2, tensile strength r0 ¼ 2 MPa and mode
I fracture energy Gf = 75 J/m2. The pins are elastic with:
Young’s modulus E = 200 GPa, Poisson’s ratio m ¼ 0:3.

This example is selected because it represents a typical sit-
uation of propagating mode I fracture, as the initial notch
extends upwards along the vertical central axis of the slab.
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On one hand, symmetry conditions allow to determine the
path of crack propagation. On the other hand, the strain
and stress fields are complex before and after cracking;
therefore, substantial redistribution of stress is expected as
cracking progresses. Also, this test case highlights the short-
comings of the spatial discretization used. The example is
used to assess the ability of the isotropic (ISO), standard
orthotropic (ORT) and mesh corrected orthotropic (MCO)
damage models to reproduce these complex conditions.
Because of the previous reasons, we will use both the fixed

and rotating versions of the orthotropic models, with the
directions of orthotropy fixed at the onset of cracking or
updated at each time step to be aligned with the directions
of principal effective stress (and strain).

The computational domain is discretized in an unstruc-
tured mesh with average mesh size of he ¼ 5 mm (4983
nodes, 9633 elements). The mesh is shown in Fig. 14a.
The computed deformed shape of the slab (using the mesh
corrected model) is shown in Fig. 14b (imposed horizontal
displacement d = 0.4 mm, with a displacement amplifica-
tion factor of 50). As shown, at this stage the computed
crack has progressed vertically about 125 mm.

Fig. 15 shows the results obtained with the three consti-
tutive models. The top plot shows the load vs. displacement
curves, both for the fixed and rotating versions of the
orthotropic models. It can be seen that the fixed orthotro-
pic models lock almost completely, failing to show any
trace of softening global response. This is the reason why
fixed orthotropic models were abandoned in the past. On
the other hand, the rotating mesh corrected orthotropic
model displays the correct global behaviour: although
non-linear behaviour starts very early, the global response
shows positive stiffness until the crack has propagated
about 10 mm; after the peak load, global softening is
observed. The isotropic model shows a similar response,
but the peak load and the post-peak behaviour are over-
estimated because of excessive dissipation. The standard
Fig. 14. Mesh and deformed
rotating orthotropic model, as expected, fails to properly
release the load after the peak; this is due to stress locking.

The middle plot illustrates the performance of the rotat-

ing mesh corrected orthotropic model, as it shows the stres-
ses developed at the element located just at the tip of the
initial notch, the first one to crack. Note how the horizon-
tal normal stress, orthogonal to the crack, reaches the peak
stress and immediately starts to soften. The vertical normal
stress, parallel to the crack, continues to grow, and the
shear stress starts to develop at the onset of cracking.
For approximately d = 0.1 mm, stress redistribution due
to the cracking of the upper elements forces the release of
the parallel stress and the reversal and eventual release of
the shear stress. The sudden rotation of the principal strain
directions in the element of attention is of about 50� and
this suffices to change the solitary node and, therefore,
the structure of the inelastic strains from that point on.
This accommodation of the inelastic strains is not possible
if the axes of orthotropy are kept fixed. This is shown in the
bottom plot, which shows corresponding results using the
fixed mesh corrected orthotropic model. Note how in this
case the parallel stress does not undergo any softening
and how the shear stress does not reverse sign.

Let us now consider the global behaviour of three of the
models. Fig. 16 shows different contours for the analysis
using the rotating mesh corrected orthotropic model, when
the imposed horizontal displacement is d = 0.4 mm.
Fig. 16a shows contours for the damage index; all damage
contained inside the zig-zagging vertical localization band.
The crack has progressed upwards 125 mm from the notch
tip. Fig. 16b shows contours for the horizontal normal
stress; concentration of tensile stress marks the stress field
at the tip of the propagating crack. This concentration is
also clear in the contours of the vertical normal stress
(Fig. 16c), and, faintly, in the shear stress (Fig. 16d). The
overall behavior is as expected and no oscillations or stress
locking is evident anywhere.
shape of notched slab.



Fig. 16. Results for the notched slab using the rotating mesh corrected
orthotropic model. Contours of: (a) damage index, (b) horizontal normal
stress, (c) vertical normal stress and (d) shear stress.

Fig. 17. Results for the notched slab using the rotating standard
orthotropic model. Contours of: (a) damage index, (b) horizontal normal
stress, (c) vertical normal stress and (d) shear stress.
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The situation is very different in Fig. 17, where the cor-
responding contours for the analysis using the rotating
standard orthotropic model are shown. Even if the
imposed horizontal displacement is also d = 0.04 mm,
Fig. 17a shows that the crack has progressed insufficiently,
about half as much as with the MCO model. Fig. 17b–d
shows that this is caused by substantial stress locking along
the crack path.

Finally, Fig. 18 shows contours for the isotropic model.
Here, the crack has progressed upwards 110 mm (10% less
than with the MCO model). The reason can be found in
Fig. 18b–d, which shows that the stress locking caused by



Fig. 18. Results for the notched slab using the isotropic model. Contours
of: (a) damage index, (b) horizontal normal stress, (c) vertical normal
stress and (d) shear stress.
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the spatial discretization is mitigated to a large extend, but
not completely, by the isotropic nature of damage.
6. Conclusions

This paper returns to the original spirit of the continuous

crack approaches, where displacements jumps across the
crack are smeared over the affected elements and the behav-
iour of the crack is established through a softening stress–
(total) strain law, using standard finite elements, such as
linear triangles, and local constitutive models, such as
orthotropic continuum damage models. This option, pro-
posed by Rashid in 1968 and still very popular among users
of non-linear FE codes, had been abandoned in academic
circles due to observed stress locking effects and spurious
mesh bias. Orthotropic models were first over-ruled by a
step back to isotropic plasticity and damage models that
do not show such evident locking effects. Later, the whole
smeared approach was displaced in favor of discontinuous
displacement approaches. Finally, even the local nature of
the constitutive models has been questioned.

In this paper, the interest is focused on the problem of
locking in orthotropic constitutive models. First, a frame-
work for orthotropic continuum damage models is pro-
vided. Next, a solution for the shear locking observed in
the discrete problem is proposed in the form of a mesh cor-
rected crack model where the structure of the inelastic
strain tensor is linked to the geometry of the cracked ele-
ment. The underlying idea is borrowed from the so-called
strong discontinuity approach. The resulting formulation
is easily implemented in standard non-linear FE codes
and is suitable for engineering applications.

Numerical examples show, on one hand, that the use of
the proposed mesh corrected crack model notoriously
avoids the dependence of the computed structural response
on the mesh directional alignment; on the other hand, that
relating the softening parameter of the constitutive model
to the fracture energy of the material and to the size of
the finite elements in the localization band enables to con-
trol the dissipated energy during the localization (fracture)
process, yielding a correct structural response in the soften-
ing regime.

Finally, the numerical examples show that the fixed
models only work satisfactorily if the direction of straining
does not change significantly during the loading process;
otherwise, the locking difficulties progressively reappear.
The first case occurs when cracks form completely at a
given time and do not propagate; the second, much more
frequent case, is typical of cracks that propagate with time
across the domain of analysis.
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[7] M. Jirásek, Comparative study on finite elements with embedded
discontinuities, Comput. Method Appl. Mech. Engrg. 188 (2000)
307–330.
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