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Abstraci 

In this paper we consider the application of hierarchical functions to base approximations which are a partition of unity. The 

particular hierarchical functions used are added to base finite element interpolations which, for Co approximations, are a particular 

case of the partition of unity. We also show how the functions may be constructed to preserve the interpolation property of the base 

finite element functions. An application to linear elasticity is used to illustrate the properties and stability of the approximation. 

1. Introduction 

The use of hierarchical interpolations for finite element analyses where approximations must be only 
Co continuous usually adds functions to the edges, faces and interior of low order isoparametric interpo- 
lations (see e.g. [l]). For example, using a simple triangular element with linear interpolations quadratic 
and higher order functions may be added to each edge in a direct manner. To create complete poly- 
nomial approximations of cubic or higher order over the triangle it is necessary to also add an interior 
term. In recent publications [2-51, it has been shown that hierarchical functions may be added to any 
base approximation which is a partition of unity [6] and recover globally the base approximation and 
the added functions. Using this approach it is possible to have polynomial orders which vary from point 
to point in a mesh. Moreover, the addition of each polynomial term can be associated with nodes of the 
base approximation, without a need to add different types of functions for edges, faces and/or interior 
points. Thus, programming complexity for the approach can be significantly reduced. 

In this paper we investigate the properties of the new hierarchical functions in the solution of any 
finite element protblem for which Co interpolations may be employed. In Section 2, we show how the 
functions may be given in a form which does not destroy the original interpolation capability of the 
base interpolations. The modified form for interpolation is shown to preserve the property of high order 
global Cartesian polynomial approximation while being straightforward to implement. 
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In Section 3, we illustrate the basic structure for application of the method to plane strain, linear 
elasticity problems. Patch test evaluations, as described in [1,7] are used to assess the stability of the 
procedure using the simplest quadratic elements on triangles and quadrilaterals. Certain forms of the 
interpolation are found to be stable while others are not. Finally, for the triangular element form the 
method is applied and compared to classical isoparametric 6-node triangular element solutions. 

2. Hierarchical interpolation 

The basic form of the hierarchical approximation in one dimension is 

with 

and 

N 

c N,k(x)xA = xi 
a=1 

for j = 0, 1, . . . , k and any x. Note that for j zero the above implies that 

N 

c N;(x) = 1 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
a=1 

which defines a partition of unity and also is required for Co finite element approximation functions [1,6]. 
Thus, any Co finite element interpolation function constitutes a basis for constructing the hierarchical 
approximation given by Eq. (2.1). 

In the present work we modify Eq. (2.1) to 

4(x) = 5 @(~)[$a + J’:(x)&, (25) 
a=1 

and use polynomial approximation for the P,k. 
The first derivative of Eq. (2.5) in each element is given by 

The following hierarchical forms are used for the work reported here: 

Form A in which the polynomials are constructed as 

P,k(x) = [(x - xa)k+l (x - xa)k+2 . . -1 
or 

Form B in which the polynomials are constructed as 

P:(~) = [cxk+l _ x:+1) (xk+2 _ x,“+‘) . . .] 

(2.6) 

(2.7) 

(2.8) 
Note that the hierarchical functions are also now associated to each node. a. 
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2.1. Form A: One dimensional approximations 

To illustrate the performance of the approximation given by Eq. (2.5), we consider a one-dimensional 
element with two nodes and take 

where 5‘ is a natural coordinate satisfying 

-16561 

and N,’ are shape functions in each element given by 

q(5) = ; (1 - 0; @1(5) = ; (1 + 5) 

For a quadratic polynomial approximation use the form given by Eq. (2.7) with 

Pi(x) = (x - x,)2 

Thus, within each element the approximation is given by 
I 

4J (xl = 9 Ah’(XMa + (x - &>*&?I 
a=1 

Let us now verify that the approximation contains the polynomials 

4(x) = [l .r x2] 

(a) Set 6, to zero and & to unity. We obtain 

4(x) == &V,‘(X) = 1 
a=1 

(b) Set 6, to ze:ro and & to xa. We obtain 

q&(x) == -&x)n. =x 

a=1 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(c) Set b, to -3. and c$= to x,‘. We obtain 

which expands to 

and by Eq. (2.3) becomes 

4 (x) == x2 (2.15) 

Joining elements to form an arbitrary patch preserves the above properties for global polynomials. 
Thus, the polynomial form given by Eqs. (2.12) interpolates through points located at xa and contains 
complete global polynomials to order 2. 
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2.2. Form B: One-dimensional approximations 

Form B may also be used to perform the interpolations. Accordingly, for the one-dimensional case 
with quadratic polynomial approximation we introduce Eq. (2.8) as 

P;(X) = (X2 - X,“) (2.16) 

Thus, within each element the approximation for this form is given by 

Let us now verify that this approximation contains the polynomials 

t$(x) = [l x x2] 

(a) Set b, to zero and & to unity. We obtain 

(b) Set b, to zero and & to x,. We obtain 

(2.17) 

(2.18) 

(2.19) 

(c) Set b, to 1 and & to x,“. We obtain 

4(X) = &(x)[x; +(x2 -x,“)] 
a=1 

which simplifies to 

#J(x) = &v,l(x)xZ 
Cl=1 

and using Eq. (2.3) becomes 

4(x) =x2 (2.20) 

Joining elements to form an arbitrary patch preserves the above properties for global polynomials. 
Thus, the polynomial form given by Eq. (2.17) also interpolates through points located at x, and contains 
complete global polynomials to order 2. 

It is evident that the modification given by Eq. (2.5) also makes development of finite elements much 
simpler than using Eq. (2.1) since the nodal parameters & retain their original finite element physical 
meaning. Furthermore, the specification of essential and natural boundary conditions may directly use 
the interpolation property. 

2.3. Two-dimensional approximations 

For two-dimensional problems, the approximations in each element may be taken as 

(2.21a) 
a=1 

for coordinates and 
N 

(2.21b) 
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for dependent variables. In the above N is the number of nodes on each element and the 4 are appro- 
priate natural coordinates. 

2.3.1. Three node triangular element 
The simplest element in two dimensions is a triangle with three nodes where 5 are area coordinates, 

&, &, 6 which satisfy 

and 

51 + h + 53 = 1 

The shape functions for the triangle are given as 

N,’ = 5a 

The hierarchical terms for Form A are similar to Eq. (2.7) and here are taken as 

(2.22) 

(2.23) P&w) = [(:x - xaj2 (x - dY - Ya) 01 - Ya121 

with parameters 

-xx 
b, 

6, = jj;y 

II 

(2.24) 

LC$:’ 

The approximation for Form B becomes 

%(S)) = [(x2 -G) (XY - naYa) (Y2 - YZ)] (2.25) 

and has similar parameter structure to Form A. 
The approximation produces an arbitrary element patch which contains all the quadratic order terms. 

The proof is idendcal to the one-dimensional case given above. 
The first partial derivatives of Eq. (2.21) in each element are given by 

(2.26a) 

and 

(2.26b) 

For the quadratic polynomial case we have, for Form A, the result 

z = [2(x --x0) 0, - YJ 01 (2.27a) 

(2.27b) 

(2.28a) 

(2.28b) 

and 

aPk 
--.C = [o 
ay 

I(X - x,) 2(y - y,)] 

whereas for Form B the result is 

aPk 
---L = [2x y o] 
ax 

and 

% = [o .r 2y] 
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For problems in which the coordinates attain large values, Form A leads to better numerical con- 
ditioning in the evaluation of integrals. For the quadratic interpolation case, we have for Form B the 
result 

(2.29) 
a=1 

where 

JJ =-j -x2j+_xy &Cy2bYY a a a a aa a a a (2.30) 

Expansion of Form A produces results which include additional terms involving the linear polynomials 
x and y. Hence, Form B merely changes the definition of the parameters defining the original finite 
element interpolations whereas Form A changes the structure of the original interpolation. Both forms, 
however, are legitimate quadratic hierarchical interpolations. 

Other interpolation types and orders may be obtained by changing the dimension of the problem, the 
order of the basic approximations N,k, and/or the order of the terms included in P,k. For example, if the 
basic approximations are N,” (i.e. contain all polynomials up to order 2) a cubic interpolation for Form 
A may be constructed using Eq. (2.5) with 

P%x) = [(x - &J3 (x - xJ2(y - Ya) (x - &KY - YJ2 0, - yJ3] (2.31) 

Similar constructions may also be performed for two-dimensional quadrilateral elements or three- 
dimensional tetrahedra or brick elements. As noted in [8], however, we must ensure that no linear 
dependencies occur in the final interpolation form. 

It is possible to introduce other types of functions for the Pt as indicated in [2] and [5]. 

3. Application to linear elasticity 

In the previous section the form for polynomial interpolation in two dimensions was given. Here, we 
consider the use of the interpolation to model behavior of problems in linear elasticity. For simplicity 
only displacement models are considered; however, the use of the hierarchic interpolations can easily be 
extended to mixed models. 

For a displacement model the finite element arrays may be deduced from the principal of minimum 
potential energy given here by 

II(u) = J W(E) dR - 
s 

uTbdQ - 
R R s 

uTS do 
r, 

(3.1) 

where u are displacement components, E are strains, W the strain energy, b body forces, and 7 specified 
boundary tractions. The strain-displacement relations are given by 

Q = V(S)* (3.2) 

where V@) denotes the symmetric part of the displacement gradient. For two-dimensional plane strain 
problems, the strain-displacement relations may be written in matrix form as 

4= 

- au - 
ax 
au 

5 
au au 
_ay+z_ 

(3.3) 

Inserting the interpolations for u and u given by Eq. (2.5), the strain-displacement relations become 



N 

E= c 
a=1 
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-u 

b, [I -u (3.4) 
60 

The first term is identical to usual finite element strain-displacement matrices (see e.g. [l]) and the 
second term has identical structure to the usual arrays. Thus, the development of all element arrays 
follows standard procedures. 

3.1. Quadratic triangular element 

For a triangular element with linear interpolation the shape functions and quadratic polynomial 
hierarchic terms are given by Eqs. (2.22) and (2.23) or (2.29, respectively. Using isoparametric con- 
cepts the coordinat’es are given by 

(3.5) 
a=1 a=1 

and are used to construct all polynomials appearing in the hierarchical form. 

Patch test 
A set of patch tests is first performed to assess the stability and consistency of the above hierarchic 

form. The set consists of one, two, four, and eight element patches as shown in Fig. 1. First, we perform 
a stability assessment by determining the number of zero eigenvalues for each patch. The results for 
hierarchical interpolation using Form A are shown in Table 1 and for Form B in Table 2. 

The eigenproblem assessment reveals that the hierarchic interpolation using Form A has excess zero 
eigenvalues (i.e. spurious zero energy modes) only for meshes consisting of one or two elements. Fur- 
thermore, only two element meshes in which one side is a straight line through both elements have excess 

. . 
(a) one element (b) Two element, a 

(c) Two element, b (d) Two element, c 

(e) Four element (f) Eight element 

Fig. 1. Patches for eigenproblem assessment, 
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Table 1 

Triangle patch tests for Form A: Number zero eigenvalues, minimum non-zero value, and maximum value 

Mesh No. zero Min. value Max. value 

1 7 4,7340E+Ol 2.0560E+06 

2a 5 4.0689E+Ol 2.1543E+05 

2b 5 4.1971E+02 2.2648E+OS 

2c 3 15728E+02 2,3883E+06 

4 3 l.O446E+02 2.9027E+05 

8 3 9.556OE+Ol 3.4813E+05 

Table 2 
Triangle patch tests for Form B: Number zero eigenvalues, minimum non-zero value, and maximum value 

Mesh No. zero Min. value Max. value 

1 7 4.6067E+Ol l.O120E+07 

2a 7 4.5_559E+Ol 1.8880E+06 

2b 7 4.3815E+Ol 2.2254E+06 

2c 7 1.634OE+02 l.O69OE+07 

4 7 l.O847E+02 3.7646E+06 

8 7 8.8303E+Ol 5.3064E+06 

zero values. Once the mesh has no straight intersections the number of zero modes becomes correct 
(e.g. contain only the three rigid body modes). On the other hand, using Form B spurious zero modes 
persist for all meshes. We note that Form B involves only a simple change of the definition for the finite 
element parameters, and thus the spurious results obtained in Table 2 also apply for the interpolation 
given by Eq. (2.1). 

Consistency tests verify that all meshes contain terms of up quadratic polynomial order. 

3.2. Quadratic quadrifaterat element 

For a quadrilateral element with bi-linear interpolation the shape functions given by 

(3.6) 

where 6, 17 are natural coordinates satisfying 

and &, ~~ are the values of the natural coordinates at vertex nodes. Using isoparametric interpolations 
the coordinates may be computed from 

Quadratic polynomial hierarchic terms are constructed for Form A using Eq. (2.23). 

3.2.1. Patch test 
A set of patch tests is first performed to assess the stability and consistency of the above hierarchic 

form on rectangles. The set consists of one, two and four element patches as shown in Fig. 2. First, 
we perform a stability assessment by determining the number of zero eigenvalues for each patch. The 
results are shown in Table 3. 

The eigenproblem assessment reveals that the hierarchic interpolation using Form A has excess zero 
eigenvalues (i.e. spurious zero energy modes) for all meshes considered. Further considerations reveal 
that the use of quadratic polynomials for P which include xy introduce linearly dependent terms since 



R.L. Taylor et al./Comput. Methods Appl. Mech. Engrg. 152 (1998) 7334 81 

(a) 1 x 1 mesh (b)ZxZmesh 

I I I I 
(c) 4 x 4 mesh (d) 8 x 8 mesh 

Fig. 2. Patches for rectangle eigenproblem assessment. 

this term is already available when the elements have constant jacobian. Repeating the stability test after 
eliminating this polynomial yields the results given in Table 4. 

Repeating the above for Form B yields the results in Tables 5 and 6. The eigenproblem assessment 
reveals that the hierarchic interpolation using Form B also has excess zero eigenvalues for all meshes 
considered; however, eliminating the polynomial xy again restores proper rank as shown in Table 6. 

Consistency tests again confirm the existence of all polynomial terms up to quadratic order. 

Table 3 

Quadrilateral patch tests for Form A: Number zero eigenvalues, minimum non-zero value, and maximum value 

Mesh No. zqero Min. value Max. value 

1x1 9 1.5577E+02 8.6894E+OS 
2X2 13 9.6509E+Ol 1.3080E+05 
4X4 21 3.7956E+OO 1.7859E+O4 
8x8 37 2.4424E-02 9.729OE+O3 

Table 4 

Quadrilateral patch tests Form A: Number zero eigenvalues, minimum non-zero value, and maximum value 

Mesh No. zero Min. value Max. value 

1x1 3 15739E+02 8.6894E+O5 
2x2 3 95719E+Ol 1.3073E+O5 

4x4 3 48047E+Ol 1.7859E+O4 
8x8 3 4.3963E+tKI 9.7290E+03 

Table 5 

Quadrilateral patch tests for Form B: Number zero eigenvalues, minimum non-zero value, and maximum value 

Mesh No. zero 

1x1 9 

2x2 9 

4x4 9 

8X8 9 

Min. value 

1.5498E+02 

4.8788E+Ol 

4.4192E-01 

3.0824E-03 

Max. value 

4.8936E+O6 

3.3515E+O6 

1.5102E+O6 

5.2649E+05 

Table 6 

Quadrilateral patch tests for Form B: Number zero eigenvalues, minimum non-zero value, and maximum value 

Mesh No. zero 

1x1 3 

2x2 3 

4x4 3 

8X8 3 

Min. value 

1.5599E+02 

8.7079E+Ol 

8.1631E+OO 

4.8673E-01 

Max. value 

4.4176E+O6 

3.2108E+O6 

9.0948E+O5 

4.1174E+O5 
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(a) 2 x 2 mesh (h) 4 x 4 mesh 

Fig. 3. Patches for quadrilateral eigenproblem assessment. 

The mesh for rectangles was distorted as shown in Fig. 3. With the quadratic polynomial term xy 
retained, the spurrious eigenvalues persist, and with it removed the consistency test is failed. Thus, the 
quadrilateral element does not satisfy patch requirements, and in the present work is not considered 
further. 

3.3. Tension strip 

A finite width strip containing a circular hole with diameter half the width of the strip is subjected to 
axial extension in the vertical direction. Due to symmetry of the loading and mesh, only one quadrant is 
discretized. A set of meshes is shown in Figs. 4 and 5. Meshes in Fig. 4 use Form A of the hierarchical 
interpolation considered above; whereas those in Fig. 5 use standard 6-node isoprarametric quadratic 
triangles with two degrees of freedom per node (i.e. u and u). 

The problem size and solution statistics are shown in Table 7 for the hierarchical Form A method and 
in Table 8 for the 6-node isoparametric formulation where mid-side element nodes are permitted to lie 
on the curved boundary. In Table 9, we present the results when the mid-nodes are linearly intepolated 
from the vertex nodes (which produces the same boundary interpolation as the new hierarchical form). 

(a) 28 Elements 

(a) 28 Elements 

(b) 112 Elements (c) 448 Elements 

Fig. 4 Hierarchic elements form A: Tension strip. 

(b) 112 Elements (c) 448 Elements 

Fig. 5. Isoparametric elements: Tension strip. 

(d) 1792 Elements 

(d) 1792 Elements 
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Table 7 

Hierarchical element problem size statistics 

Nodes Elements Equations Non-zeros Profile Column Energy 

30 28 156 2892 4159 28 131.7088 

85 112 537 12015 29860 56 127.8260 

279 448 1971 48741 207508 106 126.7641 

1003 1792 7527 196113 1547658 205 126.5908 

Table 8 

Isoparametric element problem size statistics. Boundary segments have curved sides 

Nodes Elements Equations Non-zeros Profile Column Energy 

30 28 129 1070 1777 14 127.3350 
279 112 483 4613 13428 28 126.6483 

1003 448 1863 19091 100970 55 126.5661 
3795 1792 7311 77615 769110 106 126.5593 

Table 9 

Isoparametric element problem size statistics. Boundary segments have straight sides 

Nodes Elements Equations Non-zeros Profile Column Energy 

30 28 129 1070 1777 14 128.6458 
279 112 483 4613 13428 28 126.9451 

1003 448 1863 19091 100970 55 126.6090 
3795 1792 7311 77615 769110 106 126.5394 

Table 10 

Linear triangular element problem size statistics 

Nodes Elements Equations Non-zeros Profile Column Energy 

30 28 36 150 252 7 137.652 
85 112 129 669 1711 13 131.065 

279 448 483 2799 12438 26 128.008 
1003 1792 1863 11427 94696 50 126.958 
3795 7168 7311 46155 738972 102 126.662 

Finally, in Table 10 we present the results using 3-node linear trianglar elements. For the analyses, the 
material is taken as linear elastic with E = 1000 and v = 0.25. The half width of the strip is 10 units and 
the half height is 18 units. The hole has radius 5. 

The best results obtained are consistently for the 6-node isoparametric element. The effect of boundary 
error is negligible for this problem, especially for the finer meshes. The new element, however, is con- 
sistently better than the 3-node triangular element. Consequently, the potential of the new interpolation 
for adaptive refinement should be evaluated. 

4. Closure 

In this work we have discussed the use of hierarchical approximations which are appended to conven- 
tion Co finite element interpolations. The form is based on adding polynomial functions to a partition 
of unity. The particular form considered permits polynomials to any degree to be connected around 
any node in a mesh. Thus, the method is particularly amenable to adaptive processes. Furthermore, 
we have shown how the polynomials may be constructed to preserve the interpolating property of the 
original finite element based functions. For linear elasticity problems, as well as for any form requiring 
Co approximations, the interpolation preserves the structure of basic finite element strain-displacement 
matrices and, thus, permits a simple construction of basic arrays. 

Based on patch test assessements for the linear elasticity problem, we have demostrated that some 
forms are stable, while others are not. In particular, triangles based on Form A achieve stability provided 
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more than two elements are used; whereas, Form B interpolation never achieved stability for all boundary 
conditions. The case of rectangular elements achieved stability provided the interpolation was constructed 
to avoid linear dependencies. However, the results for quadrilateral elements indicated that neither 
Form A nor Form B could produce interpolations which were both stable and consistent to quadratic 
polynomial order. Hence, further study is necessary to achieve success for this class of elements. 

Finally, we have compared the formulation for meshes composed of elements with quadratic accuracy 
at all nodes to conventional 6-node isoparametric triangles which for straight sides also achieve quadratic 
accuracy. Here, results favor the 6-node quadratic triangles: both for efficiency in overall solution ef- 
fort, as well as for accuracy based on energy. When compared to 3-node triangular elements the new 
interpolation shows considerable improvement in accuracy; consequently, further tests in an adaptive 
environment are needed before a more complete assessment may be reached. 
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