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Abstract

This report summarizes the formulation for a large displacement
formulation of a membrance composed of three-node triangular ele-
ments. A formulation in terms of the deformation gradient is first
constructed in terms of nodal variables. In particular, the use of the
right Cauchy-Green deformation tensor is shown to lead to a partic-
ulary simple representation in terms of nodal quantities. This may
then be used to construct general models for use in static and tran-
sient analyses.

1 Introduction

The behavior of curved, thin bodies can be modeled by a membrane theory
of shells. In such a theory only the in-plane stress resultants are included.
The deformation state for a membrane may be represented by the position
of points on the two-dimensional surface. General theories for shells may be
specialized to those for a membrane by ignoring the resultant couples and
associated changes in curvature deformations as well as any transverse shear-
ing effects. A numerical approximation to the shell may then be constructed
using a finite element approach. Examples for general shell theory and finite
element solution may be found for small deformations in standard books.[1]

Theory for large deformation can procede following the presentations of Simo
et al.[2, 3, 4, 5] or Ramm et al.[6, 7, 8, 9, 10, 11, 12, 13]
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For the simplest shape finite element composed of a 3-node triangular
form with displacement parameters at each vertex (a 9-degree of freedom
element) it is far simpler to formulate the membrane behavior directly. This
is especially true for large displacement response. Here the initially flat form
of a simple triangular response is maintained throughout all deformation
states. Consequently, one may proceed directly with the construction of the
kinematic behavior, even in the presence of large strains. This approach is
followed in the present work.

The loading of a membrane is often by pressures which remain normal
to the surface throughout all deformations. Such follower loading generally
leads to a form in which yields an unsymmetric tangent matrix. Such for-
mulation has been presented in works by Schweizerhof and Ramm[14] and by
Simo et al.[15] The general approach presented in the last work is used for
the special case of the flat triangular element used in this work.

The formulation included in the present study includes inertial and damp-
ing terms based on second and first time derivatives of the motion. These are
discretized in space using standard techniques (e.g., the Newmark method[16, 17]).
Both explict and implicit schemes are presented together with all lineariza-
tions needed to implement a full Newton type solution. The inclusion of the
damping term permits solution of the first order form in order to obtain a
final static solution. Generally, the first order form is used until the final
state is reached at which point the rate terms are deleted and the full static
solution achieved using a standard Newton iterative method.

The work presented is implemented in the general purpose finite element
solution system FEAP[18] and used to solve example problems. The solution
to some basic example problems are included to show the behavior of the
element and solution strategies developed.

2 Governing Equations

Reference configuration coordinates in the global Cartesian frame are indi-
cated in upper case by X and current configuration in lower case by x. The
difference between the coordinates defines a displacement u.

Using standard interpolation for a linear triangle positions in the element
may be specified as

X = ξα X̃
α

(1)

in the reference configuration and

x = ξα x̃α (2)
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for the current configurations. If necessary, the displacement vector may be
deduced as

u = ξα ũα (3)

In the above X̃
α
, x̃α, ũα denote nodal values of the reference coordinates,

current coordinates and displacement vector, respectively. Furthremore, the
natural (area) coordinates satisfy the constraint

ξ1 + ξ1 + ξ3 = 1 (4)

It is convenient to introduce a surface coordinate system denoted by Y1,
Y2 with normal direction N in the reference state and y1, y2 with normal
direction n in the current state (see Fig. 1).

Placing the origin of the YI and yi coordinates at nodal location X̃
1

and x̃1, respectively, the unit base vectors may be constructed from the
linear displacement triangle by aligning the first vector along the 1− 2 side.
Accordingly, we define the first unit vector as

v1 =
x̃2 − x̃1

‖x̃2 − x̃1‖
(5)

where
‖a‖ =

(
aT a

)1/2

Next a vector normal to the triangle is constructed as

v3 =
(
x̃2 − x̃1

)
×

(
x̃3 − x̃1

)
(6)

and normalized to a unit vector as

n =
v3

‖v3‖
(7)

Finally, the second unit vector for the plane of the triangle may be computed
as

v2 = n× v1 (8)

The vector v3 plays a special role in later development of nodal forces for
follower pressure loading as it is twice the area of the triangle times the unit
normal vector n.

The above developments have been performed based on the current con-
figuration. However, reference quatities my be deduced by replacing lower
case letters by upper case ones.

With the above base vectors defined for the plane of the triangle, positions
may be given directly as

yi =
(
x− x̃1

)
· vi (9)
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In general, an interpolation may be given as

y = ξαỹα (10)

We note form Eq. (9) that ỹ1 is identically zero hence Eq. (10) reduces to

y = ξ2 ỹ2 + ξ3 ỹ3 (11)

and it is no longer necessay to use the constraint (4).
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y
1

y
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Figure 1: Description of coordinates for triangular element

2.1 Deformation gradient

From the above description of the motion of the triangle it is now possible
to deduce the deformation gradient as

F =
∂y

∂Y
= 1 +

∂u

∂Y
(12)

Using the parametric representations (11) we can express the deformation
gradient as

∂Y

∂ξ
F =

∂Y

∂ξ

∂y

∂Y
=

∂y

∂ξ
(13)

If we define the arrays J and j as

J =
∂Y

∂ξ
and j =

∂y

∂ξ
(14)
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then the deformation gradient is given by

F = j J−1 (15)

In the above J is the Jacobian tranformation for the reference frame and j
that for the current frame. Expanding the relations for each of the jacobians
we obtain

J =

 (
X̃

2 − X̃
1
)T

V 1

(
X̃

3 − X̃
1
)T

V 1(
X̃

2 − X̃
1
)T

V 2

(
X̃

3 − X̃
1
)T

V 2

 (16)

and

j =

[ (
x̃2 − x̃1

)T
v1

(
x̃3 − x̃1

)T
v1(

x̃2 − x̃1
)T

v2

(
x̃3 − x̃1

)T
v2

]
(17)

By noting that X̃
2 − X̃

1
is orthogonal to V 2 and similarly for the current

configuration that x̃2 − x̃1 is orthogonal to v2 and in addition using the
definition for V i and vi the above simplify to

J =

 ‖X̃2 − X̃
1‖ ,

[(
X̃

2 − X̃
1
)T (

X̃
3 − X̃

1
)]

/‖X̃2 − X̃
1‖

0 , ‖N‖/‖X̃2 − X̃
1‖

 (18)

and

j =

[
‖x̃2 − x̃1‖ ,

[(
x̃2 − x̃1

)T (
x̃3 − x̃1

)]
/‖x̃2 − x̃1‖

0 , ‖n‖/‖x̃2 − x̃1‖

]
(19)

Using these definitions, the right Cauchy-Green deformation tensor may
be expanded as

C = F T F = J−T jT jJ−1 = GT gG (20)

where G is used to denote the inverse of J . In component form we have

C =
1

J2
11J

2
22

[
J22 −J12

0 J11

] [
g11 g12

g12 g22

] [
J22 0
−J12 J11

]
(21)

in which the terms in the kernel array involving j may be expressed in the
particularly simple form

g11 = j2
11 =

(
x̃2 − x̃1

)T (
x̃2 − x̃1

)
g12 = j12j11 =

(
x̃2 − x̃1

)T (
x̃3 − x̃1

)
g22 = j2

12 + j2
22 =

(
x̃3 − x̃1

)T (
x̃3 − x̃1

) (22)
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2.2 Material constitution - elastic behavior

In the present work we assume that a simple St.Venant-Kirchhoff material
model may be used to express the stresses from the deformations. Stresses
are thus given by

S = D E (23)

where the Green-Lagrange strains E are given in terms of the deformation
tensor as

E =
1

2
(C − I) (24)

In each triangular element the deformation may be computed from (19) to
(22), thus giving directly the stress.

3 Weak Form for Equations of Motion

A weak form for the membrane may be written using a virtual work expres-
sion given by

δΠ =

∫
Ω

δxi ρ0 h ẍi dΩ+

∫
Ω

δxi c0 ẋi dΩ−
∫

Ω

h

2
δCIJSIJ dΩ−

∫
Ω

δxibi dω−
∫

γt

δxi t̄i dγ

(25)
in which ρ0 is mass density in the reference configuration, c0 is a linear
damping coefficient in the reference configuration, h is membrane thickness,
SIJ are components of the second Piola-Kirchhoff stress, bi are components
of loads in global coordinate directions (e.g., gravity), and t̄i are components
of specified membrane force per unit length. Upper case letters refer to
components expressed on the reference configuration, whereas, lower case
letters refer to current configuration quantities. Likewise, Ω and ω are surface
area for the reference and current configurations, respectively. Finally, γt is
a part of the current surface contour on which traction values are specified.

The linear damping term is included only for purposes in getting initially
stable solutions. That is, by ignoring the inertial loading based on ẍ only
first derivatives of time will occur. This results in a transient form which is
critically damped - thus permitting the reaching of a static loading state in
a more monotonic manner.

We note that components for a normal pressure loading may be expressed
as

bi = p ni (26)

where p is a specified pressure and ni are components of the normal to the
surface.

6



Writing Eq. (20) in component form we have

CIJ = GiI gij GjJ for i, j = 1, 2 I, J = 1, 2 (27)

where

G11 =
1

J11

; G22 =
1

J22

; G12 =
J12

J11 J22

; G21 = 0 (28)

The integrand of the first term in (25) may be written as

δCIJ SIJ = GiI δgij GjJ SIJ = δgij sij (29)

where the stress like variable sij is defined by

sij = GiI GjJ SIJ (30)

The transformation of stress given by (30) may be written in matrix form
as

s = QT S (31)

in which
Qab ← GiI GjJ

where the index map is performed according to Table 1, yielding the result

Q =

 G2
11 0 0

G2
12 G2

22 G12 G22

G11 G12 0 G11 G22

 (32)

Table 1: Index map for Q array
Indices Values

a 1 2 3
I,J 1,1 2,2 1,2 & 2,1
b 1 2 3
i,j 1,1 2,2 1,2 & 2,1

Since the deformation tensor is constant over each element, the results
for the stresses are constant when h is taken constant over each element and,
thus, the surface integral for the first term leads to the simple expression∫

Ω

h

2
δCIJ SIJ dΩ =

∫
Ω

h

2
δgij sij dΩ =

h

2
δgij sij A (33)

where A is the reference area for the triangular element.
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The variation of gij results in the values

δg11 = 2
(
δx̃2 − δx̃1

)T (
x̃2 − x̃1

)
δg12 =

(
δx̃2 − δx̃1

)T (
x̃3 − x̃1

)
+

(
δx̃3 − δx̃1

)T (
x̃2 − x̃1

)
δg22 = 2

(
δx̃3 − δx̃1

)T (
x̃3 − x̃1

) (34)

At this stage it is convenient to transform the second order tensors to
matrix form and write

1

2
δCIJSIJ = δEIJSIJ =

[
δE11 δE22 2 δE12

]  S11

S22

S12

 = δET S (35)

or for the alternative form

δgijsij =
[

δg11 δg22 2 δg12

]  s11

s22

s12

 = δgT s (36)

Using (34) we obtain the result directly in terms of global cartesian com-
ponents as

1

2
δgT s =

[
δ(x̃1)T δ(x̃2)T δ(x̃3)T

]
[b]T s

=
[

δ(x̃1)T δ(x̃2)T δ(x̃3)T
]

[b]T QT S = δET S (37)

where ∆x̃ij = x̃i − x̃j and the strain-displacement matrix b is given by

[b] =

 −(∆x̃21)T (∆x̃21)T 0
−(∆x̃31)T 0 (∆x̃31)T

−(∆x̃21 + ∆x̃31)T (∆x̃31)T (∆x̃21)T


︸ ︷︷ ︸

3×9

(38)

Thus, directly we have in each element

δE = Qb δx̃ =
1

2
δC (39)

where x̃ denotes the three nodal values on the element. It is immediately
obvious that we can describe a strain-displacement matrix for the variation
of E as

B = Qb (40)
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A residual form for each element may be written as
R1

R2

R3

 =


f 1

f 2

f 3

− [M e]


¨̃x1

¨̃x2

¨̃x3

− [Ce]


˙̃x1

˙̃x2

˙̃x3

− hA [B]T


S11

S22

S12


(41)

where [M e] and where [Ce] are the element mass and damping matrices
given by

[M e] =

 M 11 M 12 M 13

M 21 M 22 M 23

M 31 M 32 M 33

 and [Ce] =

 C11 C12 C13

C21 C22 C23

C31 C32 C33

 (42)

with

Mαβ =

∫
Ω

ρ0 h ξα ξβ dΩ I and Cαβ =

∫
Ω

c0 h ξα ξβ dΩ I (43)

3.1 Pressure follower loading

For membranes subjected to internal pressure loading, the finite element
nodal forces must be computed based on the deformed current configuration.
Thus, for each triangle we need to compute the nodal forces from the relation

δx̃α,T fα = δx̃α,T

∫
ω

ξα (p n) dω (44)

For the constant triangular element and constant pressure over the element,
denoted by pe, the normal vector n is also constant and thus the integral
yields the nodal forces

fα =
1

3
pe n Ae (45)

We noted previously from Eq. (6) that the cross product of the incremental
vectors ∆x̃21 with ∆x̃31 resulted in a vector normal to the triangle with
magnitude of twice the area. Thus, the nodal forces for the pressure are
given by the simple relation

fα =
1

6
pe ∆x̃21 ×∆x̃31 (46)

Instead of the cross products it is convenient to introduce a matrix form
denoted by

∆x̃21 ×∆x̃31 =
[
∆̂x̃21

]
∆x̃31 (47)

where [
∆̂x̃21

]
=

 0 −∆x̃21
3 ∆x̃21

2

∆x̃21
3 0 −∆x̃21

1

−∆x̃21
2 ∆x̃21

1 0

 (48)

9



4 Reinforcements

It is common to place reinforcing cables in membranes to provide added
strength or shape control. The cables are generally very strong in axial
load capacity (generally tension) and weak in bending. Accordingly, they
may be modeled by a truss type member. In the form admitted here it is
not necessary for the reinforcement to be placed at the edges of membrane
elements - they may pass through an element as shown in Fig 2.

x
2

x
3

x
1

1

2

3

i

j

y
1

y
2

n

Figure 2: Cable reinforced membrane element at(i-j)

The ends of a typical reinforcement are denoted as i and j in the figure
and have reference coordinates X i and Xj,respectively. These points may
be referred to the nodal values of the membrane by computing the values of
the natural coordinates so that

Xk = ξk
α Xα for k = i, j (49)

The solution for the two points may be trivially constructed from from linear
interpolation on the edges. The results are (for the points intersecting the
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edges shown in the figure)

ξi
2 =

‖X i −X1‖
‖X2 −X1‖

; ξi
1 = 1− ξi

2 ; ξi
3 = 0

ξj
3 =

‖Xj −X1‖
‖X3 −X1‖

; ξi
1 = 1− ξi

3 ; ξi
2 = 0 (50)

Using these values the deformed position of the reinforcement cable may
be written as {

xi

xj

}
=

{
ξi
α I

ξj
α I

}
x̃α (51)

4.1 Deformation of cable

The deformation of the reinforcement cable may be expressed in terms of the
Green-Lagrange strain given by

Eij =
1

2

[
(xj − xi)T (xj − xi)

(Xj −X i)T (Xj −X i)
− 1

]
=

1

2

[
‖∆xji‖2

‖∆Xji‖2
− 1

]
(52)

where ∆Xji = Xj −X i. The variation of the strain is then expressed as

δEij =
(δxj − δxi)T (∆xji)

‖∆Xji‖2
(53)

4.2 Material constitution

For simplicity we again assume that the material is elastic and may be repre-
sented by a one-dimensional form of a St.Venant-Kirchhoff model expressed
as

Sij = E Eij (54)

where Sij is the constant second Piola-Kirchhoff stress in the cable and E is
an elastic modulus.

4.3 Weak form for reinforcement

A weak form for an individual reinforcement cable in an element may be
written as

δΠr = δxk
(
M klẍ

l + Cklẋ
l
)
− δEij Sij Aij Lij ; k, l = i, j (55)

where Aij is the cross sectional area of the reinforcement; Lij the length of
the cable (i.e., ‖∆Xji‖); M kl is the mass matrix; and Ckl is the damping
matrix.
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The variation of the strain is rewritten from Eq. (53) as

δEij =
[

δxi,T δxj,T
] 

−∆xji

L2
ij

∆xji

L2
ij

 (56)

Equation (55) is appended to the other terms from the membrane by
replacing variations of end displacements and the rate terms by their repre-
sentation in terms of the membrane nodal parameters as given by Eq. (51).
The result is:

δΠr = δx̃α,T

{
Mαβ

r
¨̃xβ + Cαβ

r
˙̃xβ − P α

r

}
(57)

where

P α
r = ∆ξji

α ∆ξji
β x̃β Sij Aij

Lij

; (58)

Mαβ
r = ξi

αM iiξ
i
β + ξi

αM ijξ
j
β + ξj

αM jiξ
i
β + ξj

αM jjξ
j
β (59)

and
Cαβ

r = ξi
αCiiξ

i
β + ξi

αCijξ
j
β + ξj

αCjiξ
i
β + ξj

αCjjξ
j
β (60)

In the definition of P α
r the incremental ξ denote

∆ξji
α = ξj

α − ξi
α (61)

Multiple reinforcement strands within any element may be simply con-
sidered by summing over all the ij-pairs of intersection points.

5 Solution Methods

5.1 Explicit solution

In an explicit time integration the lumped mass is commonly used. Fur-
thermore, we shall assume that the damping is negligible and thus may be
ignored. A diagonal (lumped) mass is usually also constructed where

Mαβ =

{
1
3

∫
Ω

ρ0 h dΩ I ; for α = β
0 ; for α 6= β

(62)

Diagonalization of the mass matrix in the presence of reinforcement is more
difficult and, if performed, must be based on purely physical lumping argu-
ments as no clear mathematical justification is available.[17]
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A solution is then computed for each discrete time tn from

ẍn = M−1

[
fn −

∑
e

(
BT

n,eSn,eAehe + P r,e

)]
(63)

where subsecripts e refer to individual element quantities and subscript n to
the time step. The inverse of the mass is trivial due to its diagonal form,
hence the method is directly proportional to the number of nodes in the
mesh.

The solution state may now be advanced in time using any time integra-
tion procedure. For example using a Newmark method

ẋn = ẋn−1 +
1

2
∆tn−1 (ẍn−1 + ẍn)

xn+1 = xn + ∆tn ẋn +
1

2
∆t2n ẍn (64)

in which ∆tn = tn − tn−1.
An explicit solution is conditionally stable and requires

∆tn ≤ ∆tcr (65)

for all time steps. The critical time step depends on element size and the
maximum wave speed for the element material. The resulting time increment
is often much too small for practical considerations in computer effort and
for the response necessary to model slowly varying loads. In these situations
it is more expedient to use in implicit time integration procedure in which
intertial, stress, and loading matrices also depend on position and velocity
at the current time.

5.2 Implicit solution

In an implicit solution case it is necessary to use an iterative solution scheme
at each time step which solves a sequence of linear. coupled algebraic prob-
lems. Here we only present results for the St.Venant-Kirchhoff material model
and the normal follower pressure loading. We assume that the transient prob-
lem will be integrated using the Newmark method, however, other schemes
may also be utilized with minor modifications.

The Newmark method may be written for implicit solutions as

xn = xn−1 + ∆tn ẋn−1 +

(
1

2
− β

)
∆t2n ẍn−1 + β ∆t2n ẍn

ẋn = ẋn−1 + (1− γ) ∆tn ẍn−1 + γ ∆tn ẍn (66)
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The equations to be solved at each time step may be expressed as

Rα
n = fα

n −
∑

e

(
Mαβ

e + Mαβ
r

)
ẍβ

n −
∑

e

(
Cαβ

e + Cαβ
r

)
ẋβ

n

−
∑

e

(
he Ae Bα,T

e Se + P α
r,e

)
n

(67)

In an implicit method Eq. (67) may be solved iteratively using a Newton
method. In this process the nonlinear residual equations are linearized about
a given set of nodal postions x̃k

n corresponding to known values at some
iteration stage k. The result is written as

Rk+1
n ≈ Rk

n +
∂Rn

∂x̃

∣∣∣k dx̃k
n = 0 (68)

If we define the tangent (jacobian) matrix A as

A = −∂R

∂x̃
(69)

the set of linear algebraic equations to be solved at each iteration may be
expressed as

Ak
n dx̃k

n = Rk
n (70)

The solution may then be updated using

xk+1
n = xk

n + dxk
n (71)

and iteration continued until convergence is achieved.
The Newton scheme will have a quadratic asymptotic rate of convergence

provided a careful derivation of the tangent matrix A is constructed. Typ-
ically such jacobians are referred to as the consistent tangent matrix. For
transient applications the use of the specifice time stepping algorithm is re-
quired to compute the tangent matrix. The compuatation for the transient
term is performed as

A = −∂R

∂x̃
− ∂R

∂ ˙̃x

∂ ˙̃x

∂x̃
− ∂R

∂ ¨̃x

∂ ¨̃x

∂x̃
(72)

The result may be written as

A = c1 K + c2 C + c3 M (73)

where the ci result from any differentiation of the nodal vectors with respect
to the solution vector. For the Newmark method the result from (67) gives
c1 = 1 and from (66) we obtain

∂x̃

∂ ¨̃xn

= β ∆t2nI and
∂ ˙̃x

∂ ¨̃xn

= γ ∆tnI
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thus giving

c2 =
γ

β ∆tn
and c3 =

1

β ∆t2n

From (67) we find that

Mn =
∑

e

(M e + M r)

Cn =
∑

e

(Ce + Cr) (74)

Kn =
∑

e

(Ke + Kr)

5.2.1 Membrane tangent matrix

To compute the element stiffness matrix it is necessary to determine the
change in stress due to an incremental change in the motion. Accordingly,
for the St.Venant-Kirchhoff model we obtain

dSe = D dEe (75)

where
dEe = Qe be dx̃e = Be dx̃e (76)

The element stiffness matrix is given by

Ke =
(
hA BT

n Dn Bn + Kg

)
e

(77)

where Kg is a geometric stiffness computed from the term

he

2
Ae d (δCIJ) SIJ =

he

2
Ae d (δgij) sij (78)

From (34) we obtain

d(δg11) = 2
(
δx̃2 − δx̃1

)T (
dx̃2 − dx̃1

)
d(δg12) =

(
δx̃2 − δx̃1

)T (
dx̃3 − dx̃1

)
+

(
δx̃3 − δx̃1

)T (
dx̃2 − dx̃1

)
d(δg22) = 2

(
δx̃3 − δx̃1

)T (
dx̃3 − dx̃1

) (79)

Using these expressions the geometric matrix may be written as

Kg = he Ae

 (s11 + 2s12 + s22)I −(s11 + s12)I −(s22 + s12)I
−(s11 + s12)I s11I s12I
−(s22 + s12)I s12I s22I

 (80)
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5.2.2 Reinforcement tangent matrix

In a similar manner to that for the membrane, the tangent matrix for the
reinforcement may be computed from

Kαβ
r =

∂P α
r

∂x̃β

= ∆ξji
α

[
EAij

Lij

(
∆ξji

γ x̃γx̃δ,T ∆ξji
δ

)
+

SijAij

Lij

I

]
∆ξji

β (81)

5.3 Quasi-static Solutions

Membrane structures typically have no stiffness during the initial phase of
loading. Thus, it is necessary to perform some form of a transient analysis
until an equalibrium position is neared, at which time it is possible to switch
to a static loading in which no rate terms are included. To avoid oscillations
during the solution process the equations of motion are treated here in a first
order form as

R = f −C ˜̇x−
∑
e

(
heAeB

TS + P e,r

)
= 0 (82)

and solved using an implicit backward Euler solution process in which discrete
rates are approximated by

˜̇xn =
1

∆tn
(x̃n − x̃n−1) (83)

A solution is computed until the rate terms are small at which time they are
dropped and the solution is computed from the static form

R = f −
∑

e

(
heAeB

T S + P e,r

)
= 0 (84)

In results reported in numerical examples, a diagonal (lumped) form of C
is used. The diagonalization is performed identically to that for the lumped
mass form.

6 Numerical Examples

6.1 Sphere subjected to internal follower pressure

The first problem presented is a sphere of initial (unstressed) radius of 10
units which is subjected to an internal follower pressure loading of 5. The
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material properties are

E = 1000 ; ν = 0.25 ; ρ0 = 10 ; he = 0.1

A mesh for one quadrant of the sphere (1/8 of the total) is constructed
as shown in Fig. 3 Both the undeformed and deformed configurations are

Figure 3: Mesh for sphere problem symmetrically supported at edges

included to indicate the amount of deformation occuring.
The problem is solved using a backward Euler time integrator for the

case where M is zero and a diagonal damping matrix C with c0 = ρ0 is
used. The full internal pressure is applied during the first time step and held
constant during subsequent steps. The problem is solved using 100 steps
with a constant ∆t of 0.001. Subsequently, the rate terms are ignored and a
final static state determined during one additional step. Convergence to full
machine precision is achieved in three iterations for all steps - indicating a
correct implementation for the Newton strategy described in this study. A
plot of the contours for the u3 displacement is shown in Fig 4.

6.2 Corner supported sphere quadrant subjected to in-
ternal follower pressure

The boundary conditions for the first problem are changed to ones in which
the vertices of the quadrant are fully restrained (fixed in all directions). Load-
ing is again by a follower loading with magnitude 5. The contours for the
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vertical displacement (u3) are shown on the deformed mesh in Fig. 5. Solu-
tion is obtained in the same way as for the previous example. Convergence
was achieved in all steps to full machine accuracy in 3-4 iterations each step.

6.3 Square supported at 4-corners

The third problem is presented to test the performance of the triangular
membrane formulation described above under gravity loading. Here a square
region of 20 units on a side is supported only at its four corners. Due to
symmetry only one quadrant is analyzed with the origin of coordinates at
the lower left corner and a uniform mesh of 20 × 20 spaces as shown in Fig
6. The flat configuration lies in the x1 − x2 coordinate plane at x3 = 0. A
uniform body loading is applied in the x3 direction. To permit a sag to occur
the upper right corner node (which is fully restrained in all three directions) is
displaced equally in the x1 and x2 by a negative 2 units (that is the deformed
position of the node at this point has final coordinates (8, 8, 0).

For the membrane problem considered here, the properties are taken as

E = 10000 ; ν = 0.25 ; ρ0 = 10 ; he = 0.1 ; b3 = 1

 2.97E-01

 5.93E-01

 8.90E-01

 1.19E+00

 1.48E+00

 1.78E+00

 0.00E+00

 2.08E+00

 DISPLACEMENT 3  

Figure 4: Contours for u3. Full sphere shown by reflections.
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The solution is computed using a backward Euler solution process with M =
0 and a diagonal C matrix with c0 = ρ0. The time behavior is constructed
using 1000 time steps of ∆t = 0.0001 followed by an additional 1000 steps at
∆t = 0.001 and a final 1000 steps at ∆t = 0.002. The corner displacements
are moved 2 units at a uniform rate until t = 1 after which they are held
constant. At the final time of 3.1 the solution is switch to the static state
and a converged solution achieved in 4 iterations. In general each time step
converges at the quadratic rate in 3 to 4 iterations per step. Use of larger
step sizes, however, resulted in divergence of the solution after a few steps.
The final shape of the membrane is shown in Fig. 7 where the full problem
is shown by reflecting results about the symmetry axes.

7 Closure

This report has summarized the steps required to develop and implent a
3-node triangular membrane finite element which can undergo arbitrarily
large finite motions. The material behavior included here is restricted to a
St.Venant-Kirchhoff material, however, extension to other types of constitu-

 3.61E-01

 7.23E-01

 1.08E+00

 1.45E+00

 1.81E+00

 2.17E+00

 0.00E+00

 2.53E+00

 DISPLACEMENT 3  

Figure 5: Contours for u3. Corner supported sphere shown in deformed
configuration
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1

2

3

Figure 6: Mesh for membrane problem supported at corners

-1.71E+00

-1.43E+00

-1.14E+00

-8.55E-01

-5.69E-01

-2.83E-01

-2.00E+00

 3.27E-03

 DISPLACEMENT 1  

Figure 7: Deformed configuration of membrane
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tive models for isotropic behavior is straight foward.
The formulation presented includes both inertia and damping effects lead-

ing to a general second-order semi-discrete form. Solution to these ordinary
differential equations may be achived using explicit or implicit transient forms
or using a quasi-static form in which all rate effects are omitted. Use of a solu-
tion algorithm employing only first-order form is shown to lead to a means of
solving the final static membrane state starting from the unstressed reference
configuration.

A listing for the subroutine necessary to link the formulation to the gen-
eral finite element solution system FEAP[18] is included in an appendix.
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A Listing for Membrane Element
subroutine elmt01(d,ul,xl,ix,tl,s,r,ndf,ndm,nst,isw)

c * * F E A P * * A Finite Element Analysis Program

c.... Copyright (c) 1984-2001: Robert L. Taylor

c Triangular finite displacement membrane element

implicit none

include ’bdata.h’

include ’cdata.h’

include ’eldata.h’

include ’elplot.h’

include ’eltran.h’

include ’fdata.h’

include ’iofile.h’

include ’prstrs.h’

include ’strnum.h’

integer ndf,ndm,nst,isw, i,j

real*8 pr,ro,he,dv,xx,yy,lfac,cfac,mass,rnormn

integer ix(*),is(9)

real*8 d(*),ul(ndf,nen,*),xl(ndm,*),tl(*),s(nst,nst),r(ndf,*)

real*8 shp(3,9),sig(9),eps(6),dd(3,3),ss(3)

real*8 q(3,3),bb(3,9),bmat(3,9),bdi(3)

real*8 xc(3,3),rg(2,2),gg(2,2),rb(3),cn(3),rn(3)

real*8 cdx21(3),cdx31(3),rdx21(3),rdx31(3)

save

c Output element type

if(isw.eq.0 .and. ior.lt.0) then

write(*,*) ’ Elmt 1: Finite displacement membrane’

c Input material properties

elseif(isw.eq.1) then

call inpt01(d)

c Deactivate dof in element for dof > ndm

do i = ndm+1,ndf

ix(i) = 0

end do ! i

c Set plot for 3-node triangles

call pltri3(iel)

c Set number of projected stresses

istv = 3

c Set assembly vector
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do i = 1,3

is(i ) = i

is(i+3) = i + ndf

is(i+6) = i + ndf*2

end do ! i

c Check element for errors in input data

elseif(isw.eq.2) then

call cktris(ix,xl,shp,ndm)

c Compute stress-divergence vector (r) and stiffness matrix (s)

elseif(isw.eq.3 .or.isw.eq.4 .or. isw.eq.5 .or. isw.eq.6) then

c Set current configuration coordinates

do i = 1,3

do j = 1,ndm

xc(j,i) = xl(j,i) + ul(j,i,1)

end do ! j

end do ! i

c Compute incremental vectors: ’r’ = reference; ’c’ = current

do i = 1,ndm

rdx21(i) = xl(i,2) - xl(i,1)

rdx31(i) = xl(i,3) - xl(i,1)

cdx21(i) = xc(i,2) - xc(i,1)

cdx31(i) = xc(i,3) - xc(i,1)

end do ! i

c Normal vector times area

rn(1) = rdx21(2)*rdx31(3) - rdx21(3)*rdx31(2)

rn(2) = rdx21(3)*rdx31(1) - rdx21(1)*rdx31(3)

rn(3) = rdx21(1)*rdx31(2) - rdx21(2)*rdx31(1)

cn(1) = cdx21(2)*cdx31(3) - cdx21(3)*cdx31(2)

cn(2) = cdx21(3)*cdx31(1) - cdx21(1)*cdx31(3)

cn(3) = cdx21(1)*cdx31(2) - cdx21(2)*cdx31(1)

c Norm of reference normal vector (twice area of triangle)

rnormn = sqrt(rn(1)*rn(1) +rn(2)*rn(2) +rn(3)*rn(3))

c Set G_iI transformation

rg(1,1) = 1.d0/sqrt(rdx21(1)*rdx21(1)

& + rdx21(2)*rdx21(2)

& + rdx21(3)*rdx21(3))

rg(2,2) = 1.d0/(rnormn*rg(1,1))

rg(1,2) = -rg(1,1)**2*rg(2,2)*(rdx21(1)*rdx31(1)

& + rdx21(2)*rdx31(2)

& + rdx21(3)*rdx31(3))

c Form Q-array

q(1,1) = rg(1,1)*rg(1,1)

q(2,1) = rg(1,2)*rg(1,2)
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q(3,1) = rg(1,2)*rg(1,1)*2.d0

q(2,2) = rg(2,2)*rg(2,2)

q(2,3) = rg(1,2)*rg(2,2)

q(3,3) = rg(1,1)*rg(2,2)

c Local Green-Lagrange deformation tensor

gg(1,1) = cdx21(1)*cdx21(1) + cdx21(2)*cdx21(2)

& + cdx21(3)*cdx21(3)

gg(1,2) = cdx21(1)*cdx31(1) + cdx21(2)*cdx31(2)

& + cdx21(3)*cdx31(3)

gg(2,1) = gg(1,2)

gg(2,2) = cdx31(1)*cdx31(1) + cdx31(2)*cdx31(2)

& + cdx31(3)*cdx31(3)

c Compute global Green-Lagrange strain tensor

eps(1) = 0.5d0* gg(1,1)*q(1,1) - 0.5d0

eps(2) = 0.5d0*(gg(1,1)*q(2,1) + gg(2,2)*q(2,2))

& + gg(1,2)*q(2,3) - 0.5d0

eps(3) = 0.5d0* gg(1,1)*q(3,1) + gg(1,2)*q(3,3)

c Form Stiffness and Residual arrays

if(isw.eq.3 .or. isw.eq.6) then

c Compute stresses and moduli

call strs01(d,eps,sig,dd)

c Store time history plot data for element

do j = 1,6

tt(j) = sig(j)

end do ! j

c Form strain displacement matrix

do i = 1,ndm

bb(1,i ) = -cdx21(i)

bb(1,i+3) = cdx21(i)

bb(1,i+6) = 0.0d0

bb(2,i ) = -cdx31(i)

bb(2,i+3) = 0.0d0

bb(2,i+6) = cdx31(i)

bb(3,i ) = -cdx21(i) - cdx31(i)

bb(3,i+3) = cdx31(i)

bb(3,i+6) = cdx21(i)

end do ! i

do i = 1,3

do j = 1,9

bmat(i,j) = q(i,1)*bb(1,j)

& + q(i,2)*bb(2,j)

& + q(i,3)*bb(3,j)

end do ! j

end do ! i

c Set loading factors

he = d(15)

dv = 0.5d0*he*rnormn
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ro = d( 4)*he

rb(1) = d(11)*he*rnormn/3.d0

rb(2) = d(12)*he*rnormn/3.d0

rb(3) = d(13)*he*rnormn/3.d0

pr = d(14)/6.d0

cfac = d(18)

lfac = 1.d0 - cfac

c Lumped mass term

mass = ro*dv/3.d0

c Scale stress by volume

do i = 1,3

sig(i) = sig(i)*dv

do j = 1,3

dd(j,i) = dd(j,i)*dv*ctan(1)

end do ! j

end do ! i

c Form residual

do i = 1,3

r(i,1) = rb(i) + pr*cn(i) - mass*ul(i,1,5)

& - bmat(1,i )*sig(1)

& - bmat(2,i )*sig(2)

& - bmat(3,i )*sig(3)

r(i,2) = rb(i) + pr*cn(i) - mass*ul(i,2,5)

& - bmat(1,i+3)*sig(1)

& - bmat(2,i+3)*sig(2)

& - bmat(3,i+3)*sig(3)

r(i,3) = rb(i) + pr*cn(i) - mass*ul(i,3,5)

& - bmat(1,i+6)*sig(1)

& - bmat(2,i+6)*sig(2)

& - bmat(3,i+6)*sig(3)

end do ! i

c Form material tangent

if(isw.eq.3) then

do i = 1,9

do j = 1,3

bdi(j) = bmat(1,i)*dd(1,j)

& + bmat(2,i)*dd(2,j)

& + bmat(3,i)*dd(3,j)

end do ! J

do j = 1,9

s(is(i),is(j)) = bdi(1)*bmat(1,j)

& + bdi(2)*bmat(2,j)

& + bdi(3)*bmat(3,j)

end do ! j

c Add inertial tangent

s(is(i),is(i)) = s(is(i),is(i)) + mass*ctan(3)

end do ! i

c Form geometric tangent
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ss(1) = ctan(1)*(q(1,1)*sig(1) + q(2,1)*sig(2)

& + q(3,1)*sig(3))

ss(2) = ctan(1)*(q(2,2)*sig(2))

ss(3) = ctan(1)*(q(2,3)*sig(2) + q(3,3)*sig(3))

do i = 1,3

s(is(i ),is(i )) = s(is(i ),is(i )) + ss(1) + ss(2)

& + ss(3)*2.d0

s(is(i+3),is(i )) = s(is(i+3),is(i )) - ss(1) - ss(3)

s(is(i+6),is(i )) = s(is(i+6),is(i )) - ss(2) - ss(3)

s(is(i ),is(i+3)) = s(is(i ),is(i+3)) - ss(1) - ss(3)

s(is(i+3),is(i+3)) = s(is(i+3),is(i+3)) + ss(1)

s(is(i+6),is(i+3)) = s(is(i+6),is(i+3)) + ss(3)

s(is(i ),is(i+6)) = s(is(i ),is(i+6)) - ss(2) - ss(3)

s(is(i+3),is(i+6)) = s(is(i+3),is(i+6)) + ss(3)

s(is(i+6),is(i+6)) = s(is(i+6),is(i+6)) + ss(2)

end do ! i

c Follower pressure tangent

do i = 1,3

cdx21(i) = cdx21(i)*pr*ctan(1)

cdx31(i) = cdx31(i)*pr*ctan(1)

end do ! i

do i = 1,9,3

s(is(i ),is(2)) = s(is(i ),is(2)) - cdx21(3) + cdx31(3)

s(is(i ),is(3)) = s(is(i ),is(3)) + cdx21(2) - cdx31(2)

s(is(i ),is(5)) = s(is(i ),is(5)) - cdx31(3)

s(is(i ),is(6)) = s(is(i ),is(6)) + cdx31(2)

s(is(i ),is(8)) = s(is(i ),is(8)) + cdx21(3)

s(is(i ),is(9)) = s(is(i ),is(9)) - cdx21(2)

s(is(i+1),is(1)) = s(is(i+1),is(1)) + cdx21(3) - cdx31(3)

s(is(i+1),is(3)) = s(is(i+1),is(3)) - cdx21(1) + cdx31(1)

s(is(i+1),is(4)) = s(is(i+1),is(4)) + cdx31(3)

s(is(i+1),is(6)) = s(is(i+1),is(6)) - cdx31(1)

s(is(i+1),is(7)) = s(is(i+1),is(7)) - cdx21(3)

s(is(i+1),is(9)) = s(is(i+1),is(9)) + cdx21(1)

s(is(i+2),is(1)) = s(is(i+2),is(1)) - cdx21(2) + cdx31(2)

s(is(i+2),is(2)) = s(is(i+2),is(2)) + cdx21(1) - cdx31(1)

s(is(i+2),is(4)) = s(is(i+2),is(4)) - cdx31(2)

s(is(i+2),is(5)) = s(is(i+2),is(5)) + cdx31(1)

s(is(i+2),is(7)) = s(is(i+2),is(7)) + cdx21(2)

s(is(i+2),is(8)) = s(is(i+2),is(8)) - cdx21(1)

end do ! i

endif ! stiffness form

c Output of element quantities

elseif(isw.eq.4) then

c Compute stresses and moduli

call strs01(d,eps,sig,dd)

call pstr2d(sig,sig(7))

xx = (xl(1,1) + xl(1,2) + xl(1,3))/3.d0

yy = (xl(2,1) + xl(2,2) + xl(2,3))/3.d0
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c Output stresses and strains

mct = mct - 2

if(mct.le.0) then

write(iow,2001) head

if(ior.lt.0 .and. pfr) then

write(*,2001) head

endif

mct = 50

endif

write(iow,2002) n,ma,sig(9),(sig(i),i=1,4),sig(7),

& xx,yy,(eps(i),i=1,4),sig(8)

if(ior.lt.0 .and. pfr) then

write(*,2002) n,ma,sig(9),(sig(i),i=1,4),sig(7),

& xx,yy,(eps(i),i=1,4),sig(8)

endif

c Compute lumped mass matrix

elseif(isw.eq.5) then

dv = 0.5d0*he*rnormn

ro = d( 4)*he

cfac = d(18)

lfac = 1.d0 - cfac

mass = ro*dv/3.d0

do i = 1,ndm

r(i,1) = mass

r(i,2) = mass

r(i,3) = mass

end do ! i

do i = 1,9

s(is(i),is(i)) = mass

end do ! i

endif

endif

c Formats for output

2001 format(20a4//5x,’Element Stresses’//’ Elmt Mat Angle’,

& ’ 11-stress 22-stress 33-stress 12-stress’,

& ’ 1-stress’/’ 1-coord 2-coord 11-strain’,

& ’ 22-strain 33-strain 12-strain 2-stress’)

2002 format(i8,i4,0p,f6.1,1p,5e12.3/0p,2f9.3,1p,5e12.3/1x)

end

subroutine inpt01(d)

implicit none

include ’hdata.h’

include ’iofile.h’

character text(2)*15

logical pcomp

real*8 e1,e2,nu12,g12, det, ev(7),d(*)
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c Default thickness value

d(15) = 1.d0

c Input record

10 call tinput(text,2,ev,7)

c Input thickness

if (pcomp(text(1),’thic’,4)) then

d(15) = ev(1)

c Input density

elseif(pcomp(text(1),’dens’,4)) then

d(4) = ev(1)

c Input body forces

elseif(pcomp(text(1),’body’,4)) then

d(11) = ev(1)

d(12) = ev(2)

d(13) = ev(3)

c Input pressure load

elseif(pcomp(text(1),’pres’,4)) then

d(14) = ev(1)

c Input principal direction angle

elseif(pcomp(text(1),’angl’,4)) then

d(31) = ev(1)

c Input elastic properties

elseif(pcomp(text(1),’elas’,4)) then

c Orthotropic inputs

if(pcomp(text(2),’orth’,4)) then

e1 = ev(1)

e2 = ev(2)

nu12 = ev(3)

g12 = ev(4)

c Isotropic inputs

else

e1 = ev(1)

e2 = e1

nu12 = ev(2)

g12 = 0.5d0*e1/(1.d0 + nu12)

d(1) = e1

d(2) = nu12

endif
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elseif(pcomp(text(1),’ ’,4)) then

go to 11

endif

go to 10

c Set the moduli

11 det = 1.d0/(e2 - e1*nu12*nu12)

d(21) = e1*e2*det

d(22) = e2*e2*det

d(23) = d(21)*nu12

d(24) = g12

c Output parameters for element

write(iow,2001) e1,e2,nu12,g12,d(31),

& d(15),d(4),d(11),d(12),d(13),d(14)

if(ior.lt.0) then

write(*,2001) e1,e2,nu12,g12,d(31),

& d(15),d(4),d(11),d(12),d(13),d(14)

endif

c. Formats

2001 format(/5x,’E l a s t i c S o l i d E l e m e n t’//

& 10x,’M e c h a n i c a l P r o p e r t i e s’//

& 10x,’Plane Stree Analysis’//

& 10x,’Modulus E-1 ’, 1p,e16.5/

& 10x,’Modulus E-2 ’, 1p,e16.5/

& 10x,’Poisson ratio 12’,0p,f8.5 /

& 10x,’Modulus G-12’, 1p,e16.5/

& 10x,’Angle (psi) ’,0p,f8.5 /

& 10x,’Thickness ’, 1p,e16.5/

& 10x,’Density ’, 1p,e16.5/

& 10x,’1-gravity ’, 1p,e16.5/

& 10x,’2-gravity ’, 1p,e16.5/

& 10x,’3-gravity ’, 1p,e16.5/

& 10x,’Pressure ’, 1p,e16.5)

end

subroutine strs01(d,eps,sig,dd)

implicit none

include ’eldata.h’

include ’sdata.h’

integer i

real*8 d(*), eps(3), sig(3), dd(3,3)

c Get moduli

call dmat01(d,d(31),dd)

c Compute stresses

do i = 1,3

sig(i) = dd(i,1)*eps(1) + dd(i,2)*eps(2) + dd(i,3)*eps(3)

end do ! i
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end

subroutine dmat01(d,psi,dmg)

c Rotation of material arrays from principal to local element directions

c Inputs:

c d - Array with material properties

c psi - Angle from y1-axis (local) to 1-axis (principal)

c Output:

c dmg(3,3) - Plane modulus matrix

c Variables used in subroutine

c qm(3,3) - Transformation matrix for plane problems

c dml(3,3) - Local (orthotropic ) plane modulus matrix

c dmlqj(3) - intermediate matrix for triple product

c---------------------------------------------------------------------

implicit none

integer i, j

real*8 psi, si, co, s2, c2, cs

real*8 d(*), dml(3,3), dmg(3,3), qm(3,3), dmlqj(3)

c Assign material properties

c No rotation

if(psi.eq.0.0d0) then

dmg(1,1) = d(21)

dmg(2,2) = d(22)

dmg(3,3) = d(24)

dmg(1,2) = d(23)

dmg(2,1) = dmg(1,2)

dmg(1,3) = 0.0d0

dmg(3,1) = 0.0d0

dmg(2,3) = 0.0d0

dmg(3,2) = 0.0d0

c Orthotropic material (rotations)

else

c Set constants for transformation

si = sin(psi)

co = cos(psi)

s2 = si*si

c2 = co*co

cs = co*si

c Set transformation matrix

qm(1,1) = c2

qm(1,2) = s2
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qm(1,3) = cs

qm(2,1) = s2

qm(2,2) = c2

qm(2,3) = -cs

qm(3,1) = -2.d0 * cs

qm(3,2) = 2.d0 * cs

qm(3,3) = c2 - s2

c Set local (orthotropic) plane matrix

dml(1,1) = d(21)

dml(2,2) = d(22)

dml(3,3) = d(24)

dml(1,2) = d(23)

dml(2,1) = dml(1,2)

dml(2,3) = 0.0d0

dml(3,2) = 0.0d0

dml(3,1) = 0.0d0

dml(1,3) = 0.0d0

c Convert plane local to global matrix

do j = 1,3 ! {

dmlqj(1) = dml(1,1)*qm(1,j) + dml(1,2)*qm(2,j)

dmlqj(2) = dml(2,1)*qm(1,j) + dml(2,2)*qm(2,j)

dmlqj(3) = dml(3,3)*qm(3,j)

do i = 1,3 ! {

dmg(i,j) = qm(1,i)*dmlqj(1) + qm(2,i)*dmlqj(2)

& + qm(3,i)*dmlqj(3)

end do ! i }

end do ! j }

endif

end
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B Reinforcement calculation
subroutine rein01(d,xi,xj,xl,xg,ul,r,s,ndm,ndf,nst)

implicit none

include ’cdata.h’

include ’eltran.h’

integer ndm,ndf,nst, i,j, a1,a2,al, b1,b2,be

real*8 d(*),xi(3),xj(3),xl(ndm,3),xg(3,3),ul(ndf,nen,5)

real*8 r(ndf,3),s(nst,nst), mm(9,9),cc(9,9)

real*8 dxji(3),dl(3),dg(3),sr(3,3),cr(3),mr(3)

real*8 lij,eij,sij, ra,ca,ea,sa

c Compute differences in natural coordinates

do i = 1,3

dxji(i) = xj(i) - xi(3)

end do ! i

c Compute reinforcement length and cross section properties

do i = 1,ndm

dl(i) = dxji(1)*xl(i,1) + dxji(2)*xl(i,2) + dxji(3)*xl(i,3)

dg(i) = dxji(1)*xg(i,1) + dxji(2)*xg(i,2) + dxji(3)*xg(i,3)

end do ! i

lij = sqrt(dl(1)**2 +dl(2)**2 +dl(3)**2)

eij = 0.5d0*sqrt(dg(1)**2 +dg(2)**2 +dg(3)**2)/lij - 0.5d0

sij = d(1)*eij

ra = d(1)*d(2)*lij*0.5d0

ca = d(1)*d(2)*lij*0.5d0

ea = d(1)*d(2)/lij

sa = sij*d(2)/lij

c Lumped properties of reinforcement

do i = 1,ndm

cr(i) = ca

mr(i) = ra

end do ! i

c Compute contribution to membrane mass and damping

a1 = 1

do al = 1,3

b1 = 1

do be = 1,3

cc(a1 ,b1 ) = cc(a1 ,b1 ) + xi(1)*cr(1)*xi(1)

& + xi(2)*cr(2)*xi(2)

& + xi(3)*cr(3)*xi(3)

& + xj(1)*cr(1)*xj(1)

& + xj(2)*cr(2)*xj(2)

& + xj(3)*cr(3)*xj(3)

mm(a1 ,b1 ) = mm(a1 ,b1 ) + xi(1)*mr(1)*xi(1)

& + xi(2)*mr(2)*xi(2)

& + xi(3)*mr(3)*xi(3)

& + xj(1)*mr(1)*xj(1)

& + xj(2)*mr(2)*xj(2)

& + xj(3)*mr(3)*xj(3)

cc(a1+1,b1+1) = cc(a1 ,b1 )
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mm(a1+1,b1+1) = mm(a1 ,b1 )

cc(a1+2,b1+2) = cc(a1 ,b1 )

mm(a1+2,b1+2) = mm(a1 ,b1 )

b1 = b1 + 3

end do ! be

a1 = a1 + 3

end do ! al

c Residual computation

do al = 1,3

a1 = 1

do i = 1,ndm

r(i,al) = r(i,al) - dxji(al)*ea*dg(i)

& - cc(a1,a1 )*ul(i,1,4)

& - cc(a1,a1+3)*ul(i,2,4)

& - cc(a1,a1+6)*ul(i,3,4)

& - mm(a1,a1 )*ul(i,1,5)

& - mm(a1,a1+3)*ul(i,2,5)

& - mm(a1,a1+6)*ul(i,3,5)

end do ! i

a1 = a1 + 3

end do ! j

c Final tangent stiffness

do i = 1,ndm

do j = 1,ndm

sr(i,j) = ea*dg(i)*dg(j)*ctan(1)

end do ! j

sr(i,i) = sr(i,i) + sa*ctan(1)

end do ! i

a1 = 1

a2 = 1

do al = 1,3

b1 = 1

b2 = 1

do be = 1,3

s(a1 ,b1 ) = s(a1 ,b1 ) + dxji(al)*sr(1,1)*dxji(be)

& + cc(a2 ,b2 )*ctan(2)

& + mm(a2 ,b2 )*ctan(3)

s(a1 ,b1+1) = s(a1 ,b1+1) + dxji(al)*sr(1,2)*dxji(be)

s(a1 ,b1+2) = s(a1 ,b1+2) + dxji(al)*sr(1,3)*dxji(be)

s(a1+1,b1 ) = s(a1+1,b1 ) + dxji(al)*sr(2,1)*dxji(be)

s(a1+1,b1+1) = s(a1+1,b1+1) + dxji(al)*sr(2,2)*dxji(be)

& + cc(a2+1,b2+1)*ctan(2)

& + mm(a2+1,b2+1)*ctan(3)

s(a1+1,b1+2) = s(a1+1,b1+2) + dxji(al)*sr(2,3)*dxji(be)

s(a1+2,b1 ) = s(a1+2,b1 ) + dxji(al)*sr(3,1)*dxji(be)

s(a1+2,b1+1) = s(a1+2,b1+1) + dxji(al)*sr(3,2)*dxji(be)

s(a1+2,b1+2) = s(a1+2,b1+2) + dxji(al)*sr(3,3)*dxji(be)

& + cc(a2+2,b2+2)*ctan(2)

& + mm(a2+2,b2+2)*ctan(3)

b1 = b1 + ndf

b2 = b2 + 3

end do ! be

a1 = a1 + ndf

a2 = a2 + 3

end do ! al

end
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