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08034 Barcelona, Spain

July 2002

Report CU-CAS-02-08

The work of the first author has been supported by the Spanish Ministerio of
Educación y Cultura through a faculty fellowship while visiting CIMNE on
April through July 2002.



TABLE OF CONTENTS

Page

§1. Introduction 1

§2. Compliance Relations 2

§3. Examples 3

§4. Hydroisochoric Model 3

§5. Isochoric Model 4

§6. Rigidtropic Model 4

§7. Isotropic Material 5

§8. Conclusion 5



Volumetric Constraint Models for Anisotropic Elastic Solids

Carlos A. Felippa∗ and Eugenio Oñate†
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Summary

We study three “incompressibility flavors” of linearly-elastic anisotropic solids that exhibit volumetric constraints:
isochoric, hydroisochoric and rigidtropic. An isochoric material deforms without volume change under any stress
system. An hydroisochoric material does so under hydrostatic stress. A rigidtropic material undergoes zero
deformations under a certain stress pattern. Whereas the three models coalesce for isotropic materials, important
differences appear for anisotropic behavior. We find that isochoric and hydroisochoric models under certain
conditions may be hampered by unstable physical behavior. Rigidtropic models can represent semistable physical
materials of arbitrary anisotropy while including isochoric and hydroisochoric behavior as special cases.

Keywords: linear elasticity, solid, anisotropy, isotropy, rigidtropy, incompressibility, isochoric, hydroisochoric,
volumetric constraints, stability, material, constitutive model, compliance.

1. Introduction

An incompressible linearly-elastic isotropic solid does not deform under hydrostatic stress. It does not
change volume under pressure. Since deviatoric and volumetric deformations uncouple, no volume
change occurs under any stress state. The three volumetric constraints just stated coalesce, and it is
sufficient to qualify the material as incompressible.

A more careful study is necessary for anisotropic materials. In the present Note we examine three
volumetric constraint models of a linearly elastic anisotropic solid. The following definitions are used
for that examination.

A material is calledrigidtropic if it does not deform (i.e., experiences zero strains) under a specific stress
pattern, which is a null eigenvector of the strain-stress (compliance) matrix. The term “rigidtropic” is
used in the sense of “rigidity in a certain way” as defined by that eigenvector.

A material is calledisochoricif it does not change volume under any applied stress system [1, Sec. 77].
Alternatively: the volumetric strain is zero under any stress state.

A material is calledhydroisochoricif it is isochoric under hydrostatic stress. Isochoric materials are
hydroisochoric but the converse is not necessarily true.

1



As noted the three models coalesce for an isotropic material. For an arbitrary anisotropic solid, however,
it will be shown that imposing a isochoric or hydroisochoric constraint may produce a compliance matrix
that has at least one negative eigenvalue. This means that under some stress system the material is able
to create energy, contradicting the laws of thermodynamics. Such model cannot represent a physically
stable material. On the other hand, for rigidtropic behavior it is easier to control material stability for
any type of anisotropy because constraints are posed directly on the spectral form.

2. Compliance Relations

We consider a linearly-elastic anisotropic solid in three dimensions referred to axes{xi }. Stressesσi j

and strainsei j will be arranged as 6-component column vectors constructed from the respective tensors
through the usual conventions of structural mechanics:

σ = [ σ11 σ22 σ33 σ12 σ23 σ31 ]T , e = [ e11 e22 e33 2e12 2e23 2e31 ]T . (1)

The strain-stress constitutive equations in matrix notation are

e =




e11

e22

e33

2e23

2e31

2e12


 =




C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

symm C66







σ11

σ22

σ33

σ23

σ31

σ12


 = Cσ, (2)

HereCi j are compliance coefficients arranged into the symmetric compliance matrixC. All diagonal
entriesCii are assumed to be nonnegative with a positive sum. The compliance matrix is calledstable,
semistableor unstableif C is positive definite, positive semidefinite, or indefinite, respectively. In the
semistable case it will be assumed thatC has a rank deficiency of at most one to simplify the analysis.

The eigenvalues ofC areγi for i = 1, 2 . . . 6, with vi being the corresponding eigenvector normalized
to length

√
3. (This nonstandard normalization simplifies linking up to the hydrostatic stress vector in

Sections 4ff.) Accordingly the spectral decomposition is

C = 1
3

6∑
i =1

γi vi vT
i , vT

i v j = 3δi j , (3)

whereδi j is the Kronecker delta. The eigenvalues will be arranged so thatγ1 = γmin is the algebraically
smallest one andγ6 = γmax the maximum. For stable or semistable models,γ1 ≥ 0 andγ j > 0 for
j = 2, . . . 6.

If γ1 = 0 the material is rigidtropic according to the definition given in the Introduction, withv1 defining
the corresponding stress pattern. The volumetric strain isev = e11 + e22 + e33. Isochoric behavior
is mathematically characterized byev = 0 under anyσ. Hydroisochoric behavior means thatev = 0
underσp = p [ 1 1 1 0 0 0]T for any p. These constraints are mathematically expressed in
terms ofC as follows.

Rigidtropic: γ1 = 0, γi > 0, i = 2, . . . 6.

hydroisochoric: C11 + C22 + C33 + 2C12 + 2C13 + 2C23 = 0.

Isochoric: C1 j + C2 j + C3 j = 0, j = 1, 2, 3.

(4)

2



Diagonal compliances are often known reliably from extensional and torsion tests. Off diagonal entries
are typically less amenable to accurate measurement. Volumetric constraints, for example on volume
change, are checked with triaxial tests. In any case, such constraints may be satisfied only approximately.
Reference [2] discusses projection and scaling techniques for finding a “reference model” that satisfies
constraints accurately while removing spurious instabilities due to experimental noise.

3. Examples

The following examples of compliance matrices pertain to an orthotropic material with the{xi } aligned
with the principal material axes. The diagonal entries are kept the same. The three nonzero off-diagonal
entries are adjusted to meet the definitions (4).

Rigidtropic:

Cr ig =




1 −3/8 −3/16 0 0 0
−3/8 1/4 −1/48 0 0 0
−3/16 −1/48 1/9 0 0 0

0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 3


 = 1

144




144 −54 −27 0 0 0
−54 36 −3 0 0 0
−27 −3 16 0 0 0

0 0 0 288 0 0
0 0 0 0 720 0
0 0 0 0 0 432


 (5)

Eigenvalues:[ 5 3 2 1.181038 0.180074 0]. The compliance matrix is semistable. The null
eigenvector defining the rigid mode isv1 = √

54/35[ 1/2 5/6 1 0 0 0]T .

Hydroisochoric:

Chyd =




1 −11/27 −95/432 0 0 0
−11/27 1/4 −23/432 0 0 0
−95/432 −23/432 1/9 0 0 0

0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 3


 = 1

432




432 −176 −95 0 0 0
−176 108 −23 0 0 0
−95 −23 48 0 0 0

0 0 0 576 0 0
0 0 0 0 1440 0
0 0 0 0 0 864




(6)

Eigenvalues:[ 5 3 2 1.208689 0.211580 −0.059158]. The compliance matrix is unstable.

Isochoric:

Ciso =




1 −41/72 −31/72 0 0 0
−41/72 1/4 23/72 0 0 0
−31/72 23/72 1/9 0 0 0

0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 3


 = 1

144




144 −82 −62 0 0 0
−82 36 46 0 0 0
−62 46 16 0 0 0

0 0 0 288 0 0
0 0 0 0 720 0
0 0 0 0 0 432


 (7)

Eigenvalues:[ 5 3 2 1.508781 0 −0.147669]. The compliance matrix is unstable.
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4. Hydroisochoric Model

Assume that the material modeled by (2) is hydroisochoric. Consequently

Cσp =




C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

symm C66







p
p
p
0
0
0


 =




p(C11 + C12 + C13)

p(C12 + C22 + C23)

p(C13 + C23 + C33)

2e12

2e23

2e31


 =




e11

e22

e33

2e23

2e31

2e12


 ,

with ev = e11 + e22 + e33 = p(C11 + C22 + C33 + 2C12 + 2C13 + 2C23) = 0.

(8)

(The value of the shear strains is of no interest.) The complementary energy density produced byσp is

U∗
p = 1

2σT
pCσp = 1

2 p(e11 + e22 + e33) = 1
2 pev = 0. (9)

But γp = U∗
p/(σ

T
pσ) = U∗

p/(3p2) = 0 is the Rayleigh quotient ofσp with C. According to the
Courant-Fisher theorem [2],γp must lie in the closed interval [γmin, γmax]:

γ1 ≤ γp = 0 ≤ γ6 (10)

If σp is not an eigenvector ofC: Cσp �= 0, the leftmost equality in (10) is not possible. Consequently

γ1 < 0, (11)

and the model is unstable.

If Cσp = 0 the sum of the first three columns (or rows) ofC must vanish. The hydroisochoric model
then coalesces with the isochoric one, which is analyzed next.

5. Isochoric Model

The model is isochoric if the sum of the first three rows (or columns) ofC is the null 6-vector. Equivalently
σp is a null eigenvector ofC. The Rayleigh quotient test (10) does not offer sufficient information on
stability and a deeper look atC is required. Nonetheless asufficientcriterion for instability can be
derived by considering the upper 3× 3 principal minorC̃. From the last of (4),̃C must have the form:

C̃ =
[ C11 C12 C13

C22 C23

symm C33

]
=


 C11

1
2(C33 − C11 − C22)

1
2(C22 − C11 − C33)

C22
1
2(C11 − C22 − C33)

symm C33


 . (12)

This matrix is singular. Takingα = C11/C22 andβ = C11/C33 for convenience, an eigenvalue analysis
shows that̃C is indefinite if

2

(
1

α
+ 1

β

)
< 1 +

(
1

α
− 1

β

)2

, (13)

and is positive semidefinite if the inequality is reversed. IfC̃ is indefinite, so isC and the model
is unstable. IfC̃ is semidefinite, an eigenvalue analysis of the completeC is required to decide on
stability. The stability regions of̃C are shown in Figure 1, where “potentially semistable” indicates that
confirmation by a analysis of the fullC is required. An exception is an orthotropic material referred to
principal material axes, in which case no further tests are necessary ifC44, C55 andC66 are positive.

Figure 1 illustrates that a wide range of diagonal compliances inC̃ is detrimental to stability. For
example ifα = β, instability is guaranteed to happen forα > 4.
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Figure 1. Stability chart for the principal minor (12) of an isochoric
material as function of the ratiosC11/C22 andC11/C33.

6. Rigidtropic Model

If C is nonnegative withγ1 = 0 andw ≡ v1 is the only null eigenvector the material is rigidtropic under
that stress mode. For an isotropic materialw = [ 1 1 1 0 0 0]T = σp, the hydrostatic stress
mode. For an anisotropic material modew generally will contain shear stresses. Introducing effective
pressure asp = 1

3wTσ and effective volumetric strain asev = wTσ, the volumetric and deviatoric
energies can be uncoupled [3].

If the rigid stress mode isσp, rigidtropic reduces to isochoric. This inclusion is pictured in Figure 2.

7. Isotropic Material

If the solid is isotropic with elastic modulusE > 0 and Poisson’s ratioν,

C = 1

E




1 −ν −ν 0 0 0
1 −ν 0 0 0

1 0 0 0
2(1 + ν) 0 0

2(1 + ν) 0
symm 2(1 + ν)


 . (14)

Under hydrostatic stressσp, ev = 3(1 − 2ν)p/E, which vanishes forν = 1
2. It is easy to verify that

if ν = 1
2, ev = 0 for anyσ and the material is isochoric. Furthermoreσp is the only null eigenvector

of C. Consequentlyγp = γ1 = 0 andC has no negative eigenvalues. The definitions of rigidtropic,
incompressible and isochoric behavior coalesce for this model.

8. Conclusion

It remains to pin down the label “incompressible.” In continuum mechanics this term means that the
stress is determined by the deformation history only up to a hydrostatic pressure or “extra stress”p
[4, Sec. 30]. This is equivalent to what we call here the hydroisochoric model, which as previously
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Figure 2. Schematic of inclusions between rigidtropic, isochoric and hydroisochoric
models. The crosshatched area marks a singularC matrix.

shown for semistable materials merges with the isochoric model. Restricting attention to the semistable
case, the model nesting is:

Isotropic semistable≡ Hydroisochoric semistable≡ Incompressible∈ Rigidtropic. (15)

These and related model inclusions are sketched in Figure 2. From a mathematical standpoint, the
splitting techniques used for the rigidtropic model by Felippa and O˜nate [3] apply equally to isochoric
behavior, and no special distinction for the incompressible case needs to be made.

We do not consider here the comparatively rare case of a compliance matrix possessing two or more
zero eigenvalues. For those the analysis is complicated by the appearance of a multidimensional null
space. Such “multi-rigidtropic” models require separate treatment.
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