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Summary

We study three “incompressibility flavors” of linearly-elastic anisotropic solids that exhibit volumetric constraints:
isochoric, hydroisochoric and rigidtropic. An isochoric material deforms without volume change under any stress
system. An hydroisochoric material does so under hydrostatic stress. A rigidtropic material undergoes zero
deformations under a certain stress pattern. Whereas the three models coalesce for isotropic materials, important
differences appear for anisotropic behavior. We find that isochoric and hydroisochoric models under certain
conditions may be hampered by unstable physical behavior. Rigidtropic models can represent semistable physical
materials of arbitrary anisotropy while including isochoric and hydroisochoric behavior as special cases.

Keywords: linear elasticity, solid, anisotropy, isotropy, rigidtropy, incompressibility, isochoric, hydroisochoric,
volumetric constraints, stability, material, constitutive model, compliance.

1. Introduction

An incompressible linearly-elastic isotropic solid does not deform under hydrostatic stress. It does not
change volume under pressure. Since deviatoric and volumetric deformations uncouple, no volume
change occurs under any stress state. The three volumetric constraints just stated coalesce, and it is
sufficient to qualify the material as incompressible.

A more careful study is necessary for anisotropic materials. In the present Note we examine three
volumetric constraint models of a linearly elastic anisotropic solid. The following definitions are used
for that examination.

A material is calledigidtropic if it does not deform (i.e., experiences zero strains) under a specific stress
pattern, which is a null eigenvector of the strain-stress (compliance) matrix. The term “rigidtropic” is
used in the sense of “rigidity in a certain way” as defined by that eigenvector.

A material is calledsochoricif it does not change volume under any applied stress system [1, Sec. 77].
Alternatively: the volumetric strain is zero under any stress state.

A material is callechydroisochoricif it is isochoric under hydrostatic stress. Isochoric materials are
hydroisochoric but the converse is not necessarily true.
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As noted the three models coalesce for anisotropic material. For an arbitrary anisotropic solid, however,

it will be shown thatimposing aisochoric or hydroisochoric constraint may produce a compliance matrix
that has at least one negative eigenvalue. This means that under some stress system the material is able
to create energy, contradicting the laws of thermodynamics. Such model cannot represent a physically
stable material. On the other hand, for rigidtropic behavior it is easier to control material stability for
any type of anisotropy because constraints are posed directly on the spectral form.

2. Compliance Relations

We consider a linearly-elastic anisotropic solid in three dimensions referred t@>akeStresses;;
and straing; will be arranged as 6-component column vectors constructed from the respective tensors
through the usual conventions of structural mechanics:

o=[011 0n 03 012 03 03], e=[ey e €3 2 23 2eyn]'. QD

The strain-stress constitutive equations in matrix notation are

€11 7] FC11 Ci2 Ciz Cia Cis5 Cie] [o117]
€2 Co Coz Cu Cps Coe 022
€33 Czz3 Cszs C35 Csp 033
e = = = C , 2
2e23 Cas Css Cyp | | 023 7 @
2€31 Css Cse 031
| 2e;5 L symm Cesl Lo

HereC;; are compliance coefficients arranged into the symmetric compliance rGat/l diagonal
entriesCj; are assumed to be nonnegative with a positive sum. The compliance matrix isstabiég
semistableor unstableif C is positive definite, positive semidefinite, or indefinite, respectively. In the
semistable case it will be assumed t@dhas a rank deficiency of at most one to simplify the analysis.

The eigenvalues of arey,; fori =1, 2...6, withv; being the corresponding eigenvector normalized
to length+/3. (This nonstandard normalization simplifies linking up to the hydrostatic stress vector in
Sections 4ff.) Accordingly the spectral decomposition is

C= Vi Vi ViT, ViTVj = 34ij, 3

6
i=1

Wl

wheres;; is the Kronecker delta. The eigenvalues will be arranged sgthatymin is the algebraically
smallest one angls = ymax the maximum. For stable or semistable modgi{s> 0 andy; > 0 for
j=2,...6.

If 2 = 0the material is rigidtropic according to the definition given in the Introduction, wyittefining

the corresponding stress pattern. The volumetric stra@) is €11 + €, + €33. Isochoric behavior

is mathematically characterized By = 0 under anyr. Hydroisochoric behavior means thgt= 0
underop, = p[1 1 1 0 O Q" for any p. These constraints are mathematically expressed in
terms ofC as follows.

Rigidtropic: y1 =0, 1 >0, i =2,...6.
hydroisochoric: Ci; + Cgz 4+ C33 4+ 2C12 4+ 2C13+ 2Co3 = 0. 4)
Isochoric: Cy; +Cy; +C3; =0, j =1,23.
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Diagonal compliances are often known reliably from extensional and torsion tests. Off diagonal entries
are typically less amenable to accurate measurement. Volumetric constraints, for example on volume
change, are checked with triaxial tests. In any case, such constraints may be satisfied only approximately.
Reference [2] discusses projection and scaling techniques for finding a “reference model” that satisfies
constraints accurately while removing spurious instabilities due to experimental noise.

3. Examples

The following examples of compliance matrices pertain to an orthotropic material witk; fredigned
with the principal material axes. The diagonal entries are kept the same. The three nonzero off-diagonal
entries are adjusted to meet the definitions (4).

Rigidtropic:
-1 —-3/8 —-3/16 0 0 O r 144 —-54 =27 0 0 O
-3/8 14 -1/48 0 0 O -54 36 -3 0 0 O
Co -3/16 -1/48 1y9 0o0O|_1|-27 -3 16 0 0 O 5)
ne — 0 0 0 2 0 0| 144 0 0 0288 0 O
0 0 0 050 0 0 0 0720 O
0 0 0 0 0 3l L O 0 0 0 0 432

Eigenvalues:[5 3 2 1181038 0180074 (.

eigenvector defining the rigid modevs = \/54/35[1/2 5/6 1 0 0 Q.
Hydroisochoric:

Chyd =

1 ~11/27 —95/432 0
~11/27 Y4  —23/432 0
—95/432 —23/432 19 0
0 0 0 2
0 0 )
0 0 o o0

Eigenvalues{5 3 2 1208689 0211580

Isochoric:

Ciso =

1 —41/72 -31/72 0 0
—41/72 14 2372 0 O
—31/72 2372 )9 0 O
0 0 0 20
0 0 0 05
0 0 0 00

ol NoleNoNe)

woooog

T 432

- 432 —-176 —-95
—-176 108 —23

1 —95 -23 48
0 0 0

0 0 0

L 0 0 0

0 0
0 0
0 0
576 0
0 1440
0 0

The compliance matrix is semistable. The null

0099

8641
(6)

—0.059158. The compliance matrix is unstable.

07 - 144 —82 —62 0
0 —82 36 46 O
0| 1 |-62 46 16 O
O ~ 144 0O 0 0 288
0 0O 0 0 O
3 . 0 0 0 ©

0 O
0O O
0O O
0O O
720 O
0 432

Eigenvalues{5 3 2 1508781 0 —0.147669. The compliance matrix is unstable.
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4. Hydroisochoric Model

Assume that the material modeled by (2) is hydroisochoric. Consequently

"C11 Ci2 Ci3 Cig Cis5 Cie [P [PCuu+Cr2+Ci3)7 [ €11 7]
Coo Co3 Cyy Cps Coe p P(C12 + Co2 + Coa) €22
Cop = Caz Csz4 C35 Cgp P|_| P(Cia+Cos+Cs3) | _ | €33
Cas Cu5 Cye 0 2e1, 263 |7 (8)
Css Cse 0 2ex3 2€31
| symm Cesl LO L 2e31 _ | 2e15 |

with e, = €11 + € + €33 = P(C11 + Co2 + Ca3 + 2C12 + 2C13 + 2Cp3) = 0.
(The value of the shear strains is of no interest.) The complementary energy density prodaoged by
U: = 1olCop = ip(en + €2 +€33) = Spe, = 0. (9)
But yp = U;/(op0) = U;/(3p?) = 0 is the Rayleigh quotient af, with C. According to the
Courant-Fisher theorem [2}, must lie in the closed intervajhin, Ymaxl:
n=vw=0=<w (10
If o, is not an eigenvector @@: Co, # O, the leftmost equality in (10) is not possible. Consequently
<0, (11

and the model is unstable.

If Cop, = 0the sum of the first three columns (or rows)®Mmust vanish. The hydroisochoric model
then coalesces with the isochoric one, which is analyzed next.

5. Isochoric Model

The modelisisochoricifthe sum of the first three rows (or column8)isthe null 6-vector. Equivalently
o is a null eigenvector o€. The Rayleigh quotient test (10) does not offer sufficient information on
stability and a deeper look & is required. Nonethelesssafficientcriterion for instability can be
derived by considering the upper<33 principal minorC. From the last of (4)C must have the form:

Ca2 Cos C22 5(C11—Co2—Cgg) | - 12

3 |:C11 Ci2 C13:| Ci1 3(Csz— Cr1—C22) 3(Co2— Ci1— Csgo)
C= =
symm Ca3 symm Css

This matrix is singular. Taking = C11/Cz2andg = Cy1/Cgss for convenience, an eigenvalue analysis
shows that is indefinite if )
1 1 1 1
21—+ = 1 —— =1, 13
(c+5) =+ (G-5) @

and is positive semidefinite if the inequality is reversed.Clfs indefinite, so isC and the model

is unstable. IfC is semidefinite, an eigenvalue analysis of the complzis required to decide on
stability. The stability regions o are shown in Figure 1, where “potentially semistable” indicates that
confirmation by a analysis of the full is required. An exception is an orthotropic material referred to
principal material axes, in which case no further tests are neces$ayy €55 andCgg are positive.

Figure 1 illustrates that a wide range of diagonal compliance3 is detrimental to stability. For
example ife = B, instability is guaranteed to happen tor> 4.
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Figure 1. Stability chart for the principal minor (12) of an isochoric
material as function of the rati&3;;/C,, andCy1/Caa.

6. Rigidtropic Model

If Cis nonnegative witly; = 0 andw = v, is the only null eigenvector the material is rigidtropic under
that stress mode. For an isotropic matevia=[1 1 1 0 0 Q' = op, the hydrostatic stress
mode. For an anisotropic material modeyenerally will contain shear stresses. Introducing effective
pressure ap = %WTO' and effective volumetric strain & = w' o, the volumetric and deviatoric
energies can be uncoupled [3].

If the rigid stress mode is,, rigidtropic reduces to isochoric. This inclusion is pictured in Figure 2.

7. Isotropic Material

If the solid is isotropic with elastic modulUs > 0 and Poisson’s ratio,

1 —v —v 0 0 0 7
1 —v 0 0 0
1 1 0 0 0
C=E 21+v) 0 0 e
21+v) 0
| symm A1+ v)
Under hydrostatic stress,, e, = 3(1 — 2v) p/E, which vanishes for = % It is easy to verify that

if v= % e, = 0 for anyo and the material is isochoric. Furthermerg is the only null eigenvector
of C. Consequently, = y1 = 0 andC has no negative eigenvalues. The definitions of rigidtropic,
incompressible and isochoric behavior coalesce for this model.

8. Conclusion

It remains to pin down the label “incompressible.” In continuum mechanics this term means that the
stress is determined by the deformation history only up to a hydrostatic pressure or “extra jgtress”
[4, Sec. 30]. This is equivalent to what we call here the hydroisochoric model, which as previously
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Figure 2. Schematic of inclusions between rigidtropic, isochoric and hydroisochoric
models. The crosshatched area marks a sin@ililaatrix.

shown for semistable materials merges with the isochoric model. Restricting attention to the semistable
case, the model nesting is:

Isotropic semistable= Hydroisochoric semistable: Incompressible= Rigidtropic. (15

These and related model inclusions are sketched in Figure 2. From a mathematical standpoint, the
splitting techniques used for the rigidtropic model by Felippa andt®[3] apply equally to isochoric
behavior, and no special distinction for the incompressible case needs to be made.

We do not consider here the comparatively rare case of a compliance matrix possessing two or more
zero eigenvalues. For those the analysis is complicated by the appearance of a multidimensional null
space. Such “multi-rigidtropic” models require separate treatment.
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