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SUMMARY

We present a variational formulation of the finite calculus (FIC) equations for problems
in mechanics governed by differential equations with symmetric operators. Applications
considered include solid mechanics, diffusion-transport and diffusion-reaction problems.
The key of the variational formulation is the identification of the FIC governing equa-
tions with the classical differential equations of mechanics written in terms of modified
non-local variables. A total potential energy (TPE) functional is found in terms of the
modified variables. The FIC equations in the domain and the boundary are recovered as
the Euler-Lagrange equations and the natural boundary condition of the TPE functional,
respectively. Symmetric finite element equations are obtained after discretization of the
TPE functional, therefore preserving the symmetry of the governing infinitesimal equa-
tions. The variational FIC expression is reinterpreted as a Petrov-Galerkin weighted resid-
ual form of the original FIC equations with non-local weighting functions. The analogy
of the variational FIC-FEM formulation with a discontinuous Galerkin method is recog-
nized. Extensions to multidimensional linear elastostatics and diffusion-reaction problems
are presented.

1 INTRODUCTION

Finite calculus (FIC) is a formulation of the governing equations of mechanics based on
enforcing conservation laws over a domain of finite size. This procedure leads to a set
of governing equations that differ from those of classical infinitesimal calculus. For a
one-dimensional (1D) problem governed by a scalar-valued field variable φ(x), the FIC
differential equation that includes up to first-order residual derivatives can be written as
[9, 16].

r(φ) − h

2
r(φ)′ = 0, (1)

where r(φ) = 0 is the residual differential equation of the classical infinitesimal theory.
In Eq. (1) a prime denotes differentiation with respect to the space variable x and h is a



characteristic distance or characteristic length parameter related to the dimension of the
finite domain over which a conservation law (e.g., balance of fluxes, momentum or mass,
or equilibrium of forces) is enforced. If h → 0, i.e. as the size of the balance domain tends
to zero, the standard residual form of the infinitesimal theory is recovered.

Eq. (1) admits of several interpretations. On its own it may be viewed as a modified
non-local form of the standard governing equation since it involves a derivative of the orig-
inal differential equation and a characteristic length scale. For numerical solution it may
be discretized with standard methods including finite elements (FEM), finite differences
(FDM) or finite volumes (FVM). Upon discretization the underlined non-local term h

2r′

brings forth additional contributions to the discrete equations that may be interpreted as
stabilization terms. Satisfactory numerical results have been obtained by suitably selecting
the characteristic length h as a function of mesh size dimension. This is analogous to the
purpose of stabilization parameters. Therefore the FIC approach can be placed within
the class of stabilized methods [9]–[20]. In fact, several well known methods of this kind,
such as the streamline-upwind-Petrov-Galerkin (SUPG) method widely used for convec-
tive transport problems, can be interpreted as a particular case of the FIC formulation
[9]. Successful applications of the FIC approach in conjunction with FEM have been re-
ported for problems in convection-diffusion [9, 10, 16, 19], convection-diffusion-absorption
[18, 20], fluid flow [11, 12, 17] and incompressible solid mechanics [14, 15, 16].

Variational principles for FIC equations cannot be constructed within the framework
of classical variational calculus (CVC). The reason is that such equations generally contain
odd derivatives in the space variables. For example, the FIC equilibrium equation for the
1D linear elasticity example worked out in Section 2 is, for zero body forces and expressed
in terms of the displacement u(x):

(Eu′)′ − h

2
(Eu′)′′ = 0, (2)

in which E is the elastic modulus. The highest space derivative in Eq. (2) is 3. But
Euler-Lagrange (E-L) differential equations are always of even order. It follows that (2)
cannot be the E-L equation of a functional with primary variable u(x) derived via CVC.
Consequently Petrov-Galerkin weighted residual methods have been favoured for the FEM
discretization of FIC differential equations.

For problems that are essentially conservative, such as elastic solid mechanics, heat
diffusion or diffusion-reaction applications, use of weighted residual methods seems un-
necessary and may delay consideration of FIC methods by FEM practitioners already
trained in energy formulations [26]. It is thus appealing to place FIC within a variational
framework. As noted above, this cannot be the classical one. However, over the last three
decades a notable development of what may be called extended variational calculus or
EVC has taken place. The monograph of Vujanovic and Jones [24] provides a compre-
hensive exposition of recent developments, superseding the dated book of Finlayson [7].
The powerful array of methods described in [24] essentially places any differential system
within the reach of EVC. Whether these new formulations can and should replace the
Petrov-Galerkin discretization approach remains an open question. The answer is likely
to be problem and dimensionality dependent.

For FIC equations in mechanics, an extended variational formulation offers the fol-
lowing advantages:
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1. If the characteristic distance h is set to zero, the classical variational forms are
recovered along with their FEM approximations. This simplifies verification of FIC
programs against existing FEM codes.

2. The standard machinery of FEM based on energy methods such as shape functions,
numerical integration, energy-consistent lumping of masses and forces, etc., can be
reused.

3. Natural boundary conditions emerge naturally from the varied functional. In Petrov-
Galerkin methods such conditions must be established by ad-hoc techniques or phys-
ical reasoning, risking inconsistencies.

4. Variational expressions can be shown to be equivalent to a Petrov-Galerkin weighted
residual treatment of the original FIC equations. This PG form can be extended to
treat non-symmetric problems, such as convection-diffusion or advective flow, where
a variational principle is not available.

The first advantage fosters flexibility in modeling complicated systems. Some sys-
tem components that require numerical stabilization, for example near-incompressible
materials or regions undergoing plastic deformations or dislocations, could be treated
by FIC-FEM methods, whereas those not requiring special treatment may be modeled by
the conventional FEM approach. This simplifies the connection of FIC and conventional
models.

The content of the paper is the following. In the next section the FIC equations for
1D linear elastic solids is presented. A set of modified variables is defined which allows
to express the FIC equations by the standard infinitesimal expressions. A Total Potential
Energy (TPE) functional is defined in terms of the modified variables. It is shown that
the E-L equations of the TPE functional coincide with the FIC governing equations. The
variational form of the TPE functional is reinterpreted as a weighted residual expression
of the original FIC equations with non-local weighting functions. An interesting analogy
between the FIC variational form and a discontinuous Galerkin formulation is briefly
discussed. The functional derivation process is repeated for the 1D diffusion and diffusion-
radiation equations with identical conclusions. Extensions to the multidimensional case of
the FIC-TPE functional for elastic solids and diffusion-radiation problems are presented.

2 ONE-DIMENSIONAL ELASTOSTATICS

To illustrate the variational formulation in Section 3 the FIC equations for solid mechanics
are specialized first to 1D elasticity as exemplified by a Hookean material fiber of length L
aligned with the x axis and subjected to a uniaxial stress state. [The relations that follow
may be used to derive equations of a bar or of a Bernoulli-Euler beam by integrating over
the cross section.] The multidimensional problem is covered in Section 8.

The problem domain Ω is the segment of length L aligned along x ∈ [0, L]. The
boundary points are Γ ≡ {x = 0, x = L}. The axial displacement, axial strain and axial
stress are u = u(x), ε = ε(x) and σ = σ(x), respectively. The elastic modulus is E. The
boundary set is decomposed into Γ = Γu ∪ Γt. On Γu the displacement is prescribed
and set to a prescribed value up. On Γt the surface traction is prescribed and set to a
prescribed value tp. The body force per unit length b = b(x) is given.
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2.1 FIC Equations

The 1D elasticity equilibrium equation in FIC form is derived in Appendix A. The result
can be written as

r − h

2
r′ = 0 in Ω. (3)

Here r := σ′ + b is the equilibrium residual and h is a characteristic length that is assumed
to be a constant property over a finite equilibrium domain. Equivalently h′ = 0 will be
assumed in the discrete problem (see also Remark 1). The other two field equations:
kinematic and constitutive, are assumed to hold pointwise

σ = Eε , ε = u′. (4)

The natural boundary condition, also derived in Appendix A, is

σn − tp − h

2
r = 0 on Γt. (5)

where σn is the normal stress σn = σ|Γt
(see Figure 1 of the Appendix). The essential

boundary condition is
u − up = 0 on Γu. (6)

Eqs. (3) and (5) are obtained by expressing the equilibrium of axial forces in a domain of
finite size and retaining higher order terms in the Taylor series expansion of the equilibrium
variables. Details are given in Appendix A. The underlined terms in those equations are
typical of the FIC formulation, and vanish if h → 0.

2.2 Variational FIC Formulation

For the derivation of variational forms it is convenient to introduce the following modified
versions of displacements, strains, stresses, body forces and tractions:

ū = u − h

2
u′, ε̄ = ε− h

2
ε′ = ū′, σ̄ = σ − h

2
σ′ = Eε̄, b̄ = b − h

2
b′, t̄p = tp +

h

2
b. (7)

These modified variables can be considered non-local, because they involve the function,
its space derivative and a characteristic distance parameter. Then the FIC equations (3)
and (5) can be compactly written

σ̄′ + b̄ = 0 in Ω, σ̄ − t
p = 0 on Γt (8)

In terms of the modified displacements:

(Eū′)′ + b̄ = 0 in Ω, Eū′ − t̄p = 0 on Γt, ū − up = 0 on Γu. (9)

A glance at Eqs. (9) shows that the FIC equations coincide with the classical equations of
solid mechanics if the standard fields u, ε, σ, b and tp are substituted by their non-local
counterparts u, ε, σ, b and t

p, respectively. Note that we have assumed that ū satisfies
exactly the essential boundary conditions on Γu. This can be understood as h vanishing
at Γu so that u = up on that boundary.

4



The following Total Potential Energy (TPE) functional is introduced

Π(ū) = U(ū) − W (ū) (10)

with

U(ū) =
1
2

∫ L

0
Eε̄2dx =

1
2

∫ L

0
E
(
ū′)2 dx, W (w̄) =

∫ L

0
ūb̄dx + (ūt̄p)Γt (11)

Taking the variation of Π with respect to ū and integrating by parts yields

δΠ = −
∫ L

0
δū
((

Eū′)′ + b̄
)

dx +
[(

Eū′ − t̄
)
δū
]
Γt

(12)

Assuming that the δū are arbitrary gives the E-L equations as

(
Eū′)′ + b̄ =

(
σ′ − h

2
σ′′
)

+ b − h

2
b′ = r − h

2
r′ = 0 in Ω : x ∈ [0, L], (13)

and the natural boundary condition as

Eū′ − t̄ = Eu′ − h

2
u′′ − tp − h

2
bn = σ − tp − h

2
r = 0 on Γt. (14)

The E-L relation (13) reproduces the FIC residual equation (3) whereas the natural
BC (14) reproduces the boundary traction condition (5).

Remark 1. The equivalence of Eqs.(8) with the original FIC forms of Eqs.(3) and (5) requires
that h′ = 0, i.e. the space derivative of the characteristic distance parameter is assumed to be zero.
This can be accepted by interpreting h as a parameter that is constant over the finite equilibrium
domain surrounding each point. Removal of this constraint has not been investigated.

2.3 Changes From Standard Variational Calculus

We have constructed, within the framework of extended variational calculus, a FIC equiv-
alent of the well known TPE functional. The changes from standard variational calculus
can be interpreted in various ways. One is that we have effectively changed the variation
rules since

δū = δu − 1
2
h(δu)′ ⇒ δu = δū +

1
2
h(δu)′

δū′ = δu′ − 1
2
h(δu′)′ ⇒ δu′ = δū′ +

1
2
h(δu′)′

(15)

from which (δu)′ = (d/dx)δu �= δu′; likewise (δu′)′ = (d/dx)δu′ �= δu′′. Thus commutativ-
ity of differential and variation has been abandoned. This is in line with the method of
“noncommutative variations” discussed in Ch. 6 of [24].

Yet another interpretation can be illustrated by expressing Π(ū) back in terms of the
actual displacement u. On assuming constant E and h the E-L equation given by standard
variational calculus is

−∂Π
∂u

+
d

dx

∂Π
∂u′ −

d2

dx2

∂Π
∂u′′ = Eu′′ + b − h

2
(Eu′′′ − b′) + E

h2

4
uIV =

r − h

2
r′ + E

h2

4
uIV = 0 in Ω.

(16)
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This agrees with the FIC residual equation (1) up to O(h). Thus another functional-
seeking approach for one dimensional problems would be to augment (1) with appropriate
terms in h2, h3, etc., to form an exact first variation δΠ. This is in line with the method
of “vanishing parameters” also covered in [24]. This method, however, becomes unwieldy
in multiple dimensions.

2.4 FEM Implementation

The numerical solution based on the functional Π(ū) is naturally done with the Finite Ele-
ment Method. The domain [0, L] is divided into Ne finite elements with nodes 1, 2 . . . Ne+1.
Two procedural choices for choosing the interpolation variable and degrees of freedoms
emerge:

(1) Interpolate the modified displacement ū over elements, and pick ūi as nodal values.
Actual displacements are recovered from u = ū + h

2u′, and may jump at the nodes.

(2) Interpolate the actual displacement u over elements, and pick ui as nodal values. The
derivative u′ is treated as a slave field, and only C0 continuity is imposed.

Both choices were tried for fixed-free bar problems under uniform body force, using piece-
wise linear interpolation for ū and u in (1) and (2), respectively, with h taken to be a
fraction of the element size. In choice (1) the only effect of h enters through the essential
BC at the fixed end and optimal results are obtained for h = 0, as expected. In choice (2)
the FEM system is independent of h because u′′ = 0 over each element and b′ = 0 over
the problem domain, and one recovers the nodally exact solution of standard FEM.

The conclusion from numerical experiments is that for one-dimensional elastostatics
the additional flexibility provided by the FIC steplength h is not realized. The added
value of the variational formulation is realized in three-dimensional elasticity that obeys
internal constraints such as incompressibility or plastic flow.

2.5 Interpretation as Petrov-Galerkin Form

The variational form δΠ = 0 of (12) can be reinterpreted as particular case of the general
weighted residual form of the original FIC equations with a weighting function w defined
by

w := δū = δu − h

2
(δu)′ (17)

Expression (12) is therefore equivalent to the following Petrov-Galerkin form of the original
FIC equations (3) and (5)∫ L

0

(
δu − h

2
(δu)′

)(
r − h

2
r′
)

dx −
[(

δu − h

2
(δu)′

)(
σ − tp − h

2
r

)]
Γt

= 0 (18)

Substituting the expression of r into (18) and writing σ in terms of u using the constitutive
equation (4) gives∫ L

0

(
δu − h

2
(δu)′

)[
(Eu′)′ + b − h

2
(
(Eu′)′′ + b′

)]
dx −

−
[(

δu − h

2
(δu)′

)(
σ − tp − h

2
(
(Eu′)′ + b′

))]
Γt

= 0 (19)
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Integrating by parts the terms involving u′′, u′′′ and b′ leads to the following weak form

∫ L

0

[
−(δu)′Eu′ +

h

2
[
(δu)′′Eu′ + (δu)′Eu′′]− h2

4
(δu)′′Eu′′

]
dx +

∫ L

0

(
δu − h2

4
(δu)′′

)
bdx +

[(
δu − h

2
(δu)′

)
tp
]
Γt

= 0 (20)

The first integral of Eq. (20) is symmetric with respect to u and δu. This naturally leads
to a symmetric form of the discretized equations using the Galerkin FEM method [26]
with the same interpolation for u and δu. Note that all terms involving derivatives of
order higher than one would vanish for a piecewise linear Galerkin interpolation.

Remark 2. The non-local weighting function w := δu− h
2 δu′ chosen in Eq. (17) is consistent with

the non-local displacement field ū = u− h
2 u′ taken as the prime variable of the FIC equations. The

resulting symmetric variational form preserves the symmetry of the differential operators in the
governing equations of the infinitesimal theory. This symmetry is lost for other weighting functions
(such as w = δu) applied to the FIC equations [9, 16, 18, 19].

Remark 3. The integration by parts of Eq. (19) assumes C1 continuity of u and δu, and C0

continuity of h. The former can be relaxed in the FEM discretization by computing integrals that
involve the second derivative of u within each element domain only and discarding contributions
from first derivative interelement jumps. The second can be obviated in a similar manner, by
assuming h to be uniform over each element and ignoring interelement jump effects.

Remark 4. An alternative for overcoming the C1 continuity requirement is to impose the conti-
nuity of the first derivative of u and δu between elements in a weak form. The resulting FIC-FEM
formulation is similar to a discontinuous-Galerkin (DG) method [1, 2, 3, 4, 5, 8, 23, 25]. The
analogy between FIC and DG methods may help to understand better various features of DG
techniques and their link to stabilized finite element methods.

3 ONE DIMENSIONAL DIFFUSION

The foregoing formulation extends to other problems in mechanics governed by elliptic
operators. Consider next one-dimensional, steady-state heat diffusion by conduction. The
primary variable is the temperature φ = φ(x). The heat flux q is linked to φ by Fourier’s
law of heat conduction q = −k dφ/dx = −kφ′, where k is the diffusion parameter (also
called conductivity coefficient). The heat source per unit length is Q. As usual the problem
domain is denoted by Ω. The boundary is split into Γφ and Γq on which temperature φp

and flux qp, respectively, are prescribed. The governing ordinary differential equation in
terms of φ is −q′ + Q = (kφ′)′ + Q = 0, whence the residual is defined as

r = −q′ + Q = (ku′)′ + Q. (21)

The FIC governing equation and boundary conditions are [9, 16].

r − h

2
r′ = 0 in Ω, −q + qp − h

2
r = 0 on Γq, φ − φp = 0 on Γφ. (22)

The additional terms brought by the FIC formulation have been underlined.
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3.1 Variational Formulation

As before introduce the modified non-local fields φ̄, q̄, Q̄ and q̄p by the definitions

r̄ := −q̄′ + Q̄, φ̄ := φ − h

2
φ′, q̄ := q − h

2
q′, q̄p := qp − h

2
Q, Q̄ := Q − h

2
Q′ (23)

The modified constitutive (Fourier) law is q′ = −kφ̄′. The FIC governing equations
rewritten in terms of the modified fields (23) are

r̄ = 0 in Ω, −q̄ + q̄p = 0 on Γq, φ̄ − φp = 0 on Γφ. (24)

The TPE/FIC functional in terms of the modified temperature φ̄ is

Π(φ̄) = U(φ̄) − W (φ̄) (25)

with

U(φ̄) =
1
2

∫ L

0
k(φ̄′)2 dx, W (φ̄) =

∫ L

0
φ̄Q̄dx − (φ̄q̄p)Γq , (26)

Taking the variation of Π with respect to φ̄ and integrating by parts the term involving
kφ̄′ gives

δΠ = −
∫ L

0
δφ̄
[
(kφ̄′)′ + Q̄

]
dx +

[
(kφ̄′ + q̄p)δφ̄

]
Γq

(27)

In the derivation of Eq. (27) we have used the assumption that φ̄ satisfies exactly the
essential boundary conditions, i.e. φ̄ = φp on Γφ. Assuming that δφ̄ is arbitrary gives the
Euler-Lagrange equations and the natural boundary conditions

(kφ̄′)′ + Q̄ = r̄ = 0 in Ω, kφ̄′ + q̄p = −q̄ + qp = 0 on Γq. (28)

These reproduces the FIC governing equation and the boundary condition on Γq in (24).

4 ONE DIMENSIONAL DIFFUSION-REACTION

The combination of diffusion with reactive or radiation effects is important in chemical,
biological and enviromental engineering. In those applications diffusion denotes the process
of intermingling of molecules in gases, liquids or solids as a result of random thermal
agitation, whereas reaction is a process by which substances are produced, changed or
destroyed as function of the state. Here we consider the one-dimensional steady-state
case. The same equation but in hyperbolic form governs linear wave propagation in the
frequency domain, as further discussed in Subsection 4.3.

4.1 Variational Formulation

The TPE/FIC functional Π(φ̄) of Eqs. (25–26) can be made to account for reactive or
radiation effects by augmenting the internal energy U with a reaction term:

U(φ̄) =
1
2

∫ L

0

[
k(φ̄′)2 + s(φ̄)2

]
dx, W (φ̄) =

∫ L

0
φ̄Q̄dx − (φ̄q̄p)Γq , (29)
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Here s is a reaction or radiation parameter, with s > 0 for absorption or destruction and
s < 0 for production. Note that W does not change. The modified fields in Eq. (23) do
not change except for the boundary flux:

q̄p = qp − h

2
(Q − sφ) (30)

Upon integration by parts the first variation of Π with respect to φ̄ leads to

δΠ = −
∫ L

0
δφ̄
[
(kφ̄′)′ − sφ̄ + Q̄

]
dx +

[
(kφ̄′ + q̄p) δφ̄

]
Γq

(31)

Setting δΠ = 0 gives the Euler-Lagrange equation

(kφ̄′)′ − sφ̄ + Q̄ = r − h

2
r′ = 0 in Ω, with r := (kφ′)′ − sφ + Q, (32)

and the natural boundary condition

kφ̄′ + q̄p = kφ′ + qp − h

2
r = 0 on Γq . (33)

Eqs. (32) and (33) reproduce the FIC governing equations for the diffusion-radiation prob-
lem. As expected if h → 0 the standard differential forms for the infinitesimal formulation
are recovered:

(kφ′)′ − sφ + Q = 0 in Ω, kφ′ + qp = 0 on Γq. (34)

4.2 Petrov-Galerkin Form

The variational expression δΠ = 0 of (31) can be interpreted as the Petrov-Galerkin form∫ L

0

(
δφ − h

2
(δφ)′

)(
r − h

2
r′
)

dx −
[(

δφ − h

2
(δφ)′

)(
kφ′ + qp − h

2
r

)]
Γq

= 0, (35)

with the residual r as defined in Eq. (32). Substituting r into Eq. (35) and integrating by
parts the terms involving kφ′ and (h/2)(δφ)′ in the first integral gives
∫ L

0

[
−(δφ)′

(
k + s

h2

4

)
φ′ − s(δφ)φ +

h

2
[
(δφ)′′kφ′ + (δφ)′kφ′′]− h2

4
(δφ)′′kφ′′

]
+

+

[∫ L

0
δφ − h2

4
(δφ)′′

]
Qdx −

[(
δφ − h

2
(δφ)′

)
qp − s

h2

4
(δφ)′φ

]
Γq

= 0. (36)

The first integral of Eq. (36) is symmetric with respect to δφ and φ. This leads to a
symmetric stiffness-like matrix after a finite element discretization that uses the same
interpolation function for φ and δφ; that is, the Galerkin method. If piecewise linear
finite elements are used, terms involving derivatives of order two will vanish, and Eq. (36)
simplifies to

−
∫ L

0

[
(δφ)′

(
k + s

h2

4

)
φ′ + s(δφ)φ

]
dx+

∫ L

0
δφ Qdx−

[(
δφ − h

2
(δφ)′

)
qp − s

h2

4
(δφ)′φ

]
Γq

= 0.

(37)
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Note that the formulation introduces naturally an additional diffusion term sh2/4. As
observed below, this term is essential to stabilize the numerical solution for large positive
values of the reaction parameter.

Remark 5. The boundary term s(h2/4)(δφ)′φ in the foregoing equations will lead to an unsym-
metric matrix in problems where the flux qp is prescribed at the Neumann boundary Γq. Experience
shows that the FIC terms are not relevant near boundaries where the flux is prescribed and that
terms involving h can be disregarded there without loss of accuracy. On the other hand, at Dirich-
let boundaries where sharp boundary layers are found for large values of the production term sφ

(i.e. for s � 0) the Neumann boundary terms do not play a significant role in the solution process.

4.3 Numerical Results

The TPE functional Π(φ̄) = U −W with U and W as per Eq. (29) has been recently used
by Felippa and Oñate [6] for numerically solving 1D diffusion-absorption model problems.
In that study φ was piecewise linear interpolated over two-node finite elements with φ′

treated as a slave variable. (The alternative interpolation of the modified field φ̄ was not
tried.) The same formulation was tested on the 1D Helmholtz problem of wave mechanics,
in which case s is negative with −s proportional to the square of the wavenumber.

The inclusion of the FIC terms was found essential for stabilizating the numerical
solution when s is large and positive, which causes sharp exponential boundary layers.
Furthermore, for discretizations that obey certain modeling constraints, it was possible
to adjust h as a function of the physical parameters so that nodally exact values were
obtained for both problems.

In addition to the Helmholtz problem we note that the diffusion-reaction equations
are equivalent to those of a spring resting on an elastic Winkler foundation with support
modulus s per unit length. The present variational formulation also holds in that case.

5 MULTIDIMENSIONAL PROBLEMS

The FIC variational formulations described in the foregoing sections extend naturally to
two- and three-dimensional problems. The detailed derivation of the equations falls outside
the scope of this paper and only a summary of the relevant expressions will be presented.

5.1 Variational and Weak FIC Forms for Elastostatics

Following the lead of the one-dimensional case, modified non-local fields are introduced
for general elastic solids. Roman indices i and j run over the number of space dimensions.
The body, referred to a rectangular Cartesian reference system {xi} occupies domain Ω
with boundary Γ. The exterior normal to Γ has components ni. In the following equations
ui, εij , σij , bi and tpi denote the standard displacements, strains, stresses, body forces and
prescribed surface tractions of linear elastostatics, respectively. The summation convention
over repeated indices applies unless explicitly suppressed. A subscripted comma as in (.),i

denotes the partial derivative with respect to the coordinate xi. As usual the boundary
is split into Γ = Γt ∪ Γu. The generalization of the one-dimensional FIC steplength h for
multidimensional problems is the second-order tensor hij [21].
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The modified displacements, strains and stresses are defined as

ūi = ui − 1
2
hij(ui),j , ε̄ij = εij − 1

2
hik(εij),k, σ̄ij = σij − 1

2
hik(σij),k. (38)

The modified body forces and surface tractions are

b̄i = bi − 1
2
hijbi,j (no sum on i), t̄pi = tpi +

1
2
hijnjbi, (no sum on i). (39)

It will be assumed that the modified stresses and strains are related by the relationship

σ̄ij = Dijkl ε̄kl (40)

in which Dijkl are the constitutive moduli of linear elasticity [26].
The internal equilibrium equations in residual form are

ri = σij,j + bi. (41)

The FIC equilibrium equations are written compactly as

r̄i := ri − 1
2
hijri,j = 0. (42)

The boundary conditions can be stated as

σ̄ijnj − t̄pi = σijnj − tpi − 1
2hijnjri = 0 on Γt (no sum on i),

ūi − up
i = 0 on Γu.

(43)

The underlined terms in Eqs. (42) and (43) are introduced by the FIC formulation. As
expected if hij → 0 the standard equations of infinitesimal linear elastostatic are recovered.

The TPE/FIC functional is written as

Π(ūi) = U(ūi) − W (ūi) (44)

with
U(ūi) =

1
2

∫
Ω

ε̄ij σ̄ijdΩ, W (ūi) =
∫

Ω
ūib̄idΩ +

∫
Γt

ūit̄
pdΓ. (45)

It can be verified that the first variation of Π(ūi) with respect to the modified dis-
placements yields the FIC governing equations (42) and (43) as E-L equations and natural
boundary conditions, respectively.

As in the case of the 1D problem, the first variation of the functional is equivalent to a
weighted form of the original FIC equations with the following Petrov-Galerkin weighting
functions

wi := δūi = δui − 1
2
hij(δui),j (46)

The resulting weak form expression can be written∫
Ω

(
δui − 1

2
hij(δui),j

)(
ri − 1

2
hijri,j

)
dΩ−

∫
Γt

(
δui − 1

2
hij(δui),j

)(
σijnj − tpi −

1
2
hijnjri

)
dΓ = 0

(47)

The weak form (47) leads to a symmetric finite element formulation after discretization
of the displacements and the virtual displacements with the same interpolating functions
in the Galerkin manner.
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5.2 Variational FIC Form for Diffusion-Reaction

The indicial convention of the previous subsection is followed. In two and three space
dimensions, diffusion-reaction problems are still defined in terms of a primary scalar field
φ(xi), which may represent for example temperature, substance concentration, etc. The
source production per unit volume is also a scalar field Q. The flux becomes a vector qi,
and normal flux across a surface of exterior normal ni is qn = qini. The residual balance
equation is r = (kφ,i)i − sφ + Q, where k and s are scalar coefficients that may depend
on xi. (This can be generalized to the anisotropic case by making k a second order tensor
kij , but we consider only the isotropic case here.) The FIC steplength h generalizes to a
vector hi.

As usual we introduce modified non-local fields

φ̄ = φ − 1
2
hjφ,j, Q̄ = Q − 1

2
hjQ,j, q̄p

n = qp
n − 1

2
hjnj(Q − sφ). (48)

The modified residual is
r̄ := (kφ̄,i)i − sφ̄ + Q̄. (49)

With these, the FIC governing equations can be written compactly as

r̄ = 0 in Ω, kφ̄,jnj + q̄p
n = 0 on Γq , φ̄ − φp = 0 on Γφ. (50)

All the terms in these equations have been previously defined except qp
n, which is the

prescribed flux normal to the Neuman boundary Γq.
The TPE functional is

Π(φ̄) = U(φ̄) − W (φ̄) (51)

in which

U(φ̄) =
1
2

∫
Ω

[
φ̄,ikφ̄,i + sφ̄2

]
dx, W (φ̄) =

∫
Ω

φ̄QdΩ −
∫

Γq

(
φ̄q̄p

n +
1
2
sφ̄2

)
dΓ. (52)

Setting the first variation of Π to zero gives the first two of (49) as the E-L equation
and natural boundary condition, respectively. The expanded form of these two equations,
as given in [9, 19, 20], are

r − 1
2
hjr,j = 0 in Ω, kφ,jnj + qp

n − 1
2
hjnjr = 0 on Γq . (53)

As in the case of multidimensional elasticity, we note that the first variation of Π is
equivalent to the following Petrov-Galerkin weighted residual form of the original FIC
equations ∫

Ω

(
δφ − 1

2
hj(δφ),j

)(
r − 1

2
hjr,j

)
dΩ

−
∫
Γq

(
δφ − 1

2
hj(δφ),j

)(
kφ,jnj + qp

n − 1
2
hjnjr

)
dΓ = 0

(54)

Discretization of Eq. (54) by Galerkin methods leads to symmetric finite element equations.
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5.3 Open Research Areas

The appropriate choice of a “FIC steplength tensor” hij in multidimensional elasticity is
still open. Progress in the particular case of near-incompressible isotropic material has
been made in [14, 15] using a simplification of the tensor FIC equations via a “FIC step
length vector” h = [h1, h2, h3]T (for 3D). The selection of the hi’s on this case has been
shown to be similar to that of choosing characteristic lengths in subgrid scale methods.
Choosing the distances hi in multidimensional scalar diffusion-reaction problem is simpler,
as it can be linked to resolving boundary layers [6, 20]. Successful applications of the tensor
form of the multidimensional FIC equations for incompressible fluid flow problems at high
Reynolds numbers are reported in [20].

Another open problem is the question broached in Section 2.4: selection of nodal
freedoms and interpolated variable when using a FIC variational formulation or a Galerkin
weak form for FEM implementation. The choice is between the original primary variable
(e.g., displacements in elasticity) and the modified one. The former has advantage of
simpler implementation in existing FEM codes (particularly as regards application of
essential BCs) whereas the latter opens up possibilities of linkage to discontinuous Galerkin
methods as noted in Remark 4.

6 Conclusions

We have presented a variational formulation of the FIC equations for elastic solids, diffu-
sion and diffusion-reaction problems. The total potential energy functional is expressed in
terms of modified non-local variables. The variational form recovers the original governing
equations of FIC theory, which can also be expressed in terms of the modified variables.
The FEM discretization of the variational form leads to a symmetric system of equations.
An equivalent weighted residual form of the original FIC equations using non-local weight-
ing functions is identified. The FIC-FEM formulation presented has found to be analogous
to a discontinuous Galerkin method.

These formulations are not intended to supersede but to complement the conventional
FEM. In self-adjoint problems, stabilization is best reserved to cases when FEM (or con-
ventional Galerkin) yields nonphysical results, as when sharp boundary layers occur at
Dirichlet boundaries. For those cases it may useful to be able to inject FIC-based ele-
ments in certain regions while retaining ordinary elements elsewhere. Retaining matrix
symmetry offers computational advantages when introducing FIC elements into existing
codes. The variational and Galerkin formulations presented here may simplify that task.

These conclusions can be taken as the starting point for deriving new FIC-FEM for-
mulations for convective transport, quasi/fully incompressible problems in solid and fluid
mechanics and thick/thin beam, plate and shell elements [22] with enhanced stability
properties.
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[19] Oñate, E., Zárate, F. and Idelsohn, S.R. Finite element formulation for convective-
diffusive problems with sharp gradients using finite calculus. Comput. Meth. Appl.
Mech. Engrg., accepted for publication (2005).
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Appendix A. Derivation of 1D FIC Equilibrium Equation

To illustrate the steps of the FIC approach in some detail, we consider an elastostatic
problem posed in a 1D domain Ω of length L. The equation of equilibrium of axial
stresses in a subdomain of size d in Ω (Figure A.1) may be written as

σB − σA = 0. (A.1)

where σA and σB are the stresses at end points A and B, respectively.
Next, express stresses σA and σB in terms of the stress at an arbitrary point C within

the equilibrium domain (Figure A.1). This may be viewed as a control point. Expanding
in Taylor series about C up to second order terms gives

σA = σC − d1σ
′
C +

d2
1

2
σ′′

C + O(d3
1) , σB = σC + d2σ

′
C +

d2
2

2
+ σ′′

C + O(d3
2). (A.2)

Substitution of Eqs.(A.2) into Eq.(A.1) gives, after simplification

σ′ − h

2
σ′′ = 0, (A.3)
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i.e.
σB − σA +

bA + bB

2
d = 0. (A.5)

The end forces bA and bB are expressed in terms of their values at the arbitrary
internal point C as

bA = bC − d1b
′
C + O(d2

1),

bB = bC − d2b
′
C + O(d2

2).
(A.6)

Substitution of Eqs.(A.6) into (A.5) and use of Eqs.(A.2) gives upon simplifying

σ′ + b − h

2
(σ′′ + b′) = 0. (A.7)

This is the FIC equilibrium equation for 1D elasticity used in Section 2.1; cf. Eq. (3).

Force equilibrium at a boundary segment (Figure A.3) of length
h

2
where a prescribed

traction tp is applied requires

−σA + b
h

2
+ tp = 0. (A.8)

Note that h is assumed to be positive in Eq.(A.8). The stress σA is expressed in terms
of the value at the boundary point B by

σA = σB − h

2
σ′

B. (A.9)

Substitution of Eq.(A.9) into (A.8) gives, after reordering terms

σ − tp − h

2
(σ′ + b) = 0, (A.10)

or
σ − tp − h

2
r = 0, (A.11)

This is the FIC equation for a prescribed traction boundary (natural boundary con-
dition) used in Section 2.1; cf. Eq. (5).

h/2

t

A B

x

b

PσA

boundary

Figure A.3. Equilibrium of forces in a boundary domain of length h/2
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