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Summary. The purpose of this paper is to analyze a finite element approxi-
mation of the stationary Navier-Stokes equations that allows the use of equal
velocity-pressure interpolation. The idea is to introduce as unknown of the
discrete problem the projection of the pressure gradient (multiplied by suit-
able algorithmic parameters) onto the space of continuous vector fields. The
difference between these two vectors (pressure gradient and projection) is
introduced in the continuity equation. The resulting formulation is shown to
be stable and optimally convergent, both in a norm associated to the prob-
lem and in thel.? norm for both velocities and pressure. This is proved first
for the Stokes problem, and then it is extended to the nonlinear case. All
the analysis relies on an inf-sup condition that is much weaker than for the
standard Galerkin approximation, in spite of the fact that the present method
is only a minor modification of this.

Mathematics Subject Classification (199&5N30, 76D05

1 Introduction

One of the most important subjects of research in the finite element ap-
proximation of the incompressible Navier-Stokes equations concerns the
velocity-pressure interpolation. When the standard Galerkin formulation is
used, the spaces chosen for the approximation of these variables have to sat-
isfy the classical inf-sup or BaBWa-Brezzi condition (see, e.g., [6]). Much
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effort has been invested in the development of approximation methods able
to avoid the need to satisfy such stability requirement. In particular, one of
the lines of research has been directed towards the development of meth-
ods accommodatingqualvelocity-pressure interpolation, considering this

as the simplest choice from the computational point of view. Examples of
these type of methods are those of Brezzi & Douglas [4], Douglas & Wang
[12], the Galerkin/least-squares (GLS) technique of Hughes, Franak
[14,15,17] and first-order system least-squares methods (see e.g. [1] and
references therein).

In this paper we analyze a stabilization technique of the above type,
that is, a finite element formulation for the incompressible Navier-Stokes
equations allowing the use of equal interpolation for the velocity and the
pressure. This technigue was developed for the Stokes problem in [10]. Now
we extend it to the nonlinear stationary Navier-Stokes equations. Also, the
linear problem is generalized to include the case in which the numerical
parameters that define the method are computed elementwise. This allows
to weaken the quasi-uniformity of the finite element partitions assumed in
[10]. Furthermore, optimalL? error estimates are obtained.

The motivation for the formulation to be analyzed herein is the stabi-
lization effect found in some fractional step methods when the pressure
is computed via a Poisson equation (see the discussion in [10]). It can be
shown that this enhancement comes from a modification of the continuity
equation, which introduces the difference between two discrete pressure
Laplacians computed in a different manner. The method proposed here has
been designed to inherit this term, although it is applied to the stationary
problem. The main idea of it consists in introducing as a new unknown of
the discrete problem the projection of the discrete pressure gradient onto the
velocity space. The difference between the pressure gradient and its projec-
tion is then introduced in the continuity equation, after being multiplied by
adequate algorithmic parameters.

Here we present a ‘classical’ numerical analysis of the method outlined
above, this meaning that the classical results known for the Galerkin ap-
proach using elements satisfying the inf-sup condition are recovered using
the stabilized formulation. These results include a stability estimate and a
convergence result in what we call ‘natural’ norm of the problem, as well
as error estimates ih? norms using duality arguments. These results are
proved first for the Stokes problem, and then they are extended to the non-
linear case.

Although our results are classical, they are based on non-standard ar-
guments. To analyze the stability of the finite element approximation, we
introduce a technigue based on the decomposition of the vector space that
contains both velocities and pressure gradients (multiplied by numerical pa-
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rameters) into three orthogonal subspaces. We analyze stability for each of
the components of the pressure gradient separately. One of these components
can be bounded by the original equations and another by the stabilization
term introduced. However, the stability of the third component must be ex-
plicitly required. As shown in [10], this leads toveeakinf-sup condition

that turns out to be verified using equal velocity-pressure interpolation. We
assume throughout that this condition holds.

An aspect that deserves special attention of the method analyzed here is
its numerical implementation. As it has been said, the method introduces a
new vector unknown to the discrete problem, thus increasing substantially
the number of nodal unknowns of the final algebraic system. However, this
new vector can be eliminated iteratively, keeping the matrix of the system
unchanged. To our knowledge, the present formulation isithplest mod-
ification of the Galerkin approachllowing equal velocity-pressure interpo-
lations for general finite element interpolations. Likewise, its extension to
the transient case is straightforward and can be made even computationally
simpler if the projection of the pressure gradient is treated explicitly [11].

It has to be remarked that the only purpose of the stabilization tech-
nique presented here is to stabilize the pressure. The instabilities due to the
convective term when the viscosity is very small are not considered in our
formulation and thus they have to be treated by using other stabilization
mechanisms, such as those studied in [9, 13,21, 22] (which also allow to use
equal velocity-pressure interpolation). From the theoretical point of view,
this is reflected by the fact that our estimates may depend on the inverse of
the viscosity, as for the standard Galerkin method.

Let us summarize now the results to be proved in the following. In Sect.

2 we describe the main assumptions on the finite element discretization,
as well as the discrete problem to be solved. In Sect. 3 we analyze the
linear problem. Stability and an optimal order error estimate are proved in

a mesh dependent norm, consisting of ffi& velocity norm plus thel?

norm of the pressure gradient multiplied by mesh dependent parameters
and its projection onto the velocity space. Nebt,error estimates for both

the velocity and the pressure are proved using duality arguments. In Sect. 4
these results are extended to the Navier-Stokes equations using the classical
theory of approximation of branches of non-singular solutions [7,16]. The
nearness between the standard Galerkin method and the present stabilization
technique is in particular reflected by the fact that standard results for the
former carry over to the latter with minor modifications.
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2 Statement of the problem
2.1 The stationary incompressible Navier-Stokes equations

Let us consider the classical stationary Navier-Stokes equations for an in-
compressible fluid. Lef2 be an open, bounded and polyhedral domain of
Rd, whered = 2 or 3 is the number of space dimensions, dnd= 0f?

its boundary. The Navier-Stokes problem consists in finding a velacity
and a scaled pressupe(the kinematic pressure divided by the kinematic
viscosity) such that

1
(1) A §(V~u)u+(u-V)u —Au+Vp=Af in (2,

(2) V-u=0 inf2,
3) u=0 onl,

where ) is the inverse of the kinematic viscosity ayfdis the force vec-
tor. We have considered the homogeneous Dirichlet boundary condition (3)
for simplicity. The expression adopted for the nonlinear term will simplify
the analysis, although for the continuous problem it could be replaced by
(u-V)u.

To write the weak form of problem (1)-(3) we need to introduce some
notation. As usual, we denote %" (w) the Sobolev space af-th order in
a setw, consisting of functions whose distributional derivatives of order up
to m belong toL?(w), and byH_ (w) the subspace aff ! (w) of functions
with zero trace orT". A bold character is used for the vector counterpart of
these spaces. THe scalar product is denoted Iy -),,, and theH™ norm
by || - |lm.w- The subscripin is omitted whenn = 0 and so isv when it is
0.

Let us now consider the spaces

@  V=HY®) Q:{qGLQ(Q)I/quQZO},

and the forms

(5) a(u,v) := (Vu, Vv),
(6) b(Q> U) = (Q7 V- ’U),
@) c(u,v,w) := (;(V cu)v + (u- V)v,w) ,

with u,v,w € V andq € Q. All these forms are continuous anmds
skew-symmetric in its last two arguments, that is

(8) c(u,v,w) = —c(u, w,v).
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The norms of: andc are denoted by, and N, respectively. Thus,

(9) a(u,v) < Nollu|1][vll,
(10) c(u, v, w) < Nelluf[1f[vf1]w]

Moreover,a is coercive as a consequence of the Poiedaredrics inequal-

ity, andb satisfies the inf-sup or BaBla-Brezzi condition for the spac¥s
and(@ introduced in (4). These conditions can be written as follows: there
exist positive constants’, and K, such that

(11) a(v,v) > KaHvH% YveV,
(12) inf sup blg,v) > K,
qeQ ’UGV1

where(); andV; are defined as

Q={qeQllldl=1}, Vi={veV||v]i=1}.

If (-,-) denotes the duality pairing betwe&h and its topological dual
spaceV’ = H~'(£2) where f is assumed to belong, the weak form of
problem (1)-(3) consists in findinf@, p] € V' x @ such that

(13) Ac(u,u,v) + a(u,v) — b(p,v) + b(qg,u) = X(f,v)

for all [v,q] € V x @Q. Since we assume th&t is Lipschitz continuous,
problem (13) has at least one solution (see [16]), which satisfies (1)-(3) in
the sense of distributions. Uniqueness only holds for sufficiently small data
or sufficiently large viscosity. In particular, the solution is unique if

(14) X = NNK?||fll_y < 1.

Takingv = w andg = p in (13) and using the coercivity af and the
skew-symmetry ot it follows that solutions to (13) satisfy the stability
estimate

(15) ulli < XK £y

If instead of havingf € V' = H~(£2) we requiref € L?(£2) and
I' is sufficiently smooth, it is known that solutions of problem (13) verifies
w € VN H?*2)andp € QN H'() (see e.g. [16]). This regularity far
will be needed only in Sects. 3.3 and 4.3 when proviigerror estimates.
Likewise, convergence will be proven for smooth enough solutions. We
define
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Definition 1 (a) The stationary incompressible Navier-Stokes equations
(1)-(3) are calledregularif [u,p] € V N H?*(2) x Q N H'(£2) when-
everf € L*(02), and there exists a constaf. > 0 such that

(16) lulla + llplly < Crll £1I-

(b) Letk > 1 be an integer. Solution, p] to (13) are calledk-regularif
[u,p] € V.0 H1(0) x QN H*(92).

It is known for example that problem (1)-(3) is regular wh€nis a
bounded andtonvexpolygon whend = 2 or when 2 is of classC? in
any space dimension [20]. Note that 1-regular solutions are not necessarily
regular since the shift (16) may not hold.

2.2 Finite element discretization

Let 7;, denote a finite element partition of the dom&irof diameterh. For
simplicity, we assume that all the element domaihs 7;, are the image

of a reference elemert through a polynomial mappind',, affine for
simplicial elements, bilinear for quadrilaterals and trilinear for hexahedra.
On K we define the polynomial spacés,(K) where, as usuak;, = P,

for simplicial elements an&; = Q. for quadrilaterals and hexahedra. The
finite element spaces we need are

A7) Qn={a e C(D)| mlx = o F', q € Ry (K), K €T},
Vi = {on € [ | valy = 90 F3,

(18) o€ (R (K)]", K €T},
(19) Vo ={vn € Vi | vplp =0}.

Notice that all these finite element spaces are referred to the same partition
and are made up with continuous functions.

The standard Galerkin finite element counterpart of problem (13) can
now be written as follows: fingky,, pr] € V1,0 X @, such that

(ZO)AC(uha Up, 'Uh) + a(Uh, 'Uh) - b(phu ’Uh) + b(qha ’th) = )\<f7 ’Uh>,

for all [vy,, qn] € Vo x Q. Itis well known that if this formulation is

used the velocity and pressure finite element spaces must satisfy the discrete
counterpart of the inf-sup condition (12). For the finite element spaces (17)-
(19) this happens it, = k4 + 1, i.e., for Taylor-Hood type elements [2,5,

18] This condition is not necessary using the method described next.
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Let ax, K € Tp, be a family of mesh parameters depending on the
element sizes . The modification of problem (20) that we propose is: find
[Uh,ph,fl,h] € Vh70 X Qh x Vy, such that

(21) Ac(up, up, vp) + a(up, vy) — b(pr, i) = A, vn),
(22)2 % (Vpn, Van)k ZQK (wn, Van)k + b(Qh,Uh) =0,

K
(23) — >k (Vpn, o4k + (@, on) = 0,

K

for all [’Uh,qh,’f)h] S Vh,() X Qp X V.
For a functiong € H'(2) let us definév”q by

(24) Vilk = axVlg, K €T

From (23) it is seen thai,, is the projection oV"p;, ontoV,.
Let us also introduce the form

B(A; wh, ph, Whi Vps qh, Up)
= Ae(up, up, vp) + a(up, vy) — b(ph, vy) + b(gn, up)
(25) +(V'py, — @n, Vi, — o).

Problem (21)-(23) can be written now as: fipg,, pp,, wy) € Vi x
Q1 x V', such that

(26) B(X; wh, ph, h; On, g, On) = AN f, vp)

for all [Uh,qh,f)h] S Vh’() X Qp x V.

Let us describe now the assumptions we need on the family of finite
element partition$7;, },~o. First of all, we assume that it is non-degenerate,
that is, there exists a constant> 0 such that for alk. > 0

(27) diam(Bg) > odiam(K) VK € T,

whereBy is the largest ball contained i§ € 7;,. Condition (27) is needed
in order to have the following inverse estimates (see, e.g., [3]): there exist
positive constant€’; andCs such that

(28) lonll,x < Clh_lehHo K
(29) |vnll oo (k) < C2hye 2| vplo.x,

whereuy, is a function of any of the finite element spaces (17)-(19).

From now onwards we us€', possibly with subscripts, to denote a
positive constant independent of the mesh size gmbt necessarily the
same at different occurrences.
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Since we always have that

d/2
lonllo, e < CRIL|on oo i)

from (29) it follows that
30)  Cihllonlleo ey < lvnllo < Cohfl onll o (ic)-

Let nnoq be the number of nodes per element @&jdhe shape function
associated to théth node. Ifv; is the value of a function;, at this node
and we are given a set of nodal parameters {3, ..., B,,., }, we define

Mnod

(31) ,th Z NiBiv;.

Let maxg |3| be the maximum of the absolute value of the nodal pa-
rameterss in an elements. It is easy to see that

1425 (Bon) e (1) < C max |5 [|vn | oo (¢
which, by virtue of (30), implies that

(32) [T x (Bvn) o, < CmgXWHUhHO,K-

We shall need a rather technical condition on the set of element param-
etersa, which is reflected by a condition gV}, } .-, Sinceax depends
onhg, as we shall see. Lét/; be a macroelement obtained from the union
of the elements to which a noddelongs. Let us define

1

(33) Q; = moasi Z measK a,
KCM;

which is nothing but a weighted average of the parametgrsWe need

this average to converge to these parameters as the mesh is refined. More
precisely, we need a continuously graded family of meshes, a concept in-
troduced in the following:

Definition 2 The family of finite element mesh§g, } 1.~ is continuously
gradedf there exists a function = 6(h), tending to 0 ag — 0, such that

1—a>§6(h).

(34) max (max
o

KeTy K
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This condition is less restrictive than the quasi-uniformity of the family
{Th}n>0. It allows for instance local mesh refinement. What it does not
permit, for example, is a constant ratio between the sizes of the elements
sharing a fixed nodal point as the mesh is refined. From the practical point of
view this is not arestriction, since the element sizes given to mesh generators
are usually continuous functions obtained from the interpolation of element
sizes at certain given points of the computational domain.

Condition (34) implies in particular that

(35) max la| < (14 6(h)) ak.

Our stability and convergence analysis of the following sections will be
strongly based on a decomposition of the pressure gradient that we describe
next. LetV"Q; denote the space of vector functionslif(£2) which are

of the formV"¢,, with ¢, € Q;,, and consider the vector space

(36) E,:=V,+V"Q,=E,1 ®Ep® Epz3,

whereE}, ;, i = 1,2, 3, are three mutually.? orthogonal subspaces defined
as

(37) Ep 1 := Vi,
(38) Epsy=VigNVp,
(39) Eh,3 = Vﬁ N Ey,.

Letus denote by, ; the orthogonal projection frody;, to E}, ;, andP, ;; :=

P+ Ppj,i,5 = 1,2,3. Also, we denotel;, ;; := Ej; © Ey, ;. In order

to prove that the pressure gradient in problem (26) is stable, we shall bound
independently the three terms in the decomposition

(40) Vi'on = Py (V1) + Pua(V 1) 4 Pus(Vips).

To obtain error estimates for solutions of problem (26) we shall make
use of the approximation properties of the spaégs), (), andV;,. These
can be written as follows. b € H"(2)NV,r > 1,andq € H*(2) N Q,
s > 1, there existly, 1 (v) € Vo, In2(q) € Qr andI, 3(Vq) € V, such
that

(41) v —=Ip1(v)|lm < ChF |lvllg;, k1 = min{r,ky + 1} —m,

42) g — In2(@)llm < C2h*|lqllky. k2 = min{s, kq + 1} —m,
IV — I3(V"q) e < C3h™ ||V g1y 1c,

(43) k3 = min{s — 1, k, + 1} — m.

Notice that the last estimate is local, siri¢éq is in general discontinuous.
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The next ingredient we need is an inf-sup condition. The bound for
the first component of the pressure gradient decomposition in (40) can be
obtained from the momentum equation (21), whereas the third component
can be bounded only assumiag- > 0. Thus, the stability provided by the
method in comparison with the standard problem (20) is precisely in the
control over the tern®, 5(V"p;), that is, the component of the pressure
gradient orthogonal to the space of continuous vector figlgs

The second component in (40) deserves special attention. It depends on
the properties of the finite element spaces, and not on the problem actually
solved. We assume that there is a positive congtgrguch that

(44) V|| < K3||Poas(V )| Yan € Qn,

which means that P, »(V"gy,)|| can be bounded byP;, 13(V"qy)]|. This
condition is equivalent to the existence of a consfant= 1/K) > 0 such
that

(45) inf sup (Vagn, vn) 2,

w€0n gy IVanlTonl] =

which is similar to the inf-sup condition of the standard problem, although
much weaker and, in particular, verified when equal interpolation is used.
This was proved in [10] folP, interpolations (and a very similar proof can
also be applied to th&; case) under a mild condition on the family of
finite element meshes, similar to that encountered in [2] for Taylor-Hood
elements. The analysis in [10] is based on a generalization of the macroele-
ment technique presented in [19].

Finally, we need to introduce a further assumption, now on the behavior
of a: there exists constants) andas, independent of i, such that

(46) aohg < ag < arhg VK € T;,.

This completes the set of assumptions on the discrete finite element
problem (26).

3 Stability and convergence I. Stokes problem

In this section we shall consider the Stokes problem, that is, the problem
obtained with\ = 0 in (25).

Theorem 1 Suppose that the famil{7;, },~ of finite element partitions

is non-degenerate, continuously graded and such that (45) and (46) hold.
Then, forh small enough, there exists a unique solution to problem (26) that
verifies the stability estimate

(47) lunlly + V" pull + ll@all < CAILF] -1,
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for a constantC' independent of.

Proof. Since the problem is linear and finite-dimensional, it is enough to
prove that (47) holds. From the definition of the bilinear faffior A = 0
it is easy to see that

B(0; wh, pr, @n; wh, phy @p) = alup, up) + ||V iy — @ ||
(48) S M Fll=1llun1

From the coercivity of the bilinear forma (see (11)) it follows that
(49) lunlle < MG £

On the other hand, (23) can now be writtenias = P, 12(V"py,), and
therefore from (48) it follows that

o 3|12 h _ 9
P on)|| = 19" n = @n2 < AFI- unl,
and, from estimate (49),
(50) | P < K 2N £ -

If v, € Ey, letus definell (awvy,) by II(awy) | = Hi(avy,), with ITx
defined in (31). We have that

Hth,l(Vhph)H2 => (aKVph,Ph,l(Vhph)>K
K
= (Vph,ﬂ (O?Ph,l(vhph)>>

+ Z (Vph, ag Py (Vi) — i (O_‘thl(vhph)D
K

(51) =T+ 1.

K

Let us bound the term%; and7,. From the momentum equation (21)
(without the nonlinear term) we have that

T =\ <f, g (dPhyl(Vhph)>> P (u;w 1 (dthl(Vhph)>>
(52) < [/\HfH—l +Na”uh”1} HU (éPh,l(Vhph)>H1-

Using the inverse estimate (28) and inequalities (32) and (35), together with
assumption (46) on g, we obtain

e ) [} = 5 s (e |
K

1L,K
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(53) <C HPh,l(VhPh)H -
Using this in (52), together with inequalities (32) and (49), it follows that
(54) T < CAIS -y || P (V1) |

To boundT;, observe first that

=S (aKPh,l(Vhph) — 1k <07Ph,1(vhph)))

oK

(55) = I (B Poa (Vn) )

with @K = 1 — &;/ak, and therefore we obtain, using inequality (32),
assumption (34), the weak inf-sup condition (44) and the bound (50),

T,=> (aKVph, Ik (ﬁKPm(Vhph)))
K

K

1/2
<15 (3w ()],
) |
< C3(h)||V"pa HPh,l(vhph)H
< a0 (s + [ Pacwtan] [racson)

56) < o) | B (T )|+ CALFIL | Paa(Tn)

Using inequalities (54) and (56) in (51) we have that

(1= 05 || PP o) < ENIFIL | Pas (9

which for k small enough implies that

(57) | Paa (90| < I

This, together with (50) and the weak stability condition (44) implies the
bound forv"p;, in (47). Finally, the bound foii;, follows from the fact that
@, = Ph1a(Vipy). O
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A similar stability estimate to that of (47) can be obtained replacigg
by h i and using only the conditiong > aghk instead of (46) (see [10]).
Observe that we have only used the fact hat< a1 hg in (53). However,
this part of assumption (46) is needed also for the error estimate presented
next, which establishes convergence of the solution of problem (26) to the
solution of the continuous Stokes problem in the norm in which stability
has been proven, that is, in tii&' norm for the velocity and thé&? norm
of the mesh dependent pressure gradient defined in (24) and its projection
ontoV,. This is what can be called the ‘natural’ norm of the method.

Theorem 2 Under the same conditions as in Theorem 1, suppose also that
the Stokes problem isregular, withk > 1. Then, forh small enough, the
solution of problem (26) satisfies the error estimate

(58)  lu—uplli + V"o — Vi + ||V — || < CB,

wherer = min{k, ky, kq+1} andu andp are the solution of the continuous
problem (13) (without the nonlinear term).

Proof. The proof is essentially the same as in Theorem 3 in [10]. The main
difference is due to the fact that the parametefs are now allowed to
change from element to element. This only affects the following bound:

1Po1 (V") — Poa(Vph)|?
= (V' — V', Pua(V"qn) = Pra(V'pr))
+ (V' — V", P 1 (V1) — Po1 (V1))
(59) =:T1 4+ T,

for all functionsg;, € Q. The first termi’; can be written as

Ty =) ok (Vp — Vpn, Poa (Vi) — Ph,1(Vhph))
K

_ Z <Vp — Vpn, IT (dPh,1(Vth)) -1 (@thl(vhph)))}(
K

+ Z (Vp — Vpn, i Pna (Vn) — are Pra (V)
K

11 (6P (V"an) ) + 11 (aPra(V'p1)) )

(60) =:T11 + Tia.
From (21) (without the nonlinear term) we have that
T = —a (U —up, 11 (dPh,l(Vth)) — I (éph,l(vhph)»

< Nyllu — unr Hn (aph,l(vhqh)) I (aph,l(vhph)) H1 .

K
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Using the same steps as those to arrive to (53) we get
11 (aPy (Vi) — 1T (aPur (V" H
H (Oé 1 (V %)) (Oé h,1(V ph)) .

< C||Pua (V) = Pt (V1)

)

and therefore
(61  Tit < Clu—wil [P (9"a) = P (97m0)|

ForTi5 in (60) we have that

1
Tip = Z (Vhp — V", Pha (V) — @U (@Ph,1(Vth)>
K

1
—Py1(V'pp) + —1IT (@Ph,l(vhph))) ;
(674 K
and using the same steps as in (56) we obtain

(62) Tz < 0()|IV"p = V"pull | Py (V"an) = P (V")
Using (60)-(62) in (59) we get
12,1 (V"q1) = Pay (V'p3) |
< Ollu = uplli + 6(R) V"D = V'oi || + V"D = Vq]].
The proof concludes as in Theorem 3 of [10], assunhing be sufficiently

small (note that there the projection of the pressure gradient does notinclude
the parameteray). [

We use now a duality argument to obtain pressure stabilitf%{12)
and improved error estimates for the velocity and pressure, also in the space
L?(£2), in a similar way to [4] for the GLS method. The shift used in these
duality arguments needed for the velocity error estimates (not for the pres-
sure) requires of more regularity of the problem than was needed up to
now.

Theorem 3 Under the same assumptions as in Theorem 1, the approximate
pressurep;, satisfies:

(63) Ipnll < CAFIl -

If the solution[u, p] of the continuous problem k-regular, withk > 1,
then

(64) lp — pull < CRT,
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wherer = min{k, ky, kq + 1}. Moreover, if the Stokes problem is regular
then the approximate velocity;, satisfies

(65) |w — up|| < Ch™ L

Proof. We begin by the stability and error estimates for the pressure. Let
v = 0 or1and considet € H}(£2) andn € L?(£2) as the solution of the
Stokes problem:

(66) Az +Vn=0 in 0,
(67) V-z=(yp—pn) in £
(68) z=0 on I.

Standard results for this problem yield (see [16]):

(69) 1zl < Cllyp —pull, Il < Cllyp — pall-
If z;, € Vj0 is an approximation te satisfying:
(70) 1z — 2p|lmx < Chy ™|2llx, K € Th,
form =0, 1, we have:
lvp = pull> = (vp — PP — D)
= (V2,70 —pn)

= (V-(z—2zn),w —pn) — (20 V(70 — p1))
= —(2 = zp, V(yp — pn)) + a(yu — up, z1n) + YN(F, 2n)

1
==Y —(z—zu/V'p = V'p))k
K K

+a(yu — up, zp, — z) + a(yu — up, z)
+ NS zn — 2) +YAF, 2)

1
<D ollz—

K
+C (llyw —wnlly + YA 1) (12 = 2zall + ll2]]1)

<C> |z
K
+Cllzlh (e — wallh + A1 £ -s)
(7D C (I79"p = V'pill + 72 = wnlly +AIF 1) Ivp = pal

lo,x[[7V"p — V'py,

0,K

Ik YV — Vphllo, i

The stability estimate (63) for the pressure followsfet 0 and Theorem 1,
whereas the error estimate (64) is obtainechfet 1 using (58).
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Let us prove now the estimate for the velocity. et H?(2)NH} ()
and¢ € H'(£2) N Q be the solution of the regular problem:

(72) —Ay+Vé=u—up in {2,
(73) V-y=0 in {2,
(74) y=0 on I

which satisfies
(75) lyllz < Cllu —upnll, €]l < Cllu —upl.

Lety, € V0 and¢, € Q) be optimal order approximations gpand¢,
respectively, satisfying:

(76) ly = ynllmic < C Ryl
(77) 1€ = €nllmxc < Chi™IIE]

form = 0, 1. We then have:

1LK-

[ — up|® = (w — wp, w —up)
=a(y,u —up) — b(&,u —up)
= [a(y — yp,u —up) — b(§ — Ep,u — up)]
+ a(yp, u —up) — b(&p,u —uy) =Ty + T + T5.
We bound each term separately:

Ty =a(y — yp,u —up) — b(€ — &pyu — up)
< Nolly — ypllille — unlli + ClI§ — &nllllw — unlly
< Cllu —up1(hllyllz + RlEl)
< Chlu—upl1flu — up

by (76), (77) and the shift (75). From the original momentum equation (with
¢ = 0) we have:

T = a(y,, u — up)
= _(vp - vpha yh)

1
=> — (V"= V'pry—un)x
K YK

1
<Y —IIV' = V'ulloxlly = ynllox
w

< CZ hKHyH2,K||VhP - VhPhHQK
K

(78) < Chllu—wup||||[V"p — V]|,
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by (76) and (75). Finally:

T3

= —b(&p, u —up)
= (V'p — Vp,, V",) — (V' — @, V&)
= (Vhp — Vi, Vig, — VRE) + (Vip — Vipy, V)
— (VM — @y, Ve, — V) — (Vi — @y, V)
< Z (HVhp — V'hllo.x + IV"p — @ 0,K)
K

x (19" = V"€llo.ic + 9"€llo.xc)
<Cy (HVhp — V'
K

o5+ V"D = @nlo xc ) Arclléll i

< O (IV"p = Vpull + V"p = @) Al = wall

by (77) and (75). We obtain the error estimate for the velocity combining
the above inequalities far, 7> and75. [

4 Stability and convergence II:
Navier-Stokes equations

In this section we extend the results of the previous section to the nonlinear
Navier-Stokes equations using the theory of approximation of branches of
nonsingular solutions of [7, 16]. However, our first result concerns the case in
which the uniqueness condition (14) holds. We show that this same condition
ensures stability and unigueness of solution of the discrete problem. To prove
this we shall use as auxiliary problem alinearized form of it, namely, Picard’s
linearization. Denoting by a superscript the iteration counter, this problem
is: givenw!) arbitrary, fori = 1,2, ..., find [u?, pi ,@}] € V0 x Qp x Vi,

such that

(79)

B(Z)(Aauzap27’alhvvh7Qha’bh> - )\<f7'vh>

for all [vy, qn, on] € Viap X Qn x V. Here, By, is the bilinear form
obtained fromB using c(uz_l,uﬁl,vh) as linearization of the nonlinear
term.

As a by-product of the following theorem we shall have convergence
of Picard’s iterates, a property that does not hold when the solution to the
nonlinear problem (13) is not unique (an alternative proof of the following
result is to proceed the other way around, showing that when (14) holds
the nonlinear operator associated to the variational problem (21)-(23) is
contractive, and thus Banach’s fixed point theorem implies that there is a
unigue solution to which Picard’s linearization scheme converges).
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Theorem 4 Suppose that the famil{7;, }~o of finite element partitions

is non-degenerate, continuously graded and such that (45) and (46) hold.
Suppose also that the uniqueness condition (14) holds. Theh, dorall
enough, there exists a unigue solution to problem (26) that verifies the sta-
bility estimate

(80) lanlls + [V pall + llanll < CAIF]-1,
for a constant' independent of.

Proof. We split the proof in three steps:
Step 1: The solution of the linear problem (79) exists, is unique and each
iterate satisfies the stability estimate (80).

Since problem (79) is linear and finite dimensional, it is enough to prove
the stability estimate (80). Due to the skew-symmetry (aff. (8)), this can
be done exactly as for the Stokes problem, replaingby B;). The proof
of Theorem 1 can be repeated here, the only difference being the bound for
T in (52). This term is now

Ty = A <f,H (dph,l(vhplﬁ)» —a (Uﬁu I <dPh,1(Vhp2)>>
)\c< ult up, 1T (dPhJ(VhPZ))) ;

and, using the uniqueness condition (14) and the bounds for the velocity
iterates (i.e., bound (49) foﬂ andu —1), the last term can be bounded by

)\C( Ul IT (@Phg(vhpb))
< ANl || 7 (6P (9" 01)) |
<Ay |17 (aPaa (9"93)) |

and now we can proceed as in Theorem 1.
Step 2: Picard’s iterates converge to a solution of the nonlinear problem

(26).
Subtractlng Egs. (79) farand: — 1 and taklng as test functionsg, =
ul —u, ', g =p, —p, ' andd), = a}, — , we get
a(uh uz g, —uy )+ (| V(0 —pﬁ; ) — (@, —a, )|
(81)  +Ac(uli ' —ul T uh,ul —ul ) =0.

From the coercivity of: and the bound fow!, we have that

Kallh =17 < ANl = i s, — 2
< /\2NCK;1HJE|L1HU;Z - u’h Hluuz — uz_lHl.
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Using inductively this inequality and the definitionpin (14) we have that
(82) lu, =y, Ml < OX'

Sincey < 1 this proves convergence of the velocities. Using this in (81) we
find that

. . 2 . . . .
| s (V"0 = i) || = 19"k = i) = (@ — )

< ANCJluy ™t — w2 g ef, — wh
< Cx*,

from where

(83) | Prs (V" h —pi7h) || < X

To obtain a bound fot P, 1 (V" (p}, — p}, ') || we proceed as in Theorem 1
to obtain the bound fof P, 1 (V"py) |- Equation (51) is also valid replacing
pr by pi, — pi". The new ternd is now

T = —a (u;; —wil T (&Ph71(vhp§l)) . (o‘zPhJ(Vhpz_l)))
_)\c< i1 i gyl 7 (@PhJ(VhpﬁL)) I (aPM(vhp;';l)))
—Ac (ui_l, ul — uﬁ:l, I (dPhJ(Vhp%)) — 11 (&Ph,l(vhp?l))) )

Using the continuity of: andc, the bound foru}'l and (82), as well as (53)
with py, replaced by’ — pﬁl‘l, we obtain that

2 (T =2i))

For the new tern?; we have, using the same steps as in (56),

(84) Ty <

1 <o) (2 )|
ol ()] s (k)|

Using the bound (83) faP,, 5 (V" (p}, — p}~')) and (84), forh small enough
we have that,

(85) HPM (vh(p;'l _ pﬁ';l)) H < Oy,

Convergence of the pressure follows now from (83), (85) and the weak
inf-sup condition, and convergence @f follows from the fact thati;, =

Py 12(Vp}).
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Step 3: Problem (26) admits a unique solution.

Let (wp,1,Ph,1, Uh1) and(wp, 2, pr2, Up 2) be two solutions of problem
(26) and(uy,, pr, up) their difference. It is easy to see thaj ; anduy,
satisfy the bound (80) and that

B(tp, Pr, @n; Wh, Br, Wn) = a(@n, @p) + ||V p — |
= —Ac(up, up,1, up).

The coercivity ofa, the continuity ofc and the bound (80) fou, ; imply
that

lanllf < xllanl,

and, sincey < 1, u, = 0. Also, p, = 0 andw;, = 0 follows from the
fact that these variables are solution of a linear homogeneous problem and
satisfy the stability estimates obtained in the linear case.

Let us consider know the general case in which the uniqueness condition
(14) does not hold. Regardless of the behavior of the continuous problem,
it can be shown using exactly the same arguments as in [7] (also used in
[22]) that problem (21)-(23) has solution. However, we consider directly
the situation in which these solutions exist and approximate those of the
continuous problem. For that, we need to recast it in the following abstract
form. Let /A be a compact subset &' and for each\ € A consider the
mappings

vxQ-Lv Lvxo,
where
1
GA\v,q9) =X |(v-V)v+ i(V-v)'v - fl,

and|u, p] := Tg is the solution of the continuous Stokes problem
a(u,p) — b(p,v) + b(q,u) = (g,v), VIv,q eV xQ.

Clearly, the solution of problem (13) j&, p] = —T'G(\; u, p), that is, the
solution of

(86) F(\u,p) := [u,p] + TG(A\;u,p) = 0.

Likewise, the discrete Navier-Stokes problem can be written in a form
similar to (86) with the help of the operators

VhXQhﬂ)V/thXQh,
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whereG},(A\; vp, qr) := G(A; vp, qn) and|uy, p] := T}, g is the solution of
the discrete Stokes problem ‘condensing’ the pressure gradient projection:

a(wp, pr) — b(pn, vp) + b(qn, up) + <Ph,3(Vhph),Vth) = (g, vn),

for all [vy,, qn] € Vi, x Qp. The solutionuy,, p,,| of problem (21)-(23) is
the same as the solution of

(87) Frp(Xs wp, pr) = [wn, pp] + ThGr(X; un, pr) = 0.

Let DF(); u, p) denote the Fechet derivative of with respect tdu, p).
Acurve{(A, [u(A),p(N)]); A € A} is called abranch of nonsingular solu-
tions of (86) if [u(\), p(A\)] is solution of this problem for alh € A4, the
mapA — [u(\),p(A\)] is continuous and F'(X; u(A), p(A)) is a homeo-
morphism ofV' x Q.

The following results shows that if a branch of nonsingular solutions
of (86) is regular enough, then problem (87) has also a unigque branch of
nonsingular solutions which gives an approximation of optimal order to it:

Theorem 5 Suppose that the family7; },~ of finite element partitions

is non-degenerate, continuously graded and such that (45) and (46) hold.
Assume also thaf(A, [u(A),p(N)]); A € A} is a branch of nonsingular
solutions of (86) such that— [u(\), p(\)] € VNH*(2)xQ nH*(2)

is continuous for a certain integér > 1. Then, forh small enough, there
exists a unique branch of nonsingular solutiof{s\, [uy (), pr(N)]); A €

A} of problem (87) which satisfies

(88) [w(A) = wn(A)]l1 + [Ip(A) = pr(A)[| < CAAT,
forall A € A, wherer = min{k, ky, kq + 1} andC()\) depends on.

Proof. As in Theorem IV.4.1 of [16], the proof simply consists in checking
that the assumptions of the abstract approximation result IV.3.3 of this ref-
erence are satisfied. First, we know tlias a bounded linear operator from
V/to V x Q. By virtue of Theorem 1 and the pressure stability estimate
(63) in Theorem 37}, is also a bounded linear operator frdMto V', x Q,
(endowing this space with the same normdasx (). Thus,

(89) T e ,C(V/, V x Q), Ty € ,C(V/, Vi % Qh)

On the other hand;’ is aC> map whose Fchet derivative with respect
to [u, p], DG(\;u,p), mapsV x Q to V' for eachlu,p] € V x Q and is
given by

DG()‘a U,p) ’ [U? Q]

= ('u-V)u—i—(u-V)v—l—%(V~v)u+%(V-u)v :
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Furthermore, Sobolev’'s embedding theorem aiittilr’s inequality imply
that in fact DG(X\;u, p) - [v,q] € Z := L3/?(12) wheneveru, v € V.
Therefore, forG we have

(90) G eC>®(V xQ,V'), DG\u,p)e LV xQ,Z).
On the other hand, Theorem 2 and (64) in Theorem 3 imply
(91) (T —Th)gllvxg < Ch" Vge V'

SinceZ = L3/?(12) is compactly embedded W' = H~'(12), this last
estimate implies

92 i T —T; =0.
(92) hg%” hllzzvxg) =0

Properties (89)-(92) are precisely the assumptions needed to apply Theo-
rem 1V.3.3 in [16], from where estimate (88) follows. The dependence of
C(A) with X appears through the inverse of the homeomorphism
DF(X\;u(M),p(N). O

Finally, optimal L? estimates for the velocity can be obtained if the
Stokes problem is regular. The following result can be proved adapting the
proof of Theorem IV.4.2 in [16] as done above in Theorem 5:

Theorem 6 Under the same assumptions as in Theorem 5, if, in addition,
the Stokes problem is regular, then the error estimate

lw = un ] < CO)R

holds for all\ € A.
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