
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING
Commun. Numer. Meth. Engng 2002; 18:99–112 (DOI: 10.1002/cnm.470)

CBS versus GLS stabilization of the incompressible
Navier–Stokes equations and the role of the time

step as stabilization parameter

R. Codina1;∗ and O. C. Zienkiewicz2

1Departament de Resist�encia de Materials i Estructures a l’Enginyeria; Universitat Polit�ecnica de Catalunya;
Jordi Girona 1-3; Edi#ci C1; 08034 Barcelona; Spain

2Institute of Numerical Methods in Engineering; University College of Swansea; Swansea SA2 8PP; U.K.

SUMMARY

In this work we compare two apparently di7erent stabilization procedures for the 8nite element approx-
imation of the incompressible Navier–Stokes equations. The 8rst is the characteristic-based split (CBS).
It combines the characteristic Galerkin method to deal with convection dominated ;ows with a clas-
sical splitting technique, which in some cases allows us to use equal velocity–pressure interpolations.
The second approach is the Galerkin-least-squares (GLS) method, in which a least-squares form of the
element residual is added to the basic Galerkin equations. It is shown that both formulations display
similar stabilization mechanisms, provided the stabilization parameter of the GLS method is identi8ed
with the time step of the CBS approach. This identi8cation can be understood from a formal Fourier
analysis of the linearized problem. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Navier–Stokes equations for an incompressible ;uid moving in a domain C during the
time interval ]0; T [ can be written as

@tu+ u · ∇u − �Gu+∇p= f (1)

∇ · u= 0 (2)

where u is the velocity, p the pressure, f the vector of body forces and � the kinematic
viscosity. These equations have to be supplied with an initial condition of the form u= u0 at
t=0 and a boundary condition which, for simplicity, will be taken as u= 0 on @C.
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There are several ways to deal with the space and time approximation of this problem.
When the standard Galerkin method is used, the most common is the so-called method of
lines, in which space is discretized 8rst and the resulting system of ordinary di7erential
equations (with an algebraic constraint) is integrated in time using a 8nite di7erence scheme.
Another possibility is to use a space–time 8nite element interpolation.
Whichever the time discretization method is, the spatial discretization may su7er from two

major numerical problems. The 8rst is the velocity–pressure interpolation. The zero divergence
restriction imposes a compatibility condition for this interpolation that, in particular, prevents
the use of equal interpolation. Likewise, when convection dominates, spurious spatial oscil-
lations may occur. This has to be understood as a numerical problem, and is independent of
the complicated ;ow features (including turbulence) that appear when the Reynolds number
is high. The parameter that plays a role in this case is the cell Reynolds number rather than
the global one. See Reference [1] for background.
These two numerical problems have been treated with a variety of 8nite element for-

mulations. The objective of this paper is precisely to compare two of them, namely, the
characteristic-based split (CBS) [2–4] and the Galerkin-least-squares (GLS) [5; 6] methods.
The idea of the 8rst is to stabilize convection by using a 8nite di7erence discretization along
the characteristics, and to rely on the stabilizing e7ect on the pressure of a classical splitting
technique. On the other hand, the GLS method provides control on the element residual of
the momentum equation, which allows us to stabilize both convection and the pressure in-
terpolation. In the case of transient problems, the GLS method is usually combined with a
space–time 8nite element formulation (see e.g. Reference [7]), and this is what we will do
here.
In this paper, we summarize the basic developments behind these two 8nite element methods

and show that they introduce similar stabilizing terms. The CBS method is presented in the
following section in a slightly di7erent form that in the original References [2; 3], where it
was introduced as a 8nite element formulation for both compressible and incompressible ;ows.
The GLS method is described in Section 3 and the comparison with the CBS method is done
in Section 4. Section 5 presents a discussion about the relationship between the stabilizing
parameters and the time step size. Finally, we draw some conclusions.

2. THE CHARACTERISTIC-BASED SPLITTING (CBS) METHOD

2.1. The characteristic Galerkin method revisited

Let us denote by X( Qx; Qt; t) the trajectory of the particle that at time t= Qt is located at the
spatial point Qx, so that X( Qx; Qt; Qt )= Qx. This trajectory will be the solution of the problem

d
dt
Xi(t) = ui(X(t); t) (3)

Xi(Qt ) = Qxi (4)

for i=1; 2; 3 (in 3D). In the short-hand notation X(t) it is understood that X depends also
on Qt and Qx through the initial condition (4).
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The conservation of momentum and mass for a particle of incompressible ;uid as it moves
along its trajectory may be then written as

d
dt
u(X(t); t)− �Gu(X(t); t) +∇p(X(t); t) = f(X(t); t) (5)

∇ · u(X(t); t) = 0 (6)

Equations (5) and (6) for t= Qt are precisely the Navier–Stokes equations (1) and (2) at the
spatial point x= Qx and at time t= Qt. We shall use x instead of Qx, to emphasize that this
position is arbitrary.
The idea now is to discretize the derivative d=dt in (5) using a 8nite di7erence scheme, that

is, to discretize the total derivative in (1) along the characteristics. If we employ a single-step
8nite di7erence discretization, the highest time accuracy that we can obtain is second order.
In order to be as accurate as possible in the #rst (spatial) argument of the velocity and the
pressure, problem (5)–(6) has to be discretized up to second-order. Once the second-order
time discretization is done, di7erent schemes can be obtained by approximating the second
(temporal) argument of the velocity and the pressure, yielding discrete schemes with a lower
temporal accuracy but potentially second order accurate in space.
Consider a uniform partition of [0; T ] into time intervals of equal size �t. Suppose now

that we have the solution at time tn= n�t and we want to compute it at time tn+1 = tn + �t.
Let Qt be a certain time in [tn; tn+1] and de8ne S :=−�Gu+∇p as the Stokes contribution to
the momentum equation. The discretization of problem (5)–(6) that we consider is based on
the generalized trapezoidal rule (also called �-method), which leads to

1
�t
[u(X(tn+1); tn+1)− u(X(tn); tn)] +S(X(tn+�); tn+�) = f(X(tn+�); tn+�) (7)

∇ · u(X(Qt ); Qt ) = 0 (8)

where tn+�= �tn+1 + (1 − �)tn and �∈ [0; 1]. For the reasons explained above, we must take
�= 1

2 , since this is the only value of � that yields second-order accuracy (Crank–Nicolson
scheme).
Let ’(x; t) be a generic function. The distinctive feature of our approach is that we shall

derive an explicit expression for ’(X(tn+1); tn+1) and ’(X(tn); tn) in terms of ’n+1 :=’(x; tn+1)
and ’n :=’(x; tn). The parameter that we have still free is the reference time Qt. Within the
time step [tn; tn+1] we shall take this time as Qt= tn+ ��t, with � arbitrary (see Figure 1). Two
particular cases of interest are �= 1

2 and �=1, that is, Qt= tn + �t=2 and Qt= tn+1. The for-
mer yields the classical Crank–Nicolson discretization of problem (1)–(2), whereas the latter
introduces some additional terms than enhance the stability of the numerical scheme. From
the geometrical standpoint, if Qt= tn + �t=2 then (7) may be viewed as centred discretization
along the characteristics. On the other hand, for Qt= tn+1 we move backwards.
For a same order of approximation, we shall use explicit approximations instead of

implicit ones. Thus, other schemes apart from the one derived below exist with the same
properties of accuracy. The results that follow are a summary of the developments presented
in Reference [8].
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Figure 1. Discretization along the characteristics.

Expanding in Taylor series the solution of problem (3)–(4) and also using a Taylor
expansion for ’ it can be shown that

’(X(tn+1); tn+1) = ’n+1 + (1− �)�t
2
[(1− �)un + (1 + �)un+1] · ∇’n+1

+ (1− �)2 �t
2

2
un · ∇(un · ∇’n) + O(�t3)

’(X(tn); tn) = ’n − ��t
2
[(2− �)un + �un+1] · ∇’n

+ �2
�t2

2
un · ∇(un · ∇’n) + O(�t3)

These expressions are approximations to the function ’ along the trajectory of the particles
(i.e. the characteristics of the total derivative operator) at the beginning and the end of the
time interval [tn; tn+1] under consideration. Using them, after several algebraic manipulations
it is 8nally found that [8]

1
�t
(un+1 − un) + un+1=2 · ∇un+1−� − �Gun+1=2 +∇pn+1=2 − fn+1=2

− (2�− 1)�t
2
un · ∇(un · ∇un − �Gun +∇pn − fn)= 0 (9)

∇ · un+1 =0 (10)

Equation (10) a second-order approximation of the incompressibility constraint imposed at
Qt= tn+��t (see (6)). Since ∇ · u(x; tn+��t)= �∇ · un+1+(1−�)∇ · un+O(�t2), and, assuming
the initial condition to be divergence free, (10) is enough to ensure that u(x; tn+ ��t) is also
divergence free up to second order.
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It is observed from (9) that for �= 1
2 we obtain the classical Crank–Nicolson approximation

of the original momentum Equation (1), even though (9)–(10) have been obtained from the
discretization of problem (5)–(6). A posteriori we may, however, interpret them as the time
discretization of problem (1)–(2) plus the introduction of the term −�cgun · ∇Rn, where

�cg := (2�− 1)�t2 (11)

Rn := un · ∇un − �Gun +∇pn − fn (12)

From problem (9)–(10) we can obtain simpli8ed versions of 8rst-order accuracy in time
by replacing quantities at intermediate times between tn and tn+1 either by values at tn or
tn+1 (explicit or implicit versions, respectively). Observe that this only involves an approxi-
mation in time, not in space. Neglecting the terms a7ected by the time step size in (9)–(10)
would imply also an approximation in space, since they come from an approximation of the
characteristics X(t).
The characteristic Galerkin method in its original form [9; 10] was designed as a crude

8rst-order approximation in time (backward Euler scheme) and taking �=1 with our nota-
tion. It also has the drawback of having to integrate the trajectories at each time step and
interpolating the value ’(X(tn); tn) within the element to which the point X(tn) belongs. The
idea of approximating the characteristics by using a Taylor expansion was introduced in
References [3; 11] and generalized in Reference [8].

2.2. Pressure splitting

The next ingredient of the CBS algorithm is a fractional step method to segregate the pressure
from the velocity calculation, in the spirit of the classical projection method [12; 13]. The
original motivation is that it was known that if a Poisson equation is used in the pressure
calculation, it is possible to use equal velocity–pressure interpolation, that is to say, it is
not necessary to satisfy the classical inf–sup condition. This fact had been noticed in many
works and it was heuristically justi8ed in Reference [2]. However, we will not explore here
the stabilization mechanism identi8ed in Reference [2], but rather the approach noted in
Reference [14]. The di7erence between both points of view is that while in Reference [2]
we analyse the problem for the end-of-step velocity, in Reference [14] the author points out
the stabilized problem of which the intermediate velocity is solution. Here, we pursue this
viewpoint.
Let us consider a simpli8ed, fully implicit 8rst-order version of problem one (9)–(10) split

as follows:

1
�t
(ûn+1 − un) + ûn+1 · ∇ûn+1 − �Gûn+1 + �′∇pn − gn+1 = 0 (13)

1
�t
(un+1 − ûn+1) +∇pn+1 − �′∇pn = 0 (14)

∇ · un+1 = 0 (15)
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where ûn+1 is an intermediate unknown, �′ a numerical parameter and gn+1 := fn+1+�cgun · ∇Rn.
We will proceed here very formally, assuming that the same boundary conditions can be ap-
plied for ûn+1 and un+1. In principle, it is well known that the continuous problem is not
well posed in this case, but this is becoming a common practice in the discrete setting (see
Reference [15] for further discussion).
The splitting error introduced in (13)–(15) comes from the fact that the viscous and the

convective terms are computed with ûn+1 instead of un+1. This error is of second order if
�′=1 and of 8rst order otherwise.
It is interesting to eliminate the end-of-step velocity un from (13) using (14) evaluated at

time step n, and also un+1 from (15) using (14) at time step n+ 1. This yields

1
�t
(ûn+1 − ûn) + ûn+1 · ∇ûn+1 − �Gûn+1 + (1 + �′)∇pn − �′∇pn−1 − ĝn+1 = 0 (16)

∇ · ûn+1 − �t(Gpn+1 − �′Gpn) = 0 (17)

where the stabilizing term in ĝ is evaluated with ûn instead of un, which implies an ap-
proximation of order O(�t2). For n=0 we consider p−1 =p0, which is computed from the
Poisson equation obtained by taking the divergence of the original momentum equation (1)
and evaluating it at t=0.
Let us remark that the use of û as velocity unknown is also proposed in Reference [16],

although in this reference the space for this variable is di7erent from the space where u
belongs. Likewise, it is important to note that problem (16)–(17) is stable, even though the
pressure is treated explicitly (and thus its calculation can be uncoupled from the velocity).
This is a consequence of the results in Reference [15].
Usually, for �∈ [0; 1] one de8nes pn+� := �pn+1 + (1 − �)pn, that is, pn+� is a convex

combination of pn+1 and pn. However, we could let �∈ [1; 2] and consider pn+� computed
from pn and pn−1. Thus, for �′ ∈ [0; 1] we de8ne the extrapolated pressure (rather than the
interpolated one):

p̂n+�
′
:= (1 + �′)pn − �′pn−1 (18)

Let us de8ne the parameter

�s := �t(1− �′) (19)

It allows us to replace the continuity equation by

∇ · ûn+1 − �sGpn+1 =0 (20)

which di7ers from (17) with a term of order O(�t2).
Let Vh be the velocity 8nite element space, incorporating the Dirichlet boundary conditions,

and Qh the pressure space. As it is usual in the case of fractional step methods, the natural
pressure boundary condition is zero normal derivative, which is a consequence of (14) and
the fact that u and û satisfy the same boundary conditions.
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We will also assume that Rn de8ned in (12) vanishes on the boundary (it is the ‘residual’
of the stationary equation). This, together with the fact that ∇ · un=0, allows us to integrate
by parts the term coming from the discretization along the characteristics as

−
∫
C
�cgv · (un · ∇Rn) dC =

∫
C
�cg(un · ∇v) ·Rn dC

for any test function v. Using this, de8nition (18), and taking the unknowns and test functions
in the 8nite element space, the discrete weak form of problem (16)–(20) is: 8nd ûn+1h ∈Vh
and pn+1h ∈Qh such that∫

C

[
1
�t
(ûn+1h − ûnh) · vh + �∇un+1h :∇vh + (ûn+1h · ∇ûn+1h ) · vh − p̂n+�

′

h ∇ · vh

+ �cg(û
n
h · ∇vh) · R̂nh − fn+1 · vh

]
dC=0 (21)

∫
C
[qh∇ · ûn+1h + �s∇qh · ∇pn+1h ] dC=0 (22)

for all test functions vh ∈Vh and qh ∈Qh. The term R̂nh is computed as indicated in (12) using
ûnh instead of un and evaluating the second derivatives appearing in the viscous term element
by element. Note that (21) can be solved 8rst for ûn+1h (recall that p̂n+�

′
is the extrapolated

pressure) and then (22) can be used to compute pn+1h .
Problem (21)–(22) is the CBS 8nite element formulation that we compare in Section 3

with the GLS method. The stabilization mechanisms introduced by this formulation are now
clear: a streamline di7usion introduced by the discretization along the characteristics stabilizes
convection and the splitting introduces a pressure Laplacian, similarly to the stabilized methods
analysed for example in Reference [17]. Note that in our case this stabilizing e7ect disappears
if a second order splitting is used (i.e. if �′=1).

3. THE GALERKIN=LEAST-SQUARES (GLS) METHOD

Contrary to the CBS method, the GLS formulation deals with convection and pressure sta-
bilization using the same approach. The original idea was to add a least-squares form of
the residual within each element to the terms of the standard Galerkin formulation [5; 6].
However, we prefer to start from a di7erent concept, that is, the approximation of the main
unknowns by the usual 8nite element components and an additional subgrid scale term which
enhances stability of the resulting problem. This idea is proposed in Reference [18], although
it is inherent in other numerical formulations. Our presentation di7ers from the one described
in this reference, especially in the approximation of the subgrid scale (it is an extension of
the method presented in Reference [19]). This will allow us to derive a formulation very
similar to the original GLS (identical for linear elements) and to establish a connection with
the CBS method.
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Let us start by considering the weak form of the problem written in a space–time slab
C×]tn; tn+1[. It consists of 8nding u and p, now functions of space and time, such that∫ t n+1

t n

∫
C
[@tu · v+ �∇u :∇v+ (u · ∇u) · v − p∇ · v+ q∇ · u − f · v] dCdt

+
∫
C
[u(t+n )− u(t−n )] · v dC=0 (23)

for all test functions v and q, now also time dependent. We allow u to be discontinu-
ous between time slabs and, in particular, the notation involved in the last term of (23)
is u(t+;−n )= lim�→0+;− u(tn+ �). This term imposes weakly the continuity of the velocity at tn
(and the initial condition when n=0). Let us also remark that we have written the momentum
and the continuity equation as a single variational equation.
The discrete problem is obtained by approximating u and p. If uh and ph are the 8nite

element unknowns, we approximate u≈ uh+ũ and p≈ph, that is, the velocity is approximated
by its 8nite element component plus an additional term that we call subgrid scale or subscale.
As in the case of the CBS method, we will consider a simple 8rst-order scheme. In the

present situation, this is obtained by taking the velocity and pressure interpolation in time as
piecewise constant. We call un+1≈ un+1∗ := un+1h + ũn+1 and pn+1≈pn+1h the velocity and the
pressure in the time interval ]tn; tn+1[. Considering the spatial interpolation, we assume that
un+1h and pn+1h are constructed using the standard 8nite element interpolation. In particular,
equal velocity–pressure interpolation is possible with the formulation to be derived.
The important point is the behaviour assumed for ũn+1. We assume that it vanishes on

the interelement boundaries, that is, it is a bubble-like function [20; 21]. However, contrary
to what is commonly done, we do not assume any particular behaviour of ũn+1 within the
element domains. We will show later on how to approximate it.
If in (23) u is replaced by un+1∗ := un+1h + ũn+1, constant in ]tn; tn+1[; p is replaced by pn+1h ,

the terms involving ũn+1 are integrated by parts, and the test functions are taken in the 8nite
element space (also constant in the time interval considered), one gets

�t
∫
C
[�∇un+1h :∇vh + (un+1∗ · ∇un+1h ) · vh − pn+1h ∇ · vh + qh∇ · un+1h − fn+1 · vh] dC

+
∫
C
[un+1∗ − un∗] · vh dC− �t

∫
C
ũn+1 · (�Ghvh + un+1∗ · ∇vh +∇qh) dC=0 (24)

where the notation Gh is used to indicate that the Laplacian needs to be evaluated element
by element and fn+1 needs to be understood as the average of f in ]tn; tn+1[ (this option could
also be used in the preceding section). Equation (24) must hold for all test functions vh and qh
in their corresponding 8nite element spaces. It is important to note that the advection velocity
in (24) is un+1∗ and also that the continuity between time slabs needs to be imposed in terms
of this velocity.
The equation for the subscales ũn+1 is obtained by taking the velocity test function in (23)

in its space and q=0. The result is that, within each element [19]:

�tun∗ + u
n+1
∗ ·∇ũn+1 − �Gũn+1 = fn+1 − (−�Gun+1h + un+1∗ · ∇un+1h +∇pn+1h ) (25)
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where �tun∗ := (un+1∗ −un∗)=�t. This equation states that un+1∗ ; pn+1h has to be solution of the
Navier–Stokes equations within each element (and considering a piecewise constant time
interpolation).
The next step would be to model (25). As it is shown in Reference [22], this is possible.

However, our intention here is to recover a well-known GLS-type formulation, and for this
we need to make two additional assumptions. These are to take the advection velocity un+1h
instead of un+1∗ in both (24) and (25) and to neglect the 8rst term in the latter. Even if this
is done, it is obvious that (25) cannot be solved exactly. In Section 5 it will be shown in
which sense we may approximate

ũn+1 = �gls[fn+1−(−�Gun+1h + un+1h · ∇un+1h +∇pn+1h )]=−�glsRn+1h (26)

where �gls is a numerical parameter for which an expression is also proposed in Section 5, and
Rn+1h is the residual de8ned in (12) evaluated with un+1h (and the second derivatives computed
element by element).
With all the approximations introduced heretofore, the 8nal discrete problem to be solved

for un+1h and pn+1h is

∫
C

[
1
�t
(un+1h − unh) · vh + �∇un+1h :∇vh + (un+1h · ∇un+1h ) · vh − pn+1h ∇ · vh

+ �gls(�Ghvh + un+1h · ∇vh) ·Rn+1h − fn+1 · vh
]
dC=0 (27)

∫
C
[qh∇ · un+1h + �gls∇qh ·Rn+1h ] dC=0 (28)

which is obtained from (24) by dividing this equation by �t, taking un+1h as advection velocity,
using (26) as approximation to ũn+1 and splitting the momentum and continuity equations
(taking in (24) qh=0 and vh= 0, respectively). Except for the sign of �Ghvh, with all the
assumptions and approximations introduced we have arrived to the most familiar form of the
GLS formulation (for a 8rst-order time approximation).

4. COMPARISON OF CBS AND GLS

We are now in a position to compare the CBS and GLS formulations, given respectively by
Equations (21)–(22) and (27)–(28). The di7erences between both methods are the following:

• The pressure gradient in the CBS method is extrapolated from values of the pressure in
previous time steps. This does not a7ect the stabilization mechanism of the method, but
only its implementation: it is possible to solve for the velocity 8rst and to compute the
pressure afterwards.

Copyright ? 2001 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2002; 18:99–112
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• The stabilization of the convective term is achieved in both cases through the introduction
of streamline di7usion. The stabilizing terms are

CBS: �cg(ûnh · ∇vh) · R̂n
h

GLS: �gls(�Ghvh + un+1h · ∇vh) ·Rn+1h

Except for the time level where the residual is evaluated (which is irrelevant for our
discussion) and the viscous operator applied to the test function for the GLS method
(which is zero for linear elements) we see that both methods introduce the same amount
of streamline di7usion if we identify �gls = �cg := (2� − 1)�t=2. Remember that � de8nes
the position along the characteristics at which the equations are discretized in time (see
Figure 1).

• Pressure is stabilized in both cases through the introduction of a pressure-Laplacian. For
the CBS method, this is what is directly introduced, whereas for the GLS formulation this
term is part of the weighting of the element residual:

CBS: �s∇qh · ∇pn+1h

GLS: �gls∇qh · (−�Gun+1h + un+1h · ∇un+1h +∇pn+1h − fn+1)

Remember that �s is given by (19) and it is not necessarily equal to �cg.

From this comparison we see that, even though the CBS and the GLS methods start from
di7erent motivations, they have very similar stabilizing e7ects, both for convection and for
pressure interpolation.

5. MODELLING OF SUBSCALES VERSUS VON NEUMANN CONDITION

From the comparison of the stabilizing terms of the CBS and the GLS formulations it is clear
that the parameters �cg; �s and �gls need to be related, in some sense, to the time step size
�t. Moreover, experience dictates that their optimal values are close to what would be the
critical time step of the explicit Euler scheme for a convection–di7usion equation (taking � as
di7usion coeWcient) using one of the most common stabilized formulations, such as SUPG
[23] or Taylor–Galerkin [24]. In this section we use a heuristic argument to show that this
fact can be formally justi8ed.
Our starting point will be to give a closed-form expression for the subgrid scales solution

of problem (25) assuming, as it has been said before, that �tun∗ can be neglected. We do not
want to solve (25) exactly, but rather to model it, that is to say, to propose an expression
for it whose validity has to be con8rmed by numerical experiments and=or analysis.
Let us assume that un+1∗ in (25) is given and let us call it a. Dropping the superscript n+1

for notational convenience, ũ is a solution of

−�Gũ+ a · ∇ũ=−Rh (29)

within each element Ce. We want to understand in which sense ũ(x)≈−�glsRh(x) and to give
an expression for �gls.
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Let us consider the following Fourier transform de8ned on each element domain Ce:

ĝ(k) :=
∫
Ce
e−i(k · x=h)g(x) dCx

where k=(k1; k2; k3) is the dimensionless wave number (in 3D) and h is the diameter of
element Ce. If nj is the jth component of the normal exterior to Ce, it is easily checked that

@̂g
@xj
(k)=

∫
@Ce
nje−i(k · x=h)g(x) dXx + i

kj
h
ĝ(k)

We assume that the subscales only contain high wave numbers, and thus

@̂ũ
@xj
(k)≈ ikj

h
ˆ̃u(k);

[@2ũ
@xi @xj

(k)≈−kikj
h2

ˆ̃u(k) (30)

Note that all the results valid for Fourier transforms of functions of rapid decay in Rd will
apply to ˆ̃u.
Equation (30) allows us to obtain an expression for �gls. Indeed, if we take the Fourier

transform of (29) we have

ˆ̃u(k)≈T(k)r̂(k); T(k) :=
(
�
|k|2
h2

+ i
a ·k
h

)−1

Plancherel’s formula and the mean value theorem imply

‖ũ‖2L2(Ce) ≈
1

(2�)d
‖ ˆ̃u‖2L2(Rd)

≈ 1
(2�)d

∫
Rd

|T(k)|2|R̂h(k)|2 dk

=
1

(2�)d
|T(k0)|2

∫
Rd

|R̂h(k)|2 dk

= |T(k0)|2‖Rh‖2L2(Ce)

for a certain k0. If we identify �gls with |T(k0)|, it allows us to conclude that if we take

�gls =

[(
c1
�
h2

)2
+
(
c2
|a|
h

)2]−1=2
(31)

there exist values of c1 and c2 independent of h; � and |a| for which both ũ and −�glsRh
have (approximately) the same L2-norm on element Ce.
Expression (31) behaves asymptotically as the critical time step of the explicit Euler scheme

for the convection–di7usion equation using a stabilized method [1]. For simplicity, let us
consider the scalar case and the stabilization through the introduction of arti8cial numerical
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di7usion, so that the equation that needs to be discretized in space using the standard Galerkin
method is

1
�t
(un+1 − un)− �numGun + a · ∇un=f

with

�num := �+ c|a|h (32)

where h is an element diameter de8ned a priori and c is a constant that determines the amount
of arti8cial di7usion.
Let us show that (a particular version of) the von Neumann stability analysis leads to a

critical time step which has the same asymptotic behaviour as (31). To compute this time
step, one has to build up a perturbation function and see that it is necessarily damped out
by the numerical scheme. This perturbation function must be a solution of the homogeneous
problem. We construct it as solution of

1
�t
(en+1 − en)− �numGen + a · ∇en=0

within each element Ce, with en+1 =0 on @Ce. This particular perturbation propagates in time
according to the operational relationship

en+1 = (1 + �t�numG− �ta · ∇)en

Taking the Fourier transform de8ned above and assuming again that en+1 contains only high
wave numbers, we obtain

‖en+1‖2≈
∣∣∣∣1− �t�num |k0|2h2

− �t ia ·k0
h

∣∣∣∣2 ‖en‖2
where the notation involved is the same as before. A simple calculation shows that a su3cient
condition for ‖en+1‖6‖en‖ to hold is that

�t6�tcrit :=
(
c1
�
h2
+ c2

|a|
h

)−1
(33)

where now

c1 =
|k0|2
2

(
1 +

1
c2|k0|2

)
; c2 = cc1

and c is the constant in (32). Clearly, �tcrit given by (33) behaves asymptotically like �gls
given by (31) in terms of h; � and |a|.
This development has shown that the ideas used to model the subscales of the GLS for-

mulation (vanishing on the interelement boundaries, dominance of the high wave number
components, equation for the norms of the Fourier transform of (29), identi8cation of the al-
gorithmic constants with wave numbers) can be applied to the classical von Neumann analysis
as well.
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6. CONCLUSIONS

In this paper, we have compared the CBS and the GLS formulations to solve the incompress-
ible Navier–Stokes equations. The presentation has highlighted the stabilization mechanisms
of both, showing that they are in fact very similar, both for the stabilization of the convective
term and the pressure interpolation.
It has also been shown that the stabilizing parameters of the GLS method are related to

the critical time step size of stabilized formulations for convection–di7usion problems. For
the CBS method the stabilizing terms are directly proportional to the time step size.
As a by-product of our discussion, it has been justi8ed why in the CBS formulation the

factors that appear in the stabilizing terms are not necessarily �t. For the streamline di7usion
term, this factor depends on the position along the characteristics at which the equations are
discretized, whereas for the pressure stabilizing term it depends on the fraction of pressure
gradient kept in the prediction step (13).
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