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Abstract

In this paper we present a stabilized ®nite element formulation for the transient incompressible Navier±Stokes equations. The main

idea is to introduce as a new unknown of the problem the projection of the pressure gradient onto the velocity space and to add to the

incompresibility equation the di�erence between the Laplacian of the pressure and the divergence of this new vector ®eld. This leads to

a pressure stabilization e�ect that allows the use of equal interpolation for both velocities and pressures. In the case of the transient

equations, we consider the possibility of treating the pressure gradient projection either implicitly or explicity. In the ®rst case, the

number of unknowns of the problem is substantially increased with respect to the standard Galerkin formulation. Nevertheless, it-

erative techniques may be used in order to uncouple the calculation of the pressure gradient projection from the rest of unknowns

(velocity and pressure). When this vector ®eld is treated explicitly, the increment of computational cost of the stabilized formulation

with respect to the Galerkin method is very low. We provide a stability estimate for the case of the simple backward Euler time in-

tegration scheme for both the implicit and the explicit treatment of the pressure gradient projection. Ó 2000 Elsevier Science S.A. All

rights reserved.

1. Introduction

The purpose of this paper is to present a stabilized ®nite element method for the transient Navier±Stokes
equations that allows to use equal velocity±pressure interpolation. This is possible due to a stabilization
technique based on the introduction as unknown of the discrete problem of the projection of the pressure
gradient onto the ®nite element space of continuous vector ®elds. The divergence of the di�erence between
these two vectors (pressure gradient and its projection) is introduced in the continuity equation.

The idea of this stabilization method was originally developed for the stationary Stokes problem in [1]
and extended to the non-linear Navier±Stokes problem in [2]. The motivation for the design of this for-
mulation was to inherit the stability properties of some fractional step time integration schemes that use a
Poisson equation to compute the pressure (see [3] for further discussion). From the computational point of
view, the main drawback of this approach is the introduction of the projection of the pressure gradient as a
new unknown of the problem, thus increasing substantially the number of nodal unknowns of the ®nal
discrete system. However, iterative strategies may be devised to make the method e�cient, with a com-
putational cost similar to that of other stabilization methods.

When the transient Navier±Stokes equations are discretized in time using a ®nite di�erence scheme, the
projection of the pressure gradient can be treated explicitly, that is to say, evaluated at the previous time
step. In this case, the increase of cost of the formulation with respect to the standard Galerkin method is
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very low. First, a stabilization matrix must be built up and at the end of each time step the pressure gradient
must be projected. This leads to a linear system of equations with a Gramm system matrix which can be
solved by a simple Jacobi iteration or approximated by a diagonal system. The number of unknowns is not
increased.

In this paper it is shown that the formulation just described is stable. A stability estimate is obtained for
both velocities and pressures, without the need to satisfy the standard inf±sup condition on the velocity and
pressure ®nite element spaces encountered when the Galerkin method is used. The stabilization technique is
applied to both a monolithic velocity±pressure formulation of the problem using the trapezoidal rule and to
an incremental fractional step method.

It has to be remarked that the only purpose of the stabilization technique presented here is to stabilize
the pressure, in a similar way to the methods discussed for example in [4] and [5], even though we consider
the most general case of transient Navier±Stokes equations. The instabilities due to the convective term
when the viscosity is very small are not considered in our formulation. This is re¯ected by the fact that the
stability estimates that we obtain depend on the viscosity. To overcome this, further modi®cations of the
formulation presented herein are required (see for example Refs. [6,7], where formulations accounting both
the convective and the pressure instabilities are analyzed).

2. Problem statement

Let us consider the transient Navier±Stokes equations for an incompressible ¯uid. Let X be an open,
bounded and polyhedral domain of Rd , where d � 2 or 3 is the number of space dimensions, C � oX its
boundary and �0; T � the time interval of analysis. The Navier±Stokes problem consists in ®nding a velocity u
and a pressure p such that

ou

ot
� �u � r�uÿ mDu�rp � f in X; t 2 �0; T �; �1�

r � u � 0 in X; t 2 �0; T �; �2�
u � 0 on C; t 2 �0; T �; �3�
u � u0 in X; t � 0; �4�

where m is the kinematic viscosity, f is the force vector and u0 is the velocity initial condition. We have
considered the homogeneous Dirichlet boundary condition (3) for simplicity.

To write the weak form of problem (1)±(4) we need to introduce some notation. As usual, we denote by
H m�x� the Sobolev space of mth order in a set x, consisting of functions whose distributional derivatives of
order up to m belong to L2�x� and by H 1

0 �x� the subspace of H 1�x� of functions with zero trace on C. A
bold character is used for the vector counterpart of these spaces. The L2 scalar product is denoted by ��; ��x,
and the Hm norm by k � km;x. The subscript m is omitted when m � 0 and so is x when it is X.

Let us now consider the spaces V st � H1
0�X�d and Qst � q 2 L2�X� j RX q � 0

� 	
and the forms

a�u; v� :� m�ru;rv�;
b�q; v� :� �q;r � v�; �5�

c�u; v;w� :� �u � r�v;w� � � 1

2
�r � u�v;w� �;

with u; v;w 2 V st and q 2 Qst. All these forms are continuous and c is skew-symmetric in its last two ar-
guments. If r � u � 0 it coincides with the standard trilinear form coming from the convective term of (1).
However, for the ®nite element formulation that we shall consider the discrete velocity ®eld will not be
weakly divergence free and the use of the trilinear form given by (5) simpli®es the analysis.

The norms of a and c are denoted by Na and Nc, respectively, the former being proportional to the
viscosity m. Moreover, a is coercive as a consequence of the Poincar�e±Friedrics inequality, and b satis®es the
inf±sup or Babu�ska-Brezzi condition for the spaces V st and Qst.
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If h�; �i denotes the duality pairing between V st and its topological dual space V 0st, the weak form of
problem (1)±(4) consists in ®nding �u; p� 2 V � Q, with V � L2�0; T ; V st� and Q � L2�0; T ; Qst�, such that

ou

ot
; v

� �
� c�u; u; v� � a�u; v� ÿ b�p; v� � hf ; vi 8v 2 V st; �6�

b�q; u� � 0 8q 2 Qst; �7�
and satisfying the initial condition in a weak sense. These equations hold weakly in L2�0; T �.

If instead of having f 2 L2�0; T ; Hÿ1�X�� we require f 2 L2�0; T ; L2�X�� and C is su�ciently smooth,
it is known that the solution of problem (6) and (7) veri®es u 2 L2�0; T ; V st \H2�X�� and p 2 L2�0; T ;
Qst \ H 1�X��, that is, the regularity of the solution increases (see, e.g., [8]). Also, the duality hf ; vi in (7) can
be replaced by �f ; v�. The ®nite element approximation proposed in this paper will be based on the fact that
p 2 L2�0; T ; H 1�X��. We say that problem (1)±(4) is p-regular if p 2 L2�0; T ; Qst \ H 1�X�� whenever
f 2 L2�0; T ; L2�X��.

3. Stabilization of the stationary problem

Let us consider now the stationary version of problem (1)±(3) and (5) that is, dropping the time de-
pendence in both the velocity and the pressure. In this section we present the stabilized method we have
developed for it and collect the most important results we have obtained. In Section 4 we present the
extension of this stabilization method to the transient case.

Let Th denote a ®nite element partition of the domain X of diameter h, from which we construct the
®nite element spaces Qh;Vh and Vh;0, approximations to Qst;H

1�X�d and V st, respectively. The former is
made up with continuous functions of degree kq and the other two with continuous vector functions of
degree kv, the latter verifying the homogeneous Dirichlet boundary conditions.

The standard Galerkin ®nite element counterpart of the stationary version of problem (6) and (7) can
now be written as follows: ®nd �uh; ph� 2 Vh;0 � Qh such that

c�uh; uh; vh� � a�uh; vh� ÿ b�ph; vh� � �f ; vh� 8vh 2 Vh;0; �8�

b�qh; uh� � 0 8qh 2 Qh: �9�
It is well known that if this formulation is used the velocity and pressure ®nite element spaces have to satisfy
the discrete analogue of the inf±sup condition. In our case this happens if kv � kq � 1 in the case d � 2, i.e.,
for 2D Taylor±Hood type elements [9,10]. This condition is not necessary using the method described next.

Let aK ;K 2Th, be a family of mesh parameters depending on the element sizes hK . The modi®cation of
problem (8) and (9) that we propose is: ®nd �uh; ph; nh� 2 Vh;0 � Qh � Vh such that

c�uh; uh; vh� � a�uh; vh� ÿ b�ph; vh� � �f ; vh�; �10�X
K

a2
K�rph;rqh�K ÿ

X
K

aK�nh;rqh�K � b�qh; uh� � 0; �11�

ÿ
X

K

aK�rph; gh�K � �nh; gh� � 0 �12�

for all �vh; qh; gh� 2 Vh;0 � Qh � Vh:
For a function q 2 H1�X� let us de®ne rhq by

rhqjK � aKrqjK ; K 2Th: �13�
From (12) it is seen that nh is precisely the projection of rhph onto Vh. We shall call it simply the pressure
gradient projection. Our stability and convergence analysis is strongly based on a decomposition of the
pressure gradient that we describe next. LetrhQh denote the space of vector functions in L2�X� which are of
the form rhqh, with qh 2 Qh and consider the vector space

Eh :� Vh �rhQh � Eh;1 � Eh;2 � Eh;3;
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where Eh;i; i � 1; 2; 3, are three mutually L2-orthogonal subspaces de®ned as

Eh;1 :� Vh;0; Eh;2 :� V?h;0 \ Vh; Eh;3 :� V?h \ Eh:

Let us denote by Ph;i the orthogonal projection from Eh to Eh;i, and Ph;ij :� Ph;i � Ph;j; i; j � 1; 2; 3. Also, we
denote Eh;ij :� Eh;i � Eh;j. In order to prove that the pressure gradient in the discrete problem is stable, we
shall bound independently the three terms in the decomposition

rhph � Ph;1�rhph� � Ph;2�rhph� � Ph;3�rhph�: �14�
The bound for the ®rst component of the pressure gradient decomposition in (14) can be obtained from the
momentum Eq. (10), whereas the third component can be bounded only assuming that aK veri®es condition
(16) stated below. Thus, the stability provided by the method in comparison with the standard problem (8)
and (9) is precisely in the control over the term Ph;3�rhph�, that is, the component of the pressure gradient
orthogonal to the space of continuous vector ®elds Vh.

The second component in (14) deserves special attention. It depends on the properties of the ®nite el-
ement spaces and not on the problem actually solved. We assume that there is a positive constant K 02 such
that

krhqhk6K 02kPh;13�rhqh�k 8qh 2 Qh;

which means that kPh;2�rhqh�k can be bounded by kPh;13�rhqh�k. This condition is equivalent to the exis-
tence of a constant K2 � 1=K 02 > 0 such that

inf
qh2Qh

sup
vh2Eh;13

�rhqh; vh�
krqhkkvhk P K2; �15�

which is similar to the inf±sup condition of the standard problem, although much weaker and, in particular,
veri®ed when equal interpolation is used. This was proved in [1] for Pk interpolations (and a very similar
proof can also be applied to the Q1 case). The analysis in this reference is based on a generalization of the
macroelement technique presented in [11].

Let us collect now the stability and convergence results obtained for the formulation that we have
proposed here. The proof of all these results can be found in [2]. We assume that the viscosity is large
enough so as to ensure uniqueness of solution of the stationary Navier±Stokes equations. This condition
can be written as

Nckf kÿ1

K2
a

< 1;

where Ka is the coercivity constant of the bilinear form a.
In order to prove stability we need to introduce a further assumption, now on the behavior of the

numerical parameters aK . There exist constants a0 and a1, independent of hK , such that

a0hK 6 aK 6 a1hK 8K 2Th: �16�
Under this assumption we have:

Theorem 1. Suppose that the uniqueness condition holds and that the family of finite element partitions
fThgh>0 is non-degenerate and such that (15) holds. If aK satisfies (16) then, for h small enough, there exists a
unique solution to the discrete finite element problem (10) and (12) that verifies the stability estimate

kuhk1 � krhphk � knhk6Ckf k;
for a constant C independent of h.

Let us give now a convergence result for the solution of the discrete problem to the solution of the
continuous Navier±Stokes problem in the norm in which stability has been proven, that is, in the H1 norm
for the velocity and the L2 norm of the mesh dependent pressure gradient de®ned in (13) and its projection

280 R. Codina, J. Blasco / Comput. Methods Appl. Mech. Engrg. 182 (2000) 277±300



onto Vh. This is what we call `natural' norm of the ®nite element method presented. Next, L2 error estimates
can be obtained using classical duality arguments, similar to those using in [5] for the GLS method.

To prove convergence we need to explicitly assume that the problem is p-regular. Furthermore, we also
need a technical condition on the family of ®nite element partitions discussed in [2]. Under all these as-
sumptions we can prove [2].

Theorem 2. Suppose that the Navier±Stokes problem is p-regular, the uniqueness condition holds and that the
family of finite element partitions fThgh>0 is non-degenerate and such that (15) holds. Assume also that the
parameters aK satisfy (16). Then, for h small enough, the solution of the discrete finite element problem
satisfies the error estimate

kuÿ uhk1 � krhp ÿrhphk � krhp ÿ nhk6CE�h�; �17�
where

E�h� :� inf
vh2Vh;0

kuÿ vhk1 � inf
vh2Vh;0

X
K

1

hK
kuÿ vhk0;K

� inf
qh2Qh

kp ÿ qhk � inf
qh2Qh

krhp ÿrhqhk � inf
gh2Vh

krhp ÿ ghk �18�

and u and p are the solution of the continuous problem.

Clearly, estimate (17) is optimal. From the standard approximation properties of the ®nite element
spaces it follows that if u 2 H r�X� \ V , r P 1, and p 2 H s�X� \ Q, s P 1, then the error function E�h� in (18)
behaves like hk, with k � minfr ÿ 1; s; kv; kq � 1g.

4. Stabilization of the transient problem

In this section we present the extension of the stabilization technique described for the steady problem in
the previous section to the transient case. We shall concentrate on two particular time integration schemes,
namely, the monolithic trapezoidal rule (solving for the velocity and the pressure at the same time) and a
particular fractional step method that allows to compute the di�erent variables by solving uncoupled
equations for each. The two particular cases considered are representative of monolithic and fractional step
methods and the extension of the stabilization method to other time integration schemes of these types is
straightforward.

4.1. Monolithic schemes

Let us consider ®rst the trapezoidal rule. The discretization of (6) and (7) in this case consists in solving
the following problem: from known un and pn, ®nd un�1 2 V st and pn�1 2 Qst such that

dun

dt
; v

� �
� c�un�h; un�h; v� � a�un�h; v� ÿ b�pn�1; v� � hf n�1; vi 8v 2 V st; �19�

b�q; un�1� � 0 8q 2 Qst; �20�
where dt is the time step size, superscripts refer to the time step level, h 2 �0; 1� and we use the notation

un�h :� hun�1 � �1ÿ h�un and dun :� un�1 ÿ un:

The force term in (19) and below has to be understood as the time average of the force in the interval
�tn; tn�1�, even though we use a superscript n� 1 to characterize it. The pressure value computed here has
been identi®ed as the pressure evaluated at tn�1, although this is irrelevant for the velocity approximation.
The problem can be written in terms of un�h by expressing un�1 in terms of it. Also, instead of using
c�un�h; un�h; v� for the convective term it is also possible to use a linearized form of it with the same order of
approximation.
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The Galerkin ®nite element approximation of problem (19) and (20) is standard. As for the stationary
problem, the ®nite element spaces used to interpolate the velocity and the pressure need to satisfy the
discrete inf±sup condition (see [12] for a complete discussion and analysis of this problem when h � 1=2).
On the other hand, it is possible to avoid the need to satisfy this condition by extending the stabilization
technique of the previous section to the transient case. This extension is straightforward. Using the same
notation as before, the transient analogue of problem (10) and (12) is to ®nd ®nite element approximations
�un�h

h ; pn�1
h � to �un�h; pn�1� and also nn�1

h such that

dun
h

dt
; vh

� �
� c�un�h

h ; un�h
h ; vh� � a�un�h

h ; vh� ÿ b�pn�1
h ; vh� � �f n�1; vh�; �21�

X
K

a2
K�rpn�1

h ;rqh�K ÿ
X

K

aK�nn�b
h ;rqh�K � b�qh; u

n�1
h � � 0; �22�

ÿ
X

K

aK�rpn�1
h ; gh�K � �nn�1

h ; gh� � 0 �23�

for all �vh; qh; gh� 2 Vh;0 � Qh � Vh:
In this equations we have introduced the parameter b, whose values of interest are b � 0 and b � 1. In

the ®rst case, the pressure gradient projection is treated explicitly, whereas in the second it is treated im-
plicitly. We shall see in the next section that this is possible, in the sense that if the parameters aK are
properly chosen the resulting time integration scheme is stable.

The choice of b is especially relevant from the computational point of view. To discuss this, it is con-
venient to introduce the matrix form of the algebraic system resulting from problem (21)±(23), which is

M0

dUn

dt
� K�Un�h�Un�h � GPn�1 � Fn�1; �24�

ÿLaPn�1 ÿ G t
aN

n�b �DUn�1 � 0; �25�
ÿGaPn�1 �MNn�1 � 0: �26�

The notation employed here is as follows. First, we have used capital letters to denote the vectors of nodal
unknowns of the corresponding lower case variables. Vector Fn�1 is the resulting force vector, matrix M0 is
the Gramm matrix for the velocity space Vh;0 and M for the whole space Vh. Matrix K comes from the
discretization of both the viscous and convective terms and matrices G , D and L come from the approx-
imation of the gradient, the divergence and the Laplacian operators, respectively. When these matrices are
modi®ed by the appearence of the aK parameters in the integrals we have introduced a subscript a.

Clearly, when b � 0 Eqs. (24) and (25) can be solved independently of (26), which can be solved for Nn�1

once the pressure Pn�1 is known. This makes the stabilized method only marginally more expensive than the
standard Galerkin approach. The stability when b � 0 will be discussed in the next section.

From (26) it is found that the nodal unknowns of the pressure gradient projection are

Nn�b �Mÿ1GaPn�b:

The inversion of M is trivial if it approximated by the standard lumped mass matrix. Otherwise, a linear
system needs to be solved, although this can be done e�ciently by a sort of iterative techniques.

Inserting the expression for Nn�b in (25) yields

ÿLaPn�1 ÿ G t
aMÿ1GaPn�b �DUn�1 � 0:

This is the modi®ed discrete continuity equation solved by the stabilized method instead of the equation
DUn�1 � 0. For b � 1 it can be written as

BaPn�1 �DUn�1 � 0;

where we have introduced the matrix

Ba :� ÿLa ÿ G t
aMÿ1Ga:
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It can be proved that this matrix is positive-semide®nite [3], thus explaining from a purely algebraic point of
view why the stability of the pressure is increased by the present stabilization technique.

4.2. Fractional step schemes

4.2.1. Matrix form
Let us discuss now the application of this stabilization method when a fractional step scheme is used for

the time integration. For that, we consider a purely algebraic presentation of these types of methods. Let us
split (24) into the following two equations:

M0

1

dt
Ûn�1
�

ÿUn
�
� K�Un�h�Un�h � cGPn � f n�1; �27�

M0

1

dt
Un�1
�

ÿ Ûn�1
�
� G Pn�1

ÿ ÿ cPn
� � 0; �28�

where Ûn�1 is an auxiliary vector of unknowns and c � 0 or 1. If we write Ûn�h � hÛn�1 � �1ÿ h�Un, Eq.
(27) can be solved independently of (28) if the approximation

K�Ûn�h�Ûn�h � K�Un�h�Un�h �29�
is used. This is the source of splitting error. Since from (28) it follows that

Un�1 � Ûn�1 ÿ dtMÿ1
0 G Pn�1

ÿ ÿ cPn
�
; �30�

it is clear that the approximation (29) is formally of order O�dt� if c � 0 and of order O�dt2� if c � 1.
Using the expression for Un�1 obtained in (30) and inserting it into (25), the resulting discrete continuity

equation is

0 � ÿ LaPn�1 ÿ G t
aN

n�b �DUn�1

� ÿ LaPn�1 ÿ G t
aN

n�b �DÛn�1 ÿ dtDMÿ1
0 G Pn�1

ÿ ÿ cPn
�
: �31�

A further approximation is now required in order to make the ®nal discrete problem easier to solve. It
consists of approximating the discrete Laplacian matrix appearing in the last term of (31) computed as
DMÿ1

0 G by the standard discrete Laplacian L, that is, to take

DMÿ1
0 G Pn�1

ÿ ÿ cPn
� � L Pn�1

ÿ ÿ cPn
�
: �32�

Using this, together with the splitting (27) and (28) of (24) and the approximation (29), the ®nal algebraic
system of equations to be solved at each time step is

M0

1

dt
Ûn�1
�

ÿUn
�
� K�Ûn�h�Ûn�h � cGPn � Fn�1; �33�

dtL Pn�1
ÿ ÿ cPn

� � DÛn�1 ÿ LaPn�1 ÿ G t
aN

n�b; �34�
ÿ GaPn�1 �MNn�1 � 0; �35�

M0

1

dt
Un�1
�

ÿ Ûn�1
�
� G Pn�1

ÿ ÿ cPn
� � 0: �36�

This equations are very attractive from the implementation point of view because they are uncoupled. Eq.
(33) can be solved for Ûn�1, and then the pressure can be computed directly from (34) if b � 0 or coupling
this equation together with (35) if b � 1. Finally, (36) can be solved for Un�1.

4.2.2. Motivation from a continuous problem
To motivate the method given by (33)±(36) let us assume for a moment that the parameters aK are

constant and equal to a value a. If we take the trapezoidal rule as given by (21)±(23) as the starting point for
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the design of the fractional step method, it is seen that the continuous equations that are being approxi-
mated are

ou

ot
� �u � r�uÿ mDu�rp � f ; �37�

ÿa2Dp � ar � n�r � u � 0; �38�
ÿarp � n � 0; �39�

with the appropriate boundary conditions. Let us introduce the abbreviation

N�u� :� �u � r�uÿ mDu:

To discretize problem (37)±(39) let us consider the simplest fractional step scheme [13,14], which consists
of solving the problem

1

dt
ûn�1
�

ÿ un
�
� N�ûn�1� � crpn � f n�1; �40�

1

dt
un�1
�

ÿ ûn�1
�
�r pn�1

ÿ ÿ cpn
� � 0; �41�

ÿ a2Dpn�1 � ar � nn�b �r � un�1 � 0; �42�
ÿ arpn�1 � nn�1 � 0: �43�

In this equations, ûn�1 is an intermediate velocity which is computed from a pressure guess and for which
the continuity equation is not enforced. If Eqs. (40) and (41) are added up, we recover the standard dis-
cretization of the momentum equation using the trapezoidal rule for h � 1, except for the fact that N is
evaluated with ûn�1 instead of being evaluated with un�1. Here is where the splitting error comes in. This
error is of order O�dt2� if c � 1 (that is, the pressure guess is the pressure obtained in the previous time step)
and of order O�dt� if c � 0 (the pressure guess is zero). Of course, the splitting error is in addition to the
error associated to the time integration scheme being used, which in the case considered is also of order
O�dt�.

In principle, the way to solve (40)±(43) is to start with (40), which is independent of the other equations,
and then solve (41)±(43), with the possibility of uncoupling the last equation if b � 0. A further compu-
tational advantage can be achieved if we take the divergence of (41) and use the modi®ed continuity
Eq. (42). This leads to

1

�
� a2

dt

�
Dpn�1 � 1

dt
r � ûn�1 � cDpn � a

dt
r � nn�b: �44�

For b � 0, this allows to solve, successively, (40) for ûn�1, (44) for pn�1, (43) for nn�1 and ®nally (41) for un�1.
This fact is extremely attractive from the computational standpoint and is probably the main reason for
using fractional step or splitting techniques (see [15] for a review of such methods). However, there is a
point that we have deliverately omitted, which is the treatment of the boundary conditions. This is irrel-
evant for our purpose of showing how to apply the stabilization method to this type of schemes.

Once the ®nite element approximation of the problem has been performed, the ®nal algebraic system of
equations to be solved is (33)±(36), which is obtained from the discretization of Eqs. (40), (44), (43) and
(41). Now the parameters aK can be considered again as de®ned element by element and take the resulting
formulation as the proposed stabilized fractional step ®nite element method.

4.2.3. Discrete variational form
The matrix system given by (33)±(36) corresponds to the following discrete variational equations:

1

dt
ûn�1

h

�
ÿ un

h; vh

�
� c�ûn�h

h ; ûn�h
h ; vh� � a�ûn�h

h ; vh� ÿ cb�pn
h; vh� � �f n�1; vh�; �45�
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X
K

a2
Krpn�1

h

ÿ ÿ aKn
n�b
h ;rqh

�
K
�
X

K

dt rpn�1
h

ÿ ÿ crpn
h;rqh

�
K
� b�qh; û

n�1
h � � 0; �46�

ÿ
X

K

aK�rpn�1
h ; gh�K � �nn�1

h ; gh� � 0; �47�

1

dt
un�1

h

�
ÿ ûn�1

h ; vh

�
ÿ b�pn�1

h ÿ cpn
h; vh� � 0; �48�

which must be satis®ed for all �vh; qh; gh� 2 Vh;0 � Qh � Vh: This variational form of the problem allows us
to draw some conclusions.

Let us consider ®rst the case aK � 0, that is, the classical fractional step scheme. In the case c � 0, it is
seen from (46) that a pressure Laplacian multiplied by dt is introduced in the incompressibility equation.
This is the reason why the resulting scheme allows to use equal velocity±pressure interpolation, an ob-
servation found for example in [16±19]. In [20], the scheme is shown to be stable by considering it as a
(perturbed) problem for the intermediate velocity ûn�1

h instead of a problem for the end-of-step velocity un�1
h .

However, the fact that the stability (and therefore the convergence) of the scheme relies on the time step size
dt has severe drawbacks. If dt is too large, the incompressiblity constraint will be poorly approximated,
whereas if is too small there will be a lack of stability. From the analysis presented for the stationary case it
follows that dt must be of order O�h2� to have both good stability and accuracy. It is known that good
results are obtained if dt is computed as the critical time step of the explicit approximation to the equations
(that is, h � 0).

The case c � 1 leads to a scheme in which the splitting error is of second order, and therefore with a
better approximation to the incompressibility of the ¯ow. However, in this case it is observed from (46) that
stability may deteriorate as the steady state is reached, that is, as pn�1

h ÿ pn
h ! 0 (in a certain norm). In order

to prove convergence of the fully discrete scheme to the solution of the continuous problem the discrete
velocity±pressure spaces must satisfy the inf±sup condition (see [21]).

The use of aK satisfying condition (16) allows to circumvent this misbehavior, since the stability does not
rely any more on the time step size dt. Now c � 1 can be used, yielding a scheme with second order splitting
error and keeping the most interesting properties of fractional schemes, namely, the uncoupling of the
equations and the possibility of using equal velocity±pressure interpolations.

5. A stability estimate

The purpose of this section is to prove a stability estimate for a simpli®ed case of the fully discrete
problem (21)±(23). The simpli®cations that will be assumed are that we shall take aK equal for all the el-
ements to a parameter a and that we shall take h � 1. These assumptions are not restrictive if, as in our
case, the purpose of the analysis is to get insight on the stability nature of the scheme analyzed.

The problem that we consider is therefore

dun
h

dt
; vh

� �
� c�un�1

h ; un�1
h ; vh� � a�un�1

h ; vh� ÿ b�pn�1
h ; vh� � � f n�1; vh�; �49�

a2�rpn�1
h ;rqh� ÿ a�nn�b

h ;rqh� � b�qh; u
n�1
h � � 0; �50�

ÿa�rpn�1
h ; gh� � �nn�1

h ; gh� � 0; �51�

for all �vh; qh; gh� 2 Vh;0 � Qh � Vh. As it is seen from (50), we still consider the possibility of treating the
pressure gradient projection either implicitly or explicitly.

We shall also make an assumption on the ®nite element mesh, namely, that is is quasi-uniform and of
diameter h. In this case, the inverse estimates
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rvhk k6 Cinv

h
vhk k; vhk kL1�X�6

Cinv

hd=2
vhk k 8vh 2 Vh; �52�

hold true. Again, the same results as for the steady-state case can be proved only assuming that the mesh is
non-degenerate, but this does not introduce any further insight on the method.

From now on we use C, possibly with subscripts, to denote positive constants independent of h and dt,
not necessarily the same at different occurrences.

The idea is to obtain a stability estimate for the sequence of velocities un
h as well as for the sequence

rhpn
h � hrpn

h. In order to write down these estimates, let us introduce the following de®nition. If ff ngN
n�0 is

a sequence of functions in a Banach space X with norm k � kX , we say that

ff ng 2 `p�X � iff
XN

n�0

kf nkp
X dt6C <1; �53�

for 16 p <1, and

ff ng 2 `1�X � iff max
n�0;...;N

fkf nkXg6C <1: �54�

Our main stability result for problem (49)±(51) the following:

Theorem 3. Suppose that the family of finite element partitions fThgh>0 is quasi-uniform and such that (15)
holds. If a satisfies (16), then the solution to problem (49)±(51) verifies

fun
hg 2 `1�L2�X�� \ `2�H1�X��; �55�

frhpn
hg 2 `1�L2�X��; �56�

provided ff ng 2 `2�L2�X��. In particular, there exist constants C1 and C2, independent of h and dt, such that

kuN�1
h k2 �

XN

n�0

dt mkrun�1
h k2 �

XN

n�0

dthkrpn�1
h k6C1

XN

n�0

dtkf n�1k2 � C2:

Proof. To simplify the notation in what follows, let us write

gn
i :� Ph;i arpn

h

ÿ �
; i � 1; 2; 3:

From (51) we have that

nn�1
h � gn�1

1 � gn�1
2 ;

and therefore the continuity equation can be written as

a gn�1
3 ;rqh

ÿ �� �ba nn�1
h

ÿ ÿ nn
h;rqh

�� b�qh; u
n�1
h � � 0; �57�

where �b :� 1ÿ b. We will be interested only in the cases �b � 0 and �b � 1. Adding up (57) with the mo-
mentum equation (49) taking vh � un�1

h and qh � pn�1
h it is found that

un�1
h ;

dun
h

dt

� �
� m run�1

h



 

2 � gn�1
3



 

2 � �b nn�1
h

ÿ ÿ nn
h; arpn�1

h

� � �f n�1; un�1
h �: �58�

Taking into account that

nn�1
h

ÿ ÿ nn
h; arpn�1

h

� � nn�1
h

ÿ ÿ nn
h; n

n�1
h

� � 1

2
nn�1

h



 

2 ÿ 1

2
nn

h



 

2 � 1

2
nn�1

h



 ÿ nn
h



2
;

�f n�1; un�1
h �6C f n�1



 

2 � m
2
run�1

h



 

2
;
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it follows from (58) that

un�1
h



 

2 ÿ un
h



 

2 � un�1
h



 ÿ un
h



2 � dt m run�1
h



 

2 � dt gn�1
3



 

2

� dt �b nn�1
h



 

2
�

ÿ nn
h



 

2 � nn�1
h



 ÿ nn
h



2
�
6Cdt f n�1



 

2
;

and, adding these equations up from n � 0 to the last time interval N it follows that

uN�1
h



 

2 �
XN

n�0

un�1
h



 ÿ un
h



2 �
XN

n�0

dt m run�1
h



 

2 �
XN

n�0

dt gn�1
3



 

2

� dt �b nN�1
h



 

2

 
�
XN

n�0

nn�1
h



 ÿ nn
h



2

!
6C1

XN

n�0

dt f n�1


 

2 � C2: �59�

Of course this is also true for any N06N and proves (55). To prove the stability estimate for the pressure,
observe from (59) that gn

3 is already bounded in `2�L2�X��, and therefore it is also bounded in `1�L2�X��.
Assuming that condition (15) holds, it only remains to obtain a bound for gn

1. For that, let us take
vh � Ph;1 rpn�1

h

ÿ �
in the momentum equation. Using the inverse estimate (52) and Schwarz's inequality we

obtain

Ph;1 rpn�1
h

ÿ �

 

2 � ÿ Ph;1 rpn�1
h

ÿ �
;
dun

h

dt

� �
� f n�1; Ph;1 rpn�1

h

ÿ �ÿ �
ÿ a un�1

h ; Ph;1 rpn�1
h

ÿ �ÿ �ÿ c un�1
h ; un�1

h ; Ph;1 rpn�1
h

ÿ �ÿ �
6 Ph;1 rpn�1

h

ÿ �

 

 dun
h

dt





 



� f n�1


 

 Ph;1 rpn�1

h

ÿ �

 


� Na un�1

h



 

�
� Nc un�1

h



 

2
�Cinv

h
Ph;1 rpn�1

h

ÿ �

 

:
Dividing both sides by Ph;1 rpn�1

h

ÿ �
(assuming it is 6� 0), multiplying by hdt and adding the resulting

equations for n � 0; 1; . . . ;N it follows that

XN

n�0

dth Ph;1 rpn�1
h

ÿ �

 

6XN

n�0

un�1
h



 ÿ un
h



�XN

n�0

dt f n�1


 

�XN

n�0

dtNa un�1
h



 

�XN

n�0

dtNc un�1
h



 

2
:

The bound for gn
1 follows from the behavior assumed for a and from estimate (59). This proves (56). �

The stability estimate for the pressure gradient projection given by (56) can be improved in some
cases, although not in the general case of the 3D Navier±Stokes equations. This is what the following result
states.

Theorem 4. Under the same conditions as in Theorem 3, suppose also that either c � 0 (Stokes problem) or
d � 2 (2D flows). In the case b � 0 suppose also that dt P Ch2. Then the solution to problem (49)±(51) verifies
the stability estimate

frhpn
hg 2 ` 2�L2�X��: �60�

Proof. Let us consider now the continuity Eq. (57) for time step n and n� 1. Subtracting both it is found
that

a
dt

gn�1
3

ÿ ÿ gn
3;rqh

�� �b
a
dt

nn�1
h

ÿ ÿ 2nn
h � nnÿ1

h ;rqh

�ÿ rqh;
dun

h

dt

� �
� 0: �61�
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Taking now qh � pn�1
h we get

Ph;1 rpn�1
h

ÿ �
;
dun

h

dt

� �
� 1

dt
gn�1

3

ÿ ÿ gn
3; g

n�1
3

�� �b
1

dt
nn�1

h

ÿ ÿ 2nn
h � nnÿ1

h ; nn�1
h

�
� 1

2dt
gn�1

3



 

2
�

ÿ gn
3



 

2 � gn�1
3



 ÿ gn
3



2
�

� �b
1

2dt
nn�1

h



 

2
�

� nnÿ1
h



 

2 ÿ 2nn
h



 

2 ÿ 2nn
h



 ÿ nnÿ1
h



2

� nn�1
h



 ÿ 2nn
h � nnÿ1

h



2
�
: �62�

Taking now vh � Ph;1 rpn�1
h

ÿ �
in the momentum equation, using the continuity of a in H1�X�2 and the

continuity of c in L2�X� �H1�X� � L1�X� and the inverse estimates in (52) it follows that

Ph;1 rpn�1
h

ÿ �
;
dun

h

dt

� �
� Ph;1 rpn�1

h

ÿ �

 

2

� f n�1; Ph;1 rpn�1
h

ÿ �ÿ �
ÿ a un�1

h ; Ph;1 rpn�1
h

ÿ �ÿ �ÿ c un�1
h ; un�1

h ; Ph;1 rpn�1
h

ÿ �ÿ �
6 f n�1


 

 Ph;1 rpn�1

h

ÿ �

 

� Na un�1
h



 

 Ph;1 rpn�1
h

ÿ �

 


� Nc un�1

h



 

 un�1
h



 

 Ph;1 rpn�1
h

ÿ �

 


L1�X�

6 f n�1


 

 Ph;1 rpn�1

h

ÿ �

 


� C un�1

h



 

 Na

h

�
� Nc

hd=2
un�1

h



 

� Ph;1 rpn�1
h

ÿ �

 

:
Since the velocities are in `1�L2�X��, the norm inside the parenthesis is bounded. Also, either if Nc � 0
(Stokes problem) or if d � 2 this parenthesis behaves as 1=h. Therefore, from Young's and Poincare's
inequalities we have

Ph;1 rpn�1
h

ÿ �
;
dun

h

dt

� �
� Ph;1 rpn�1

h

ÿ �

 

26C f n�1


 

2 � C

m
h2
run�1

h



 

2 � 1

2
Ph;1 rpn�1

h

ÿ �

 

2
;

and, using (62) and multiplying by h2dt,

dth2 Ph;1 rpn�1
h

ÿ �

 

2 � h2 gn�1
3



 

2
�

ÿ gn
3



 

2 � gn�1
3



 ÿ gn
3



2
�

� �bh2 nn�1
h



 

2
�

� nnÿ1
h



 

2 ÿ 2nn
h



 

2 ÿ 2nn
h



 ÿ nnÿ1
h



2 � nn�1
h



 ÿ 2nn
h � nnÿ1

h



2
�

6C1dt f n�1


 

2 � C2dt mrun�1

h



 

2
: �63�

Adding up from n � 0 up to N (and neglecting some positive terms) we getXN

n�0

dth2 Ph;1 rpn�1
h

ÿ �

 

2 � �bh2 nN�1
h



 

2

6C1

XN

n�0

dt f n�1


 

2 � C2

XN

n�0

dt mrun�1
h



 

2 � �bh2 nN
h



 

2

 
� 2

XN

n�0

nn
h



 ÿ nnÿ1
h



2

!
�64�

Finally, we can use condition (16) on a in (59) to obtain an estimate for the norm of hP13�rpn�1
h �, which

allows to obtain an estimate for the norm of the whole pressure gradient if the weak inf±sup condition (15)
holds. The combination of (59) and (64) yields thereforeXN

n�0

dth2 rpn�1
h



 

26 C1

�
� C2

�b
h2

dt

� XN

n�0

dt f n�1


 

2

 
� C3

!
:

This completes the proof of the theorem. �
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It is observed from Theorems 3 and 4 that each of the members of the sequence of velocities are
L2-stable, whereas the L2 spatial norm of the velocity gradient and the pressure gradient (multiplied by h)
are stable in the sense that the discrete approximation to their L2 norm (or L1 norm) in time is bounded.
This is frequently expressed by saying that the velocities are strongly stable in L2 and weakly in H 1, whereas
the pressure gradient (multiplied by h) is weakly stable in L2.

A further remark refers to the need for the condition dt P Ch2 in Theorem 4 when the projection of the
pressure gradient is treated explicitly. This expresses the fact that the term added to the incompressility
constraint must be small compared to dt. However, it is observed from (59) that without this assumption we
already have control over the norm of gn�1

3 and only the norm of Ph;1 rpn�1
h

ÿ �
needs to be controlled (as-

suming that the weak inf±sup condition holds true). On the other hand, very few components ofrph belong
only to Vh;0 (none for linear and multilinear elements!) and thus a bound for Ph;3 arpn�1

h

ÿ �
implies stability

for most of the pressure components. In practice, we have never observed the need for having dt large
enough and we have always obtained perfectly stable solutions when the projection of the pressure gradient
is treated explicitly. Moreover, in Theorem 3 we have seen that no conditions on dt are needed to obtain
stability in ` 1�L2�X�� for the pressure gradient.

6. Numerical tests

In this section we show the numerical results obtained with the stabilized, monolithic scheme (21)±(23) in
two di�erent problems, a test case with an analytical solution and the standard problem of the ¯ow past a
circular cylinder.

6.1. A case with an analytical solution

We consider the following analytical solution of the unsteady, incompressible Navier±Stokes equations
in two dimensions, called the Taylor vortex problem (see [22,23]):

u�x; y; t� � ÿ cos�px� sin�py�eÿ2mp2t

v�x; y; t� � sin�px� cos�py�eÿ2mp2t �65�
p�x; y; t� � �ÿ1=4� �cos�2px� � cos�2py��eÿ4mp2t

where m > 0 is the ¯uid's kinematic viscosity (which we took equal to 0:1). We employ this example to check
the accuracy properties of the numerical scheme (21)±(23) with respect to the time discretization for dif-
ferent values of the parameter h. The case h � 1 is studied analytically in [24], where we prove ®rst order
error estimates in the time step size and optimal order estimates in the mesh size with the given ®nite el-
ement interpolation for the fully discrete solution.

We took a computational domain consisting of the unit square X � �0; 1� � �0; 1�, and imposed time-
dependent, Dirichlet-type boundary conditions given by the value of the analytical solution (65) on the
boundary of X. We used a uniform 31� 31 noded mesh to discretize the domain, and the same mesh points
were used to de®ne both a Q1 and a Q2 quadrilateral element interpolation, for comparison purposes.

We integrated the Navier±Stokes Eqs. (1)±(4) with the scheme (21)±(23) for h � 1 and h � 1=2 with
di�erent time step sizes, starting from (65) at t � 0 as a velocity initial condition, to a ®nal time T � 1. We
then calculated the L2-norm of the velocity, the velocity gradient and the pressure gradient errors with
respect to the analytical solution (65) at t � 1, these are the variables the stability of which is established in
Theorem 3 and for which error estimates are derived in [24]. For each value of h, we considered the cases
b � 0; 1, corresponding to an explicit/implicit approximation of the pressure gradient. Also, when h � 1 we
considered the possibility of treating explicitly the advection velocity of the non-linear convective term
within each time step, that is to say, to take this convective term as c�un

h; u
n�1
h ; vh�. This also leads to a ®rst

order time integration scheme.
The backward Euler case h � 1 displayed ®rst order accuracy in all three variables and all four methods.

The results obtained in this case with a Q1 element interpolation can be seen in Figs. 1±3, where we plot the
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Fig. 1. Taylor ¯ow, h � 1, Q1 element, velocity errors: � b � 0, linearized scheme; � b � 1, linearized scheme; + b � 0, non-linear

scheme; � b � 1, non-linear scheme.

Fig. 2. Taylor ¯ow, h � 1, Q1 element, velocity gradient errors: � b � 0, linearized scheme; � b � 1, linearized scheme; + b � 0, non-

linear scheme; � b � 1, non-linear scheme.
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Fig. 3. Taylor ¯ow, h � 1, Q1 element, pressure gradient errors: � b � 0, linearized scheme; � b � 1, linearized scheme; + b � 0, non-

linear scheme; � b � 1, non-linear scheme.

Fig. 4. Taylor ¯ow, h � 1, Q2 element, velocity errors: � b � 0, linearized scheme; � b � 1, linearized scheme; + b � 0, non-linear

scheme; � b � 1, non-linear scheme.
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Fig. 5. Taylor ¯ow, h � 1, Q2 element, velocity gradient errors: � b � 0, linearized scheme; � b � 1, linearized scheme; + b � 0, non-

linear scheme; � b � 1, non-linear scheme.

Fig. 6. Taylor ¯ow, h � 1, Q1 element, pressure gradient errors: � b � 0, linearized scheme; � b � 1, linearized scheme; + b � 0, non-

linear scheme; � b � 1, non-linear scheme.
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di�erent errors versus the time step size in logarithmic scale. However, ®rst order accuracy is lost in the low
dt range for the velocity gradient and the pressure gradient, since the space error is reached then, the ve-
locity gradient is shown in [24] to have O�h� spatial accuracy for the Q1 element case while the pressure
gradient is only bounded. For the mesh considered, we have h ' 1=30. The velocity spatial error, which is
O�h2�, is not reached.

We then repeated the calculation with a Q2 element interpolation; we plot the results in Figs. 4±6. First
order time accuracy is also attained in this case. Moreover, the velocity gradient and pressure gradient
errors con®rmed their respective O�h2� and O�h� theoretical estimates (see [24]).

The second order Crank±Nicholson case h � 1=2 proved very sensitive to the values of the stabilization
parameters aK . We ®nally took them as:

aK � 4m
a0h2

K

�
� 2vK

hK

�ÿ1=2

; �66�

where hK is the size of element K, vK is a representative velocity of that element at the current time step and
a0 is a given constant (which we took equal to 1/3 for bilinear elements). These are the optimal values of the
stabilization parameters of the GLS method. For large values of the viscosity and small element sizes, (66)
behaves as condition (16) dictates. In general cases, we have found good results using (66).

Although not as sharp as in the previous case, it displayed second order accuracy for the velocity so-
lution both in the L2-norm and in the H 1-norm, and both for the Q1 and Q2 ®nite element spatial inter-
polations (in the ®rst case, the spatial error also degraded the accuracy for low dt values). The errors found
in this case can be seen in Figs. 7 and 8, for the Q1 element case, and Figs. 9 and 10 for the Q2 element.

Fig. 7. Taylor ¯ow, h � 1=2, Q1 element, velocity errors: + b � 0; � b � 1.
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Finally, we plot the streamlines and pressure contours obtained at the end of one of the runs in Figs. 11 and
12, respectively.

6.2. Flow past a circular cylinder

We then considered the problem of the ¯ow past a circular cylinder, which has become a compulsory
benchmark test for transient algorithms for the Navier±Stokes equations.

It is well known that for low values of the Reynolds number, the solution is steady and symmetric about
a line parallel to the free-stream ¯ow through a cylinder diameter; a pair of symmetrical eddies develop
downstream of the cylinder. But beyond a critical value of Re (which is larger than 40), the steady solution
becomes unstable and a periodic solution develops, so that vortex shedding sets in.

The shedding period of the solution is one of the most studied quantities to compare quantitatively the
results obtained in this problem. Equivalently, one can look at the Strouhal number or adimensional
frequency, de®ned as St � D=u0s, D being the cylinder diameter, u0 the in¯ow velocity and s the shedding
period of the solution. It is now known that the shedding characteristics (and the Strouhal number, in
particular) are signi®cantly affected by the dissipation introduced by the time-stepping scheme, as well as by
the spatial interpolation used (see [25], for instance). Moreover, the computed unsteady ¯ow is also affected
by the introduction of ®nite boundaries in the domain. While the location of the upstream (or in¯ow) and
the downstream (or out¯ow) boundaries does not seem to affect the solution much (as long as the latter is
further than 6 cylinder diameters, see [26]), the shedding solution is far more sensitive to the location of the
lateral boundaries, as was recently found in [27]. In particular, the shedding period can become too small

Fig. 8. Taylor ¯ow, h � 1=2, Q1 element, velocity gradient errors: + b � 0; � b � 1.
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when the lateral boundaries are placed too close to the cylinder. We placed these boundaries 12 cylinder
diameters away form the cylinder, which according to [27] should be enough not to affect the solution.

Thus, we considered a cylinder of unit diameter and took a computational domain consisting of the
rectangle �0; 50� � �0; 24�, the center of the cylinder being situated at the point �12:; 12:�. The boundary
conditions taken are the ones usually imposed in this problem, a unit free-stream horizontal velocity at the
in¯ow, a solid wall condition on the cylinder surface, zero normal velocity and zero tangential stress on the
lateral boundaries and a traction-free condition at the out¯ow. The mesh used in this case can be seen in
Fig. 13; it consists of 3000 nodes and 2880 of the Q1 elements.

We used the explicit pressure gradient, non-linear convection scheme (that is, (21)±(23) with b � 0), with
local values of the coe�cients a given again by (66). At each time step, the non-linearity of the problem was
solved by a Picard iteration with an error tolerance of 10ÿ3 (for which 2 or 3 iterations were enough); the
velocity±pressure systems of linear equations were solved by the iterative GMRES method, with an error
tolerance of 10ÿ5, while the pressure gradient system was solved by the conjugate gradient algorithm with a
consistent mass matrix and the same error tolerance.

We ®rst solved the problem for a Reynolds number of 40, which is based upon the free-stream velocity
and the cylinder diameter, starting from the ¯uid at rest but for the prescribed boundary conditions. We
performed 10 time steps of size dt � 0:5 of the fully implicit scheme h � 1 (so as to reach the steady state
fastest), which yielded the steady solution very accurately.

We then raised the value of the Reynolds number to 100, we started the computation from the steady
solution obtained for Re � 40 and performed 10,000 steps of size dt � 0:1 of the Crank±Nicholson method
h � 1=2. The solution started oscillating freely from the start, the ®nal periodicity was reached by t � 750.
In this case, no arti®cial trick was needed to start up the periodic solution. In Fig. 14 we show the history of

Fig. 9. Taylor ¯ow, h � 1=2, Q2 element, velocity errors: + b � 0; � b � 1.
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the horizontal velocity at a node situated at the point �24:0; 14:�, that is, downstream of the cylinder and
slightly higher. In order to improve the accuracy of the solution, we then continued the calculation with a
time step size dt � 0:05, with which we performed 500 steps. We ®nally found a Strouhal number of
St � 0:161, or equivalently, a period of 6:2. To this order of precision, this is the same period that was found
in [27] with a stabilized, space-time velocity±pressure formulation using a 7641 noded mesh (that is, more
than two and a half times the number of nodes we used) in the present domain, a formulation which re-
quieres of many more stabilization terms than ours. (A period of 6.0 was found in this reference with a
stabilized velocity±pressure-stress formulation also using a Crank±Nicholson time integration scheme, with
the same 7641 noded mesh and 3 extra coupled unknowns in 2 dimensions). It has to be said that most
researchers who have solved this problem numerically up to now have considered a smaller domain (that is,
one with lateral boundaries closer to the cylinder surface), this is probably the reason why smaller periods
(between 5.8 and 6.0) have usually been found.

The streamlines obtained at the end of the computation are shown in Fig. 15. In Fig. 16 we plot the
stationary streamlines; the wakes behind the cylinder can be clearly seen there. Finally, we show the
pressure contours in Fig. 17. All these results compare very well with other published solutions (see [28,29],
for instance).

7. Conclusions

In this paper we have presented the extension of a stabilization technique originally developed for
steady problems to the transient case. The goal is to be able to use equal velocity±pressure interpolations,

Fig. 10. Taylor ¯ow, h � 1=2, Q2 element, velocity gradient errors: + b � 0; � b � 1.
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Fig. 12. Taylor ¯ow, pressure contours.

Fig. 11. Taylor ¯ow, streamlines.
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and thus other instabilities, such as that arising in convection dominated ¯ows, have to be stabilized by
other means.

Theoretical stability estimates and numerical examples demonstrate that the goal described is in fact
achieved. The former can be obtained only with some weak assumptions on the ®nite element meshes
employed and the velocity±pressure spaces. Numerical results show that the method is not only stable, but
also that the formal accuracy of the time integration scheme is preserved by the use of the stabilization
method.

From the computational point of view, the explicit treatment of the pressure gradient projection allows
to adapt codes based on mixed div-stable formulations to equal order interpolations only with minor
modi®cations. The continuity equation has to be modi®ed by introducing a Laplacian-like term for the

Fig. 14. Flow past a cylinder: nodal velocity history.

Fig. 13. Flow past a cylinder: mesh.
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Fig. 16. Flow past a cylinder: stationary streamlines.

Fig. 17. Flow past a cylinder: pressure contours.

Fig. 15. Flow past a cylinder: streamlines.
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pressure and the divergence of the pressure gradient projection in the RHS. We have shown how to apply
the stabilization technique to both monolithic and fractional step time integration methods.
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