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Summary. The purpose of this paper is to analyze a finite element approxi-
mation of the stationaryNavier-Stokes equations that allows the use of equal
velocity-pressure interpolation. The idea is to introduce as unknown of the
discrete problem the projection of the pressure gradient (multiplied by suit-
able algorithmic parameters) onto the space of continuous vector fields. The
difference between these two vectors (pressure gradient and projection) is
introduced in the continuity equation. The resulting formulation is shown to
be stable and optimally convergent, both in a norm associated to the prob-
lem and in theL2 norm for both velocities and pressure. This is proved first
for the Stokes problem, and then it is extended to the nonlinear case. All
the analysis relies on an inf-sup condition that is much weaker than for the
standardGalerkin approximation, in spite of the fact that the present method
is only a minor modification of this.

Mathematics Subject Classification (1991):65N30, 76D05

1 Introduction

One of the most important subjects of research in the finite element ap-
proximation of the incompressible Navier-Stokes equations concerns the
velocity-pressure interpolation. When the standard Galerkin formulation is
used, the spaces chosen for the approximation of these variables have to sat-
isfy the classical inf-sup or Babuška-Brezzi condition (see, e.g., [6]). Much
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effort has been invested in the development of approximation methods able
to avoid the need to satisfy such stability requirement. In particular, one of
the lines of research has been directed towards the development of meth-
ods accommodatingequalvelocity-pressure interpolation, considering this
as the simplest choice from the computational point of view. Examples of
these type of methods are those of Brezzi & Douglas [4], Douglas & Wang
[12], the Galerkin/least-squares (GLS) technique of Hughes, Francaet al.
[14,15,17] and first-order system least-squares methods (see e.g. [1] and
references therein).

In this paper we analyze a stabilization technique of the above type,
that is, a finite element formulation for the incompressible Navier-Stokes
equations allowing the use of equal interpolation for the velocity and the
pressure. This techniquewas developed for the Stokes problem in [10]. Now
we extend it to the nonlinear stationary Navier-Stokes equations. Also, the
linear problem is generalized to include the case in which the numerical
parameters that define the method are computed elementwise. This allows
to weaken the quasi-uniformity of the finite element partitions assumed in
[10]. Furthermore, optimalL2 error estimates are obtained.

The motivation for the formulation to be analyzed herein is the stabi-
lization effect found in some fractional step methods when the pressure
is computed via a Poisson equation (see the discussion in [10]). It can be
shown that this enhancement comes from a modification of the continuity
equation, which introduces the difference between two discrete pressure
Laplacians computed in a different manner. The method proposed here has
been designed to inherit this term, although it is applied to the stationary
problem. The main idea of it consists in introducing as a new unknown of
the discrete problem the projection of the discrete pressure gradient onto the
velocity space. The difference between the pressure gradient and its projec-
tion is then introduced in the continuity equation, after being multiplied by
adequate algorithmic parameters.

Here we present a ‘classical’ numerical analysis of the method outlined
above, this meaning that the classical results known for the Galerkin ap-
proach using elements satisfying the inf-sup condition are recovered using
the stabilized formulation. These results include a stability estimate and a
convergence result in what we call ‘natural’ norm of the problem, as well
as error estimates inL2 norms using duality arguments. These results are
proved first for the Stokes problem, and then they are extended to the non-
linear case.

Although our results are classical, they are based on non-standard ar-
guments. To analyze the stability of the finite element approximation, we
introduce a technique based on the decomposition of the vector space that
contains both velocities and pressure gradients (multiplied by numerical pa-
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rameters) into three orthogonal subspaces. We analyze stability for each of
the componentsof thepressuregradient separately.Oneof thesecomponents
can be bounded by the original equations and another by the stabilization
term introduced. However, the stability of the third component must be ex-
plicitly required. As shown in [10], this leads to aweakinf-sup condition
that turns out to be verified using equal velocity-pressure interpolation. We
assume throughout that this condition holds.

An aspect that deserves special attention of the method analyzed here is
its numerical implementation. As it has been said, the method introduces a
new vector unknown to the discrete problem, thus increasing substantially
the number of nodal unknowns of the final algebraic system. However, this
new vector can be eliminated iteratively, keeping the matrix of the system
unchanged. To our knowledge, the present formulation is thesimplest mod-
ification of the Galerkin approachallowing equal velocity-pressure interpo-
lations for general finite element interpolations. Likewise, its extension to
the transient case is straightforward and can be made even computationally
simpler if the projection of the pressure gradient is treated explicitly [11].

It has to be remarked that the only purpose of the stabilization tech-
nique presented here is to stabilize the pressure. The instabilities due to the
convective term when the viscosity is very small are not considered in our
formulation and thus they have to be treated by using other stabilization
mechanisms, such as those studied in [9,13,21,22] (which also allow to use
equal velocity-pressure interpolation). From the theoretical point of view,
this is reflected by the fact that our estimates may depend on the inverse of
the viscosity, as for the standard Galerkin method.

Let us summarize now the results to be proved in the following. In Sect.
2 we describe the main assumptions on the finite element discretization,
as well as the discrete problem to be solved. In Sect. 3 we analyze the
linear problem. Stability and an optimal order error estimate are proved in
a mesh dependent norm, consisting of theH1 velocity norm plus theL2

norm of the pressure gradient multiplied by mesh dependent parameters
and its projection onto the velocity space. Next,L2 error estimates for both
the velocity and the pressure are proved using duality arguments. In Sect. 4
these results are extended to the Navier-Stokes equations using the classical
theory of approximation of branches of non-singular solutions [7,16]. The
nearness between the standardGalerkinmethod and the present stabilization
technique is in particular reflected by the fact that standard results for the
former carry over to the latter with minor modifications.
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2 Statement of the problem

2.1 The stationary incompressible Navier-Stokes equations

Let us consider the classical stationary Navier-Stokes equations for an in-
compressible fluid. LetΩ be an open, bounded and polyhedral domain of
R

d, whered = 2 or 3 is the number of space dimensions, andΓ = ∂Ω
its boundary. The Navier-Stokes problem consists in finding a velocityu
and a scaled pressurep (the kinematic pressure divided by the kinematic
viscosity) such that

λ

[
1
2
(∇ · u)u + (u · ∇)u

]
− ∆u + ∇p = λf in Ω,(1)

∇ · u = 0 in Ω,(2)

u = 0 on Γ,(3)

whereλ is the inverse of the kinematic viscosity andf is the force vec-
tor. We have considered the homogeneous Dirichlet boundary condition (3)
for simplicity. The expression adopted for the nonlinear term will simplify
the analysis, although for the continuous problem it could be replaced by
(u · ∇)u.

To write the weak form of problem (1)-(3) we need to introduce some
notation. As usual, we denote byHm(ω) the Sobolev space ofm-th order in
a setω, consisting of functions whose distributional derivatives of order up
tom belong toL2(ω), and byH1

0 (ω) the subspace ofH1(ω) of functions
with zero trace onΓ . A bold character is used for the vector counterpart of
these spaces. TheL2 scalar product is denoted by(·, ·)ω, and theHm norm
by ‖ · ‖m,ω. The subscriptm is omitted whenm = 0 and so isω when it is
Ω.

Let us now consider the spaces

V = H1
0(Ω), Q =

{
q ∈ L2(Ω) |

∫
Ω
q dΩ = 0

}
,(4)

and the forms

a(u,v) := (∇u,∇v),(5)

b(q,v) := (q,∇ · v),(6)

c(u,v,w) :=
(

1
2
(∇ · u)v + (u · ∇)v,w

)
,(7)

with u,v,w ∈ V and q ∈ Q. All these forms are continuous andc is
skew-symmetric in its last two arguments, that is

c(u,v,w) = −c(u,w,v).(8)
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The norms ofa andc are denoted byNa andNc, respectively. Thus,

a(u,v) ≤ Na‖u‖1‖v‖1,(9)

c(u,v,w) ≤ Nc‖u‖1‖v‖1‖w‖1.(10)

Moreover,a is coercive as a consequence of the Poincaré-Friedrics inequal-
ity, andb satisfies the inf-sup or Babuška-Brezzi condition for the spacesV
andQ introduced in (4). These conditions can be written as follows: there
exist positive constantsKa andKb such that

a(v,v) ≥ Ka‖v‖2
1 ∀v ∈ V ,(11)

inf
q∈Q1

sup
v∈V 1

b(q,v) ≥ Kb,(12)

whereQ1 andV 1 are defined as

Q1 = {q ∈ Q | ‖q‖ = 1} , V 1 = {v ∈ V | ‖v‖1 = 1} .

If 〈·, ·〉 denotes the duality pairing betweenV and its topological dual
spaceV ′ = H−1(Ω) wheref is assumed to belong, the weak form of
problem (1)-(3) consists in finding[u, p] ∈ V × Q such that

λ c(u,u,v) + a(u,v) − b(p,v) + b(q,u) = λ〈f ,v〉(13)

for all [v, q] ∈ V × Q. Since we assume thatΩ is Lipschitz continuous,
problem (13) has at least one solution (see [16]), which satisfies (1)-(3) in
the sense of distributions. Uniqueness only holds for sufficiently small data
or sufficiently large viscosity. In particular, the solution is unique if

χ := λ2NcK
−2
a ‖f‖−1 < 1.(14)

Takingv = u andq = p in (13) and using the coercivity ofa and the
skew-symmetry ofc, it follows that solutions to (13) satisfy the stability
estimate

‖u‖1 ≤ λK−1
a ‖f‖−1.(15)

If instead of havingf ∈ V ′ = H−1(Ω) we requiref ∈ L2(Ω) and
Γ is sufficiently smooth, it is known that solutions of problem (13) verifies
u ∈ V ∩ H2(Ω) andp ∈ Q∩H1(Ω) (see e.g. [16]). This regularity foru
will be needed only in Sects. 3.3 and 4.3 when provingL2 error estimates.
Likewise, convergence will be proven for smooth enough solutions. We
define
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Definition 1 (a) The stationary incompressible Navier-Stokes equations
(1)-(3) are calledregular if [u, p] ∈ V ∩ H2(Ω) × Q ∩ H1(Ω) when-
everf ∈ L2(Ω), and there exists a constantCr > 0 such that

‖u‖2 + ‖p‖1 ≤ Cr‖f‖.(16)

(b) Letk ≥ 1 be an integer. Solutions[u, p] to (13) are calledk-regularif
[u, p] ∈ V ∩ Hk+1(Ω) × Q ∩ Hk(Ω).

It is known for example that problem (1)-(3) is regular whenΩ is a
bounded andconvexpolygon whend = 2 or whenΩ is of classC2 in
any space dimension [20]. Note that 1-regular solutions are not necessarily
regular since the shift (16) may not hold.

2.2 Finite element discretization

Let Th denote a finite element partition of the domainΩ of diameterh. For
simplicity, we assume that all the element domainsK ∈ Th are the image
of a reference element̂K through a polynomial mappingF K , affine for
simplicial elements, bilinear for quadrilaterals and trilinear for hexahedra.
On K̂ we define the polynomial spacesRk(K̂) where, as usual,Rk = Pk

for simplicial elements andRk = Qk for quadrilaterals and hexahedra. The
finite element spaces we need are

Qh =
{
qh ∈ C0(Ω) | qh|K = q̂ ◦ F −1

K , q̂ ∈ Rkq(K̂), K ∈ Th

}
,(17)

V h =
{

vh ∈ [C0(Ω)]d | vh|K = v̂ ◦ F −1
K ,

v̂ ∈ [Rkv(K̂)]d, K ∈ Th

}
,(18)

V h,0 = {vh ∈ V h | vh|Γ = 0 } .(19)

Notice that all these finite element spaces are referred to the same partition
and are made up with continuous functions.

The standard Galerkin finite element counterpart of problem (13) can
now be written as follows: find[uh, ph] ∈ V h,0 × Qh such that

λ c(uh,uh,vh) + a(uh,vh) − b(ph,vh) + b(qh,uh) = λ〈f ,vh〉,(20)

for all [vh, qh] ∈ V h,0 × Qh. It is well known that if this formulation is
used the velocity and pressure finite element spacesmust satisfy the discrete
counterpart of the inf-sup condition (12). For the finite element spaces (17)-
(19) this happens ifkv = kq + 1, i.e., for Taylor-Hood type elements [2,5,
18] This condition is not necessary using the method described next.
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Let αK , K ∈ Th, be a family of mesh parameters depending on the
element sizeshK . Themodification of problem (20) that we propose is: find
[uh, ph, ũh] ∈ V h,0 × Qh × V h such that

λ c(uh,uh,vh) + a(uh,vh) − b(ph,vh) = λ〈f ,vh〉,(21)∑
K

α2
K(∇ph,∇qh)K −

∑
K

αK(ũh,∇qh)K + b(qh,uh) = 0,(22)

−
∑
K

αK(∇ph, ṽh)K + (ũh, ṽh) = 0,(23)

for all [vh, qh, ṽh] ∈ V h,0 × Qh × V h.
For a functionq ∈ H1(Ω) let us define∇hq by

∇hq|K = αK∇q|K , K ∈ Th.(24)

From (23) it is seen that̃uh is the projection of∇hph ontoV h.
Let us also introduce the form

B(λ;uh, ph, ũh;vh, qh, ṽh)
:= λ c(uh,uh,vh) + a(uh,vh) − b(ph,vh) + b(qh,uh)

+(∇hph − ũh,∇hqh − ṽh).(25)

Problem (21)-(23) can be written now as: find[uh, ph, ũh] ∈ V h,0 ×
Qh × V h such that

B(λ;uh, ph, ũh;vh, qh, ṽh) = λ〈f ,vh〉(26)

for all [vh, qh, ṽh] ∈ V h,0 × Qh × V h.
Let us describe now the assumptions we need on the family of finite

element partitions{Th}h>0. First of all, we assume that it is non-degenerate,
that is, there exists a constantσ > 0 such that for allh > 0

diam(BK) ≥ σdiam(K) ∀K ∈ Th,(27)

whereBK is the largest ball contained inK ∈ Th. Condition (27) is needed
in order to have the following inverse estimates (see, e.g., [3]): there exist
positive constantsC1 andC2 such that

‖vh‖1,K ≤ C1h
−1
K ‖vh‖0,K ,(28)

‖vh‖L∞(K) ≤ C2h
−d/2
K ‖vh‖0,K ,(29)

wherevh is a function of any of the finite element spaces (17)-(19).
From now onwards we useC, possibly with subscripts, to denote a

positive constant independent of the mesh size andλ, not necessarily the
same at different occurrences.
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Since we always have that

‖vh‖0,K ≤ Ch
d/2
K ‖vh‖L∞(K),

from (29) it follows that

C1h
d/2
K ‖vh‖L∞(K) ≤ ‖vh‖0,K ≤ C2h

d/2
K ‖vh‖L∞(K).(30)

Letnnod be the number of nodes per element andNi the shape function
associated to thei-th node. Ifvi is the value of a functionvh at this node
and we are given a set of nodal parametersβ = {β1, ..., βnnod}, we define

ΠK(βvh) :=
nnod∑
i=1

Niβivi.(31)

Let maxK |β| be the maximum of the absolute value of the nodal pa-
rametersβ in an elementK. It is easy to see that

‖ΠK(βvh)‖L∞(K) ≤ C max
K

|β|‖vh‖L∞(K),

which, by virtue of (30), implies that

‖ΠK(βvh)‖0,K ≤ C max
K

|β|‖vh‖0,K .(32)

We shall need a rather technical condition on the set of element param-
etersαK , which is reflected by a condition on{Th}h>0, sinceαK depends
onhK , as we shall see. LetMi be a macroelement obtained from the union
of the elements to which a nodei belongs. Let us define

ᾱi :=
1

measMi

∑
K⊂Mi

measKαK ,(33)

which is nothing but a weighted average of the parametersαK . We need
this average to converge to these parameters as the mesh is refined. More
precisely, we need a continuously graded family of meshes, a concept in-
troduced in the following:

Definition 2 The family of finite element meshes{Th}h>0 is continuously
gradedif there exists a functionδ = δ(h), tending to 0 ash → 0, such that

max
K∈Th

(
max

K

∣∣∣∣1 − ᾱ

αK

∣∣∣∣
)

≤ δ(h).(34)
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This condition is less restrictive than the quasi-uniformity of the family
{Th}h>0. It allows for instance local mesh refinement. What it does not
permit, for example, is a constant ratio between the sizes of the elements
sharing a fixed nodal point as themesh is refined. From the practical point of
view this is not a restriction, since the element sizes given tomesh generators
are usually continuous functions obtained from the interpolation of element
sizes at certain given points of the computational domain.

Condition (34) implies in particular that

max
K

|ᾱ| ≤ (1 + δ(h))αK .(35)

Our stability and convergence analysis of the following sections will be
strongly based on a decomposition of the pressure gradient that we describe
next. Let∇hQh denote the space of vector functions inL2(Ω) which are
of the form∇hqh, with qh ∈ Qh, and consider the vector space

Eh := V h + ∇hQh = Eh,1 ⊕ Eh,2 ⊕ Eh,3,(36)

whereEh,i, i = 1, 2, 3, are threemutuallyL2 orthogonal subspaces defined
as

Eh,1 := V h,0,(37)

Eh,2 := V ⊥
h,0 ∩ V h,(38)

Eh,3 := V ⊥
h ∩ Eh.(39)

LetusdenotebyPh,i theorthogonalprojection fromEh toEh,i, andPh,ij :=
Ph,i + Ph,j , i, j = 1, 2, 3. Also, we denoteEh,ij := Eh,i ⊕ Eh,j . In order
to prove that the pressure gradient in problem (26) is stable, we shall bound
independently the three terms in the decomposition

∇hph = Ph,1(∇hph) + Ph,2(∇hph) + Ph,3(∇hph).(40)

To obtain error estimates for solutions of problem (26) we shall make
use of the approximation properties of the spacesV h,0, Qh andV h. These
can be written as follows. Ifv ∈ Hr(Ω) ∩ V , r ≥ 1, andq ∈ Hs(Ω) ∩Q,
s ≥ 1, there existIh,1(v) ∈ V h,0, Ih,2(q) ∈ Qh andIh,3(∇q) ∈ V h such
that

‖v − Ih,1(v)‖m ≤ C1h
k1‖v‖k1 , k1 = min{r, kv + 1} − m,(41)

‖q − Ih,2(q)‖m ≤ C2h
k2‖q‖k2 , k2 = min{s, kq + 1} − m,(42)

‖∇hq − Ih,3(∇hq)‖m,K ≤ C3h
k3‖∇hq‖k3,K ,

k3 = min{s − 1, kv + 1} − m.(43)

Notice that the last estimate is local, since∇hq is in general discontinuous.
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The next ingredient we need is an inf-sup condition. The bound for
the first component of the pressure gradient decomposition in (40) can be
obtained from the momentum equation (21), whereas the third component
can be bounded only assumingαK > 0. Thus, the stability provided by the
method in comparison with the standard problem (20) is precisely in the
control over the termPh,3(∇hph), that is, the component of the pressure
gradient orthogonal to the space of continuous vector fieldsV h.

The second component in (40) deserves special attention. It depends on
the properties of the finite element spaces, and not on the problem actually
solved. We assume that there is a positive constantK ′

2 such that

‖∇hqh‖ ≤ K ′
2‖Ph,13(∇hqh)‖ ∀qh ∈ Qh,(44)

which means that‖Ph,2(∇hqh)‖ can be bounded by‖Ph,13(∇hqh)‖. This
condition is equivalent to the existence of a constantK2 = 1/K ′

2 > 0 such
that

inf
qh∈Qh

sup
vh∈Eh,13

(∇qh,vh)
‖∇qh‖‖vh‖ ≥ K2,(45)

which is similar to the inf-sup condition of the standard problem, although
much weaker and, in particular, verified when equal interpolation is used.
This was proved in [10] forPk interpolations (and a very similar proof can
also be applied to theQ1 case) under a mild condition on the family of
finite element meshes, similar to that encountered in [2] for Taylor-Hood
elements. The analysis in [10] is based on a generalization of the macroele-
ment technique presented in [19].

Finally, we need to introduce a further assumption, now on the behavior
of αK : there exists constantsα0 andα1, independent ofhK , such that

α0hK ≤ αK ≤ α1hK ∀K ∈ Th.(46)

This completes the set of assumptions on the discrete finite element
problem (26).

3 Stability and convergence I: Stokes problem

In this section we shall consider the Stokes problem, that is, the problem
obtained withλ = 0 in (25).

Theorem 1 Suppose that the family{Th}h>0 of finite element partitions
is non-degenerate, continuously graded and such that (45) and (46) hold.
Then, forh small enough, there exists a unique solution to problem (26) that
verifies the stability estimate

‖uh‖1 + ‖∇hph‖ + ‖ũh‖ ≤ Cλ‖f‖−1,(47)



Pressure-stabilized FE for Navier-Stokes equations 69

for a constantC independent ofh.

Proof. Since the problem is linear and finite-dimensional, it is enough to
prove that (47) holds. From the definition of the bilinear formB for λ = 0
it is easy to see that

B(0;uh, ph, ũh;uh, ph, ũh) = a(uh,uh) + ‖∇hph − ũh‖2

≤ λ‖f‖−1‖uh‖1.(48)

From the coercivity of the bilinear forma (see (11)) it follows that

‖uh‖1 ≤ λK−1
a ‖f‖−1.(49)

On the other hand, (23) can now be written asũh = Ph,12(∇hph), and
therefore from (48) it follows that∥∥∥Ph,3(∇hph)

∥∥∥2
= ‖∇hph − ũh‖2 ≤ λ‖f‖−1‖uh‖1,

and, from estimate (49),∥∥∥Ph,3(∇hph)
∥∥∥ ≤ K−1/2

a λ‖f‖−1.(50)

If vh ∈ Eh, let us defineΠ(ᾱvh) by Π(ᾱvh)|K = ΠK(ᾱvh), with ΠK

defined in (31). We have that∥∥∥Ph,1(∇hph)
∥∥∥2

=
∑
K

(
αK∇ph, Ph,1(∇hph)

)
K

=
(
∇ph, Π

(
ᾱPh,1(∇hph)

))
+
∑
K

(
∇ph, αKPh,1(∇hph) − ΠK

(
ᾱPh,1(∇hph)

))
K

=: T1 + T2.(51)

Let us bound the termsT1 and T2. From the momentum equation (21)
(without the nonlinear term) we have that

T1 = λ
〈
f , Π

(
ᾱPh,1(∇hph)

)〉
− a

(
uh, Π

(
ᾱPh,1(∇hph)

))
≤
[
λ‖f‖−1 + Na‖uh‖1

] ∥∥∥Π (ᾱPh,1(∇hph)
)∥∥∥

1
.(52)

Using the inverse estimate (28) and inequalities (32) and (35), together with
assumption (46) onαK , we obtain∥∥∥Π (ᾱPh,1(∇hph)

)∥∥∥2

1
=
∑
K

∥∥∥ΠK

(
ᾱPh,1(∇hph)

)∥∥∥2

1,K
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≤
∑
K

C

h2
K

∥∥∥ΠK

(
ᾱPh,1(∇hph)

)∥∥∥2

0,K

≤
∑
K

C

h2
K

max
K

|ᾱ|2
∥∥∥Ph,1(∇hph)

∥∥∥2

0,K

≤ C
∥∥∥Ph,1(∇hph)

∥∥∥2
.(53)

Using this in (52), together with inequalities (32) and (49), it follows that

T1 ≤ Cλ‖f‖−1

∥∥∥Ph,1(∇hph)
∥∥∥ .(54)

To boundT2 observe first that

1
αK

(
αKPh,1(∇hph) − ΠK

(
ᾱPh,1(∇hph)

))
= ΠK

(
βKPh,1(∇hph)

)
,(55)

with βK
i = 1 − ᾱi/αK , and therefore we obtain, using inequality (32),

assumption (34), the weak inf-sup condition (44) and the bound (50),

T2 =
∑
K

(
αK∇ph, ΠK

(
βKPh,1(∇hph)

))
K

≤ ‖∇hph‖
(∑

K

∥∥∥ΠK

(
βKPh,1(∇hph)

)∥∥∥2

0,K

)1/2

≤ Cδ(h)‖∇hph‖
∥∥∥Ph,1(∇hph)

∥∥∥
≤ Cδ(h)

(∥∥∥Ph,1(∇hph)
∥∥∥2

+
∥∥∥Ph,1(∇hph)

∥∥∥∥∥∥Ph,3(∇hph)
∥∥∥)

≤ Cδ(h)
∥∥∥Ph,1(∇hph)

∥∥∥2
+ Cλ‖f‖−1

∥∥∥Ph,1(∇hph)
∥∥∥ .(56)

Using inequalities (54) and (56) in (51) we have that

(1 − Cδ(h))
∥∥∥Ph,1(∇hph)

∥∥∥2 ≤ Cλ‖f‖−1

∥∥∥Ph,1(∇hph)
∥∥∥ ,

which forh small enough implies that∥∥∥Ph,1(∇hph)
∥∥∥ ≤ Cλ‖f‖−1.(57)

This, together with (50) and the weak stability condition (44) implies the
bound for∇hph in (47). Finally, the bound for̃uh follows from the fact that
ũh = Ph,12(∇hph).
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A similar stability estimate to that of (47) can be obtained replacingαK

by hK and using only the conditionαK ≥ α0hK instead of (46) (see [10]).
Observe that we have only used the fact thatαK ≤ α1hK in (53). However,
this part of assumption (46) is needed also for the error estimate presented
next, which establishes convergence of the solution of problem (26) to the
solution of the continuous Stokes problem in the norm in which stability
has been proven, that is, in theH1 norm for the velocity and theL2 norm
of the mesh dependent pressure gradient defined in (24) and its projection
ontoV h. This is what can be called the ‘natural’ norm of the method.

Theorem 2 Under the same conditions as in Theorem 1, suppose also that
the Stokes problem isk-regular, withk ≥ 1. Then, forh small enough, the
solution of problem (26) satisfies the error estimate

‖u − uh‖1 + ‖∇hp − ∇hph‖ + ‖∇hp − ũh‖ ≤ Chr,(58)

wherer = min{k, kv, kq+1} andu andp are the solution of the continuous
problem (13) (without the nonlinear term).

Proof. The proof is essentially the same as in Theorem 3 in [10]. The main
difference is due to the fact that the parametersαK are now allowed to
change from element to element. This only affects the following bound:

‖Ph,1(∇hqh) − Ph,1(∇hph)‖2

= (∇hp − ∇hph, Ph,1(∇hqh) − Ph,1(∇hph))

+ (∇hqh − ∇hp, Ph,1(∇hqh) − Ph,1(∇hph))
=: T1 + T2,(59)

for all functionsqh ∈ Qh. The first termT1 can be written as

T1 =
∑
K

αK

(
∇p − ∇ph, Ph,1(∇hqh) − Ph,1(∇hph)

)

=
∑
K

(
∇p − ∇ph, Π

(
ᾱPh,1(∇hqh)

)
− Π

(
ᾱPh,1(∇hph)

))
K

+
∑
K

(
∇p − ∇ph, αKPh,1(∇hqh) − αKPh,1(∇hph)

−Π
(
ᾱPh,1(∇hqh)

)
+ Π

(
ᾱPh,1(∇hph)

))
K

=: T11 + T12.(60)

From (21) (without the nonlinear term) we have that

T11 = −a
(
u − uh, Π

(
ᾱPh,1(∇hqh)

)
− Π

(
ᾱPh,1(∇hph)

))
≤ Na‖u − uh‖1

∥∥∥Π (ᾱPh,1(∇hqh)
)

− Π
(
ᾱPh,1(∇hph)

)∥∥∥
1
.
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Using the same steps as those to arrive to (53) we get∥∥∥Π (ᾱPh,1(∇hqh)
)

− Π
(
ᾱPh,1(∇hph)

)∥∥∥
1

≤ C
∥∥∥Ph,1(∇hqh) − Ph,1(∇hph)

∥∥∥ ,
and therefore

T11 ≤ C‖u − uh‖1

∥∥∥Ph,1(∇hqh) − Ph,1(∇hph)
∥∥∥ .(61)

ForT12 in (60) we have that

T12 =
∑
K

(
∇hp − ∇hph, Ph,1(∇hqh) − 1

αK
Π
(
ᾱPh,1(∇hqh)

)

−Ph,1(∇hph) +
1
αK

Π
(
ᾱPh,1(∇hph)

))
K

,

and using the same steps as in (56) we obtain

T12 ≤ δ(h)‖∇hp − ∇hph‖
∥∥∥Ph,1(∇hqh) − Ph,1(∇hph)

∥∥∥ .(62)

Using (60)-(62) in (59) we get

‖Ph,1(∇hqh) − Ph,1(∇hph)‖
≤ C‖u − uh‖1 + δ(h)‖∇hp − ∇hph‖ + ‖∇hp − ∇hqh‖.

The proof concludes as in Theorem 3 of [10], assumingh to be sufficiently
small (note that there the projection of the pressure gradient does not include
the parametersαK).

We use now a duality argument to obtain pressure stability inL2(Ω)
and improved error estimates for the velocity and pressure, also in the space
L2(Ω), in a similar way to [4] for the GLS method. The shift used in these
duality arguments needed for the velocity error estimates (not for the pres-
sure) requires of more regularity of the problem than was needed up to
now.

Theorem 3 Under the same assumptions as in Theorem 1, the approximate
pressureph satisfies:

‖ph‖ ≤ Cλ‖f‖−1.(63)

If the solution[u, p] of the continuous problem isk-regular, withk ≥ 1,
then

‖p − ph‖ ≤ Chr,(64)
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wherer = min{k, kv, kq + 1}. Moreover, if the Stokes problem is regular
then the approximate velocityuh satisfies

‖u − uh‖ ≤ Chr+1.(65)

Proof. We begin by the stability and error estimates for the pressure. Let
γ = 0 or 1 and considerz ∈ H1

0(Ω) andη ∈ L2(Ω) as the solution of the
Stokes problem:

−∆z + ∇η = 0 in Ω,(66)

∇ · z = (γp − ph) in Ω,(67)

z = 0 on Γ.(68)

Standard results for this problem yield (see [16]):

‖z‖1 ≤ C‖γp − ph‖, ‖η‖ ≤ C‖γp − ph‖.(69)

If zh ∈ Vh,0 is an approximation toz satisfying:

‖z − zh‖m,K ≤ Ch1−m
K ‖z‖1,K , K ∈ Th,(70)

form = 0, 1, we have:

‖γp − ph‖2 = (γp − ph, γp − ph)
= (∇ · z, γp − ph)
= (∇ · (z − zh), γp − ph) − (zh,∇(γp − ph))
= −(z − zh,∇(γp − ph)) + a(γu − uh,zh) + γλ〈f ,zh〉
= −

∑
K

1
αK

(z − zh, γ∇hp − ∇hph))K

+ a(γu − uh,zh − z) + a(γu − uh, z)
+ γλ〈f ,zh − z〉 + γλ〈f ,z〉

≤
∑
K

1
αK

‖z − zh‖0,K‖γ∇hp − ∇hph‖0,K

+ C
(‖γu − uh‖1 + γλ‖f‖−1

)
(‖z − zh‖1 + ‖z‖1)

≤ C
∑
K

‖z‖1,K‖γ∇hp − ∇hph‖0,K

+ C‖z‖1
(‖γu − uh‖1 + γλ‖f‖−1

)
≤ C

(
‖γ∇hp − ∇hph‖ + ‖γu − uh‖1 + γλ‖f‖−1

)
‖γp − ph‖.(71)

The stability estimate (63) for the pressure follows forγ = 0 andTheorem1,
whereas the error estimate (64) is obtained forγ = 1 using (58).
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Let us prove now the estimate for the velocity. Lety ∈ H2(Ω)∩H1
0(Ω)

andξ ∈ H1(Ω) ∩ Q be the solution of the regular problem:

−∆y + ∇ξ = u − uh in Ω,(72)

∇ · y = 0 in Ω,(73)

y = 0 on Γ,(74)

which satisfies

‖y‖2 ≤ C‖u − uh‖, ‖ξ‖1 ≤ C‖u − uh‖.(75)

Let yh ∈ Vh,0 andξh ∈ Qh be optimal order approximations toy andξ,
respectively, satisfying:

‖y − yh‖m,K ≤ C h2−m
K ‖y‖2,K ,(76)

‖ξ − ξh‖m,K ≤ Ch1−m
K ‖ξ‖1,K .(77)

form = 0, 1. We then have:

‖u − uh‖2 = (u − uh,u − uh)
= a(y,u − uh) − b(ξ,u − uh)
= [a(y − yh,u − uh) − b(ξ − ξh,u − uh)]
+ a(yh,u − uh) − b(ξh,u − uh) =: T1 + T2 + T3.

We bound each term separately:

T1 = a(y − yh,u − uh) − b(ξ − ξh,u − uh)
≤ Na‖y − yh‖1‖u − uh‖1 + C‖ξ − ξh‖‖u − uh‖1

≤ C‖u − uh‖1(h‖y‖2 + h‖ξ‖1)
≤ Ch ‖u − uh‖1‖u − uh‖

by (76), (77) and the shift (75). From the original momentum equation (with
c = 0) we have:

T2 = a(yh,u − uh)
= −(∇p − ∇ph,yh)

=
∑
K

1
αK

(∇hp − ∇hph,y − yh)K

≤ C
∑
K

1
hK

‖∇hp − ∇hph‖0,K‖y − yh‖0,K

≤ C
∑
K

hK‖y‖2,K‖∇hp − ∇hph‖0,K

≤ Ch‖u − uh‖‖∇hp − ∇hph‖,(78)
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by (76) and (75). Finally:

T3 = −b(ξh,u − uh)
= (∇hp − ∇hph,∇hξh) − (∇hp − ũh,∇hξh)
= (∇hp − ∇hph,∇hξh − ∇hξ) + (∇hp − ∇hph,∇hξ)
− (∇hp − ũh,∇hξh − ∇hξ) − (∇hp − ũh,∇hξ)

≤
∑
K

(
‖∇hp − ∇hph‖0,K + ‖∇hp − ũh‖0,K

)

×
(
‖∇hξh − ∇hξ‖0,K + ‖∇hξ‖0,K

)
≤ C

∑
K

(
‖∇hp − ∇hph‖0,K + ‖∇hp − ũh‖0,K

)
hK‖ξ‖1,K

≤ C
(
‖∇hp − ∇hph‖ + ‖∇hp − ũh‖

)
h‖u − uh‖,

by (77) and (75). We obtain the error estimate for the velocity combining
the above inequalities forT1, T2 andT3.

4 Stability and convergence II:
Navier-Stokes equations

In this section we extend the results of the previous section to the nonlinear
Navier-Stokes equations using the theory of approximation of branches of
nonsingular solutionsof [7,16].However, our first result concerns the case in
which theuniqueness condition (14) holds.Weshow that this samecondition
ensures stability anduniquenessof solutionof thediscreteproblem.Toprove
thisweshall useasauxiliary problema linearized formof it, namely,Picard’s
linearization. Denoting by a superscript the iteration counter, this problem
is: givenu0

h arbitrary, fori = 1, 2, ..., find [ui, pi
h, ũ

i
h] ∈ V h,0 ×Qh × V h

such that

B(i)(λ;ui
h, p

i
h, ũ

i
h;vh, qh, ṽh) = λ〈f ,vh〉(79)

for all [vh, qh, ṽh] ∈ V h,0 × Qh × V h. Here,B(i) is thebilinear form
obtained fromB using c(ui−1

h ,ui
h,vh) as linearization of the nonlinear

term.
As a by-product of the following theorem we shall have convergence

of Picard’s iterates, a property that does not hold when the solution to the
nonlinear problem (13) is not unique (an alternative proof of the following
result is to proceed the other way around, showing that when (14) holds
the nonlinear operator associated to the variational problem (21)-(23) is
contractive, and thus Banach’s fixed point theorem implies that there is a
unique solution to which Picard’s linearization scheme converges).
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Theorem 4 Suppose that the family{Th}h>0 of finite element partitions
is non-degenerate, continuously graded and such that (45) and (46) hold.
Suppose also that the uniqueness condition (14) holds. Then, forh small
enough, there exists a unique solution to problem (26) that verifies the sta-
bility estimate

‖uh‖1 + ‖∇hph‖ + ‖ũh‖ ≤ Cλ‖f‖−1,(80)

for a constantC independent ofh.

Proof. We split the proof in three steps:
Step 1: The solution of the linear problem (79) exists, is unique and each
iterate satisfies the stability estimate (80).

Since problem (79) is linear and finite dimensional, it is enough to prove
the stability estimate (80). Due to the skew-symmetry ofc (cf. (8)), this can
be done exactly as for the Stokes problem, replacingBlin byB(i). The proof
of Theorem 1 can be repeated here, the only difference being the bound for
T1 in (52). This term is now

T1 = λ
〈
f , Π

(
ᾱPh,1(∇hpi

h)
)〉

− a
(
ui

h, Π
(
ᾱPh,1(∇hpi

h)
))

− λ c
(
ui−1

h ,ui
h, Π

(
ᾱPh,1(∇hpi

h)
))

,

and, using the uniqueness condition (14) and the bounds for the velocity
iterates (i.e., bound (49) forui

h andui−1
h ), the last term can be bounded by

λ c
(
ui−1

h ,ui
h, Π

(
ᾱPh,1(∇hpi

h)
))

≤ λNc‖ui−1
h ‖1‖ui

h‖1

∥∥∥Π (ᾱPh,1(∇hpi
h)
)∥∥∥

1

≤ λ‖f‖−1

∥∥∥Π (ᾱPh,1(∇hpi
h)
)∥∥∥ .

and now we can proceed as in Theorem 1.
Step 2: Picard’s iterates converge to a solution of the nonlinear problem
(26).

Subtracting Eqs. (79) fori andi − 1 and taking as test functionsvh =
ui

h − ui−1
h , qh = pi

h − pi−1
h andṽh = ũi

h − ũi−1
h , we get

a(ui
h − ui−1

h ,ui
h − ui−1

h ) + ‖∇h(pi
h − pi−1

h ) − (ũi
h − ũi−1

h )‖2

+λ c(ui−1
h − ui−2

h ,ui
h,u

i
h − ui−1

h ) = 0.(81)

From the coercivity ofa and the bound forui
h we have that

Ka‖ui
h − ui−1

h ‖2
1 ≤ λNc‖ui−1

h − ui−2
h ‖1‖ui

h‖1‖ui
h − ui−1

h ‖1

≤ λ2NcK
−1
a ‖f‖−1‖ui−1

h − ui−2
h ‖1‖ui

h − ui−1
h ‖1.
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Using inductively this inequality and the definition ofχ in (14) we have that

‖ui
h − ui−1

h ‖1 ≤ Cχi.(82)

Sinceχ < 1 this proves convergence of the velocities. Using this in (81) we
find that∥∥∥Ph,3

(
∇h(pi

h − pi−1
h )

)∥∥∥2
= ‖∇h(pi

h − pi−1
h ) − (ũi

h − ũi−1
h )‖2

≤ λNc‖ui−1
h − ui−2

h ‖1‖ui
h‖1‖ui

h − ui−1
h ‖1

≤ Cχ2i,

from where ∥∥∥Ph,3

(
∇h(pi

h − pi−1
h )

)∥∥∥ ≤ Cχi.(83)

To obtain a bound for
∥∥Ph,1

(∇h(pi
h − pi−1

h )
)∥∥we proceed as in Theorem 1

to obtain the bound for‖Ph,1(∇hph)‖. Equation (51) is also valid replacing
ph by pi

h − pi−1
h . The new termT1 is now

T1 = −a
(
ui

h − ui−1
h , Π

(
ᾱPh,1(∇hpi

h)
)

− Π
(
ᾱPh,1(∇hpi−1

h )
))

−λ c
(
ui−1

h − ui−2
h ,ui−1, Π

(
ᾱPh,1(∇hpi

h)
)

− Π
(
ᾱPh,1(∇hpi−1

h )
))

−λ c
(
ui−1,ui

h − ui−1
h , Π

(
ᾱPh,1(∇hpi

h)
)

− Π
(
ᾱPh,1(∇hpi−1

h )
))

.

Using the continuity ofa andc, the bound forui
h and (82), as well as (53)

with ph replaced bypi
h − pi−1

h , we obtain that

T1 ≤ Cχi
∥∥∥Ph,1

(
∇h(pi

h − pi−1
h )

)∥∥∥ .(84)

For the new termT2 we have, using the same steps as in (56),

T2 ≤ Cδ(h)
∥∥∥Ph,1

(
∇h(pi

h − pi−1
h )

)∥∥∥2

+ C
∥∥∥Ph,1

(
∇h(pi

h − pi−1
h )

)∥∥∥∥∥∥Ph,3

(
∇h(pi

h − pi−1
h )

)∥∥∥ .
Using thebound (83) forPh,3

(∇h(pi
h − pi−1

h )
)
and (84), forh small enough

we have that, ∥∥∥Ph,1

(
∇h(pi

h − pi−1
h )

)∥∥∥ ≤ Cχi.(85)

Convergence of the pressure follows now from (83), (85) and the weak
inf-sup condition, and convergence ofũi follows from the fact that̃ui

h =
Ph,12(∇hpi

h).
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Step 3: Problem (26) admits a unique solution.
Let (uh,1, ph,1, ũh,1) and(uh,2, ph,2, ũh,2) be two solutions of problem

(26) and(ūh, p̄h, ¯̃uh) their difference. It is easy to see thatuh,1 anduh,2
satisfy the bound (80) and that

B(ūh, p̄h, ¯̃uh; ūh, p̄h, ¯̃uh) = a(ūh, ūh) + ‖∇hp̄h − ¯̃uh‖
= −λ c(ūh,uh,1, ūh).

The coercivity ofa, the continuity ofc and the bound (80) foruh,1 imply
that

‖ūh‖2
1 ≤ χ‖ūh‖2

1,

and, sinceχ < 1, ūh = 0. Also, p̄h = 0 and ¯̃uh = 0 follows from the
fact that these variables are solution of a linear homogeneous problem and
satisfy the stability estimates obtained in the linear case.

Let us consider know the general case in which the uniqueness condition
(14) does not hold. Regardless of the behavior of the continuous problem,
it can be shown using exactly the same arguments as in [7] (also used in
[22]) that problem (21)-(23) has solution. However, we consider directly
the situation in which these solutions exist and approximate those of the
continuous problem. For that, we need to recast it in the following abstract
form. LetΛ be a compact subset ofR+ and for eachλ ∈ Λ consider the
mappings

V × Q
G−→ V ′ T−→ V × Q,

where

G(λ;v, q) := λ

[
(v · ∇)v +

1
2
(∇ · v)v − f

]
,

and[u, p] := Tg is the solution of the continuous Stokes problem

a(u, p) − b(p,v) + b(q,u) = 〈g,v〉, ∀[v, q] ∈ V × Q.

Clearly, the solution of problem (13) is[u, p] = −TG(λ;u, p), that is, the
solution of

F (λ;u, p) := [u, p] + TG(λ;u, p) = 0.(86)

Likewise, the discrete Navier-Stokes problem can be written in a form
similar to (86) with the help of the operators

V h × Qh
Gh−→ V ′ Th−→ V h × Qh,
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whereGh(λ;vh, qh) := G(λ;vh, qh) and[uh, ph] := Th g is the solution of
the discrete Stokes problem ‘condensing’ the pressure gradient projection:

a(uh, ph) − b(ph,vh) + b(qh,uh) +
(
Ph,3(∇hph),∇hqh

)
= 〈g,vh〉,

for all [vh, qh] ∈ V h × Qh. The solution[uh, ph] of problem (21)-(23) is
the same as the solution of

Fh(λ;uh, ph) := [uh, ph] + ThGh(λ;uh, ph) = 0.(87)

LetDF (λ;u, p) denote the Fŕechet derivative ofF with respect to[u, p].
A curve{(λ, [u(λ), p(λ)]);λ ∈ Λ} is called abranch of nonsingular solu-
tionsof (86) if [u(λ), p(λ)] is solution of this problem for allλ ∈ Λ, the
mapλ �→ [u(λ), p(λ)] is continuous andDF (λ;u(λ), p(λ)) is a homeo-
morphism ofV × Q.

The following results shows that if a branch of nonsingular solutions
of (86) is regular enough, then problem (87) has also a unique branch of
nonsingular solutions which gives an approximation of optimal order to it:

Theorem 5 Suppose that the family{Th}h>0 of finite element partitions
is non-degenerate, continuously graded and such that (45) and (46) hold.
Assume also that{(λ, [u(λ), p(λ)]);λ ∈ Λ} is a branch of nonsingular
solutions of (86) such thatλ �→ [u(λ), p(λ)] ∈ V ∩Hk+1(Ω)×Q ∩Hk(Ω)
is continuous for a certain integerk ≥ 1. Then, forh small enough, there
exists a unique branch of nonsingular solutions{(λ, [uh(λ), ph(λ)]);λ ∈
Λ} of problem (87) which satisfies

‖u(λ) − uh(λ)‖1 + ‖p(λ) − ph(λ)‖ ≤ C(λ)hr,(88)

for all λ ∈ Λ, wherer = min{k, kv, kq + 1} andC(λ) depends onλ.

Proof. As in Theorem IV.4.1 of [16], the proof simply consists in checking
that the assumptions of the abstract approximation result IV.3.3 of this ref-
erence are satisfied. First, we know thatT is a bounded linear operator from
V ′ to V × Q. By virtue of Theorem 1 and the pressure stability estimate
(63) in Theorem 3,Th is also a bounded linear operator fromV

′ toV h×Qh

(endowing this space with the same norm asV × Q). Thus,

T ∈ L(V ′,V × Q), Th ∈ L(V ′,V h × Qh).(89)

On the other hand,G is aC∞ map whose Fŕechet derivative with respect
to [u, p],DG(λ;u, p), mapsV × Q toV ′ for each[u, p] ∈ V × Q and is
given by

DG(λ;u, p) · [v, q]

= λ

[
(v · ∇)u + (u · ∇)v +

1
2
(∇ · v)u +

1
2
(∇ · u)v

]
.
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Furthermore, Sobolev’s embedding theorem and Hölder’s inequality imply
that in factDG(λ;u, p) · [v, q] ∈ Z := L3/2(Ω) wheneveru, v ∈ V .
Therefore, forG we have

G ∈ C∞(V × Q,V ′), DG(λ;u, p) ∈ L(V × Q,Z).(90)

On the other hand, Theorem 2 and (64) in Theorem 3 imply

‖(T − Th)g‖V ×Q ≤ Chr ∀g ∈ V ′.(91)

SinceZ = L3/2(Ω) is compactly embedded inV ′ = H−1(Ω), this last
estimate implies

lim
h→0

‖T − Th‖L(Z,V ×Q) = 0.(92)

Properties (89)-(92) are precisely the assumptions needed to apply Theo-
rem IV.3.3 in [16], from where estimate (88) follows. The dependence of
C(λ) with λ appears through the inverse of the homeomorphism
DF (λ; u(λ), p(λ)).

Finally, optimalL2 estimates for the velocity can be obtained if the
Stokes problem is regular. The following result can be proved adapting the
proof of Theorem IV.4.2 in [16] as done above in Theorem 5:

Theorem 6 Under the same assumptions as in Theorem 5, if, in addition,
the Stokes problem is regular, then the error estimate

‖u − uh‖ ≤ C(λ)hr+1

holds for allλ ∈ Λ.
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