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Abstract 

A dynamical model called the totally asymmetric simple exclusion process (TASEP) in one dimension (1D) is a 

widely-held particle hopping model which has developed into a reference model for studying non-equilibrium 

driven systems in particular transport phenomena. In this study, the TASEP is extended for a case of a junction 

with two entrances and two exits. The model is specified by a dynamical rule and boundary conditions. The 

dynamical rule determines the movement of particles and in this case the sequential updating dynamics is 

applied. The boundary condition used is the open boundary conditions, where particles may enter or exit the 

lattice sites. The density of the TASEP is governed by a continuity equation, which is solved numerically, such 

that a phase diagram and the current density profiles are obtained. The result shows that there are ten density 

phases produced, viz.: low density, high density, coexistence phase, maximal current, low density-low density, 

high density-high density, high density-maximal current, low density-maximal current, maximal current-high 

density, and maximal current-low density. The current density is generally constant throughout the lattice sites, 

except at the junction where a spike occurs.   
 

Keywords: current density profile, density profile, open boundary condition, phase diagram, sequential updating  

                    dynamics. 

 

I. Introduction 

The totally asymmetric simple exclusion process 

(TASEP) in one dimension (1D) is a standard 

mathematical model to investigate a wide range of 

non-equilibrium phenomena in physical sciences, 

including physics, chemistry, and biology 

(Chowdhury, 2003; Hinsch et.al., 2006; Shaw et.al., 

2003). In general, the TASEP is a particle hopping 

model whereby hard core particles occupying one-

dimension discrete lattice sites may jump to their 

right nearest neighbour sites provided that there are 

no particles occupying the right neighbour sites. The 

jump may occur in one direction only, in this case, 

to the right. Originally, the TASEP is used to study 

the kinematics of polymerization (Pipkin and Gibbs, 

1966; Simha and Zimmerman, 1963), e.g. for DNA 

and RNA synthesis on DNA templates (MacDonald 

et.al, 1968). Since then the model has been used to 

investigate one dimensional transport systems 

(Hinsch et.al., 2006; Chowdhury et.al., 2005; Hinsch 

and Frey, 2006). Variation to the TASEP has been 

conducted by Parmeggiani et.al. (2004) by coupling 

it to Langmuir kinetics. This produces a domain wall 

and rich phase diagram. 

TASEP is a non-equilibrium driven system. A 

driven system is characterized by the presence of a 

driving force. This driving force produces currents 

in the system. If the current is constant but non-zero, 

then the system is said to be in a non-equilibrium 

steady state (NESS). Furthermore, the TASEP is 

characterized by dynamical rules and boundary 

conditions (Dwandaru, 2010; Dwandaru, 2006) . The 

dynamical rule describes the movement or jumping 

of particles from the sites they occupy to their 

nearest neighbour sites as time progresses. The 

dynamical rule of particles for the model on a lattice 

system  is specified systematically using an up-

dating process on the microscopic level which is 

applied at each (discrete) time step. This gives the 

average movements or particles along . The 

dynamical rule used in this study is the sequential 

updating process. The up-dating process of this 

dynamical rule is that at each (discrete) time step, a 

site is chosen randomly with probability  1/(N+1), 

with N being the number of lattice sites. If there is a 

particle on the chosen site, then the particle on the 

chosen site may jump to its right nearest neighbour 
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site with rate k given that there is no particle 

occupying the right nearest neighbour site 

(MacDonald et.al., 1968). 

The density profiles of the TASEP are described 

by a phase diagram. The phase diagram for the 

TASEP in 1D with sequential updating and open 

boundary conditions is based upon  on the 

horizontal-axis and  on the vertical-axis (shown in 

Picture 1).  and β may take the numerical values 

from 0.0 to 1.0. There are four phases of particle 

densities produced, viz. low density, high density, 

coexistence phase (along half diagonal line in 

Picture 1), and maximal current (Dwandaru, 2010; 

Dwandaru, 2006). Based on Picture 1, it can be 

observed that i) low density (LD) occurs for α < β 

and α < 0.5, ii) high density (HD) occurs for α > β 

and β < 0.5, iii) coexistence phase (CP) occurs for α 

= β and α,β < 0.5, and iv) maximal current (MC) 

occurs for α,β  0.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Picture 1. The phase diagram of the TASEP in 1D 

with sequential up-dating and open boundary 

conditions. The horizontal axis is the constant input 

rate, , and the vertical axis is the output rate, . The 

equation shown is the current density of each of the 

phase. There four phases illustrated, i.e.: low 

density, high density, maximal current, and 

coexistence phase. 

 

 

Here, the objective of this research is to extend 

the well-known TASEP in one dimension into a 

less-known, but potentially important model that is 

the TASEP with a junction. By extending the lattice 

sites into a junction, the hopping of particles may be 

varied not just to the right nearest neighbour sites, 

but also to the upper nearest neighbour sites. Foster 

et.al. (1994) has studied the stationary states of a two 

dimensional lattice gas model with exclusion which 

consists of two species. Furthermore, an extensive 

Monte Carlo simulation has been done by Pronina 

et.al. (2004) in order to study the two-channel totally 

asymmetric simple exclusion process. However, to 

the best of our knowledge, the numerical study of 

the TASEP for a case of a junction with two 

entrances and two exits has not been done before. 

In this case, a special arrangement of the TASEP 

is put forward, i.e. joining two TASEPs in 1D at the 

centre of each TASEP perpendicular to each other 

(Picture 2). Hence, the phase diagram and the 

current density profiles of the TASEP with a 

junction may be discussed based on the same 

respective quantities of the TASEP in 1D. For this 

case, the TASEP in 1D with input and output rates, 

1 and 1, respectively, is placed horizontally (path 

1). Another TASEP in 1D with input and output 

rates, 2 and 2, respectively, is perpendicularly 

joined to the first TASEP on the centre of each 

TASEP (path 2). In this case, the number of lattice 

sites of path 1 and path 2 is taken to be the same, 

i.e.: N = 101. However, the joining of both paths at 

the centre resulted in the total number of particles of 

201 lattice sites. 

The jumping rates of particles are obtained upon 

an N × N lattice system, which is further simplified. 

The jumping rates to the right nearest neighbour 

sites, i.e. from site-i to site-(i+êx), may be defined as 

follows: 
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for 1 ≤ ix ≤ N – 1,. Here, êx is the unit vector to the 

horizontal direction. The jumping rates to the upper 

nearest neighbour site (along the vertical axis), i.e.:  

from site-i to site-(i+êy) is defined as: 
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for 1 ≤ iy ≤ N – 1.  

 For the TASEP with a junction, according to 

Eqs. (1) and (2) above all the jumping rates to the 

right nearest neighbours are zero, kr = 0, except for 

sites (1,[N+1]/2) to sites (N–1,[N+1]/2), which is kr 

= 0.5. Furthermore, all jumping rates to the upper 

nearest neighbour sites are zero, ku = 0.0, except for 
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sites ([N+1]/2,1) to sites ([N+1]/2,N–1), which is ku 

= 0.5. A particle may enter site (1,[N+1]/2) or site 

([N+1]/2,1) and exit site (N,[N+1]/2) or site 

([N+1]/2,N) with rates 1, 2, 1, 2, respectively. 

Hence, the junction has two entrances and two exits. 

 

 
 

Picture 2: TASEP in 2D for a junction with two 

entrances and two exits. 

 

There are two primary physical quantities that are 

discussed in this research that is i) density and ii) 

current density. The density [i(t)] is the average 

ensemble of particles in occupying a lattice site-i at 

time t. Meanwhile, the current density [Ji(i+1)(t)] is 

the average number of hopping conducted by 

particles from site-i to site-(i+1) at time t. The 

relationship between the density and the current 

density is given by a continuity equation, viz.: 
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As the lattice sites are discrete, a simple Euler 

method may be used to modify the left hand side of 

Eq. (3), that is Ji(t) = Ji(i+1)(t) – J(i-1)i(t), such that 

the formal solution of Eq. (3) can be written as, 
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The left hand side of Eq. (4) is obtained by 

modifying the right hand side of Eq. (3) considering 

discrete time steps, such that i(t)/t  i(t+1) - 

i(t). Furthermore, the current density of the TASEP 

in 2D can be written as (Dwandaru, 2010): 
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and 
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where  Eq. (5) and Eq. (6) are the current densities 

of particles moving from site-  to site-(i+êx) and  

site-  to site-(i+êy), respectively. The equations are 

obtained via a relationship between the hard core 

lattice gas model and the TASEP extended to two 

dimensions (Dwandaru and Schmidt, 2007). The 

hard core lattice gas model is studied using density 

functional theory (DFT) which is extended to lattice 

systems via the lattice fundamental measure theory 

(LFMT) (Lafuente and Cuesta, 2002; Lafuente and 

Cuesta, 2004). There are three relationship put 

forward based upon (Dwandaru, 2007), that is, (i) 

the particle of the TASEP is associated to the hard 

core particle in the lattice gas that excludes its own 

site, (ii) the jump of the particle of the TASEP to the 

right nearest neighbour site is associated to the hard 

core particle in the lattice gas that excludes its own 

and its right nearest neighbour site, and (iii) the 

jump of the particle of the TASEP to the upper 

nearest neighbour site is associated to the hard core 

particle in the lattice gas that excludes its own and 

its upper nearest neighbour site. Hence, the TASEP 

may be studied using the lattice gas model that 

consists of three species of particles. This yields 

three Euler-Lagrange equations of the species of 

particles via a variational principle. Finally, the 

density and current densities of the particles in the 

TASEP are obtained via a linearization of the 

aforementioned Euler-Lagrange equations. 

 The evolution of the density with respect to 

time for the TASEP in 2D may be calculated by 

inserting eqns. (5) and (6) into (3). This is the main 

partial differential equation which will be solved. 

The equation depends on the boundary conditions 

specified. Hence, the input and output rates 

determine the density and current density profiles of 

the TASEP through Eqns. (5) and (6). 

 

II. Research Method 

2.1 Research Variables 

 Various parameters are used in this study. The 

parameters are described as follows: i) the input 

rates of particles from the reservoirs to the lattice 

system, that is 1  and 2, and ii) the output rates of 

particles going out from the lattice system to the 

reservoirs, viz.: 1 and 2, iii) the hopping rate of 
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particles from site-i to site-i+1 to the right nearest 

neighbour, kr, i.e.: 0.5, and iv) the hopping rate of 

particles from site-i to site-i+1 to the upper nearest 

neighbour site, ku, i.e. 0.5. The independent variable 

utilized in this research is the time evolution, t, of 5× 

105 time steps., and the total number of lattice sites, 

which is 201. Finally, the density of particles, , and 

the current density, j, are functions of time t. 

 

2.2 Research Design 

 

 In order to study the density and current density 

of the TASEP with a junction, the Dev C++ 

language program is applied, that is by constructing 

a computer code based on the parameters given 

above. This is done by providing a set of trial 

density profile into the right hand side of Eq. (4). 

Then calculation is made on the right hand side of 

Eq. (4) such that a new density profile is obtained. 

The new density profile is inserted to the right hand 

side of Eq. (4) and a calculation is made, such that 

another density profile is obtained, and so forth. This 

iteration procedure is terminated after the density 

profile converges to its true values or the system 

reaches a non-equilibrium steady state. Furthermore, 

by varying the input and output rates, 1, 2, 1, 2, 

respectively, the numerical values of the density and 

current density profiles are obtained. To observe the 

density and current density profiles, graphs of the 

density and current density as a function of the 

lattice sites are produced. Finally, the density phases 

can be determined based on the graphs and shown in 

a diagrammatic form. 

 

III. Results and Discussion 

3.1 The Phase Diagram of the TASEP in 2D for a  

       Junction with Two Entrances and Two Exits 

 

The four way lane TASEP in 2D with two input and 

two output rates produces eight (8) variants of 

density phases, i.e.: low density (LD), high density 

(HD), coexistence phase (CP), maximal current  

(MC), low density-low density (LD-LD), high 

density-high density (HD-HD), high density-

maximal current (HD-MC), and low density-

maximal current (LD-MC). It may be noticed that 

there are four additional combinations of density 

phases besides the original phases obtained from the 

TASEP in 1D with open boundary conditions. These 

phases are LD-LD, HD-HD, LD-MC, and HD-MC. 

The aforementioned phases are obviously the result 

of the junction occurring in the lattice system. Table 

1 is the phase diagram of the particle density of path 

2 and path 1 (see Picture 2), i.e.: (2,2) and 

(1,1), respectively. The criteria for obtaining 

each of the density phase in Table 1 follows from 

the density phases of the TASEP in 1D. The LD 

(HD) phase is obtained if the value of the density is 

less (more) than 0.5 throughout the bulk. The MC 

phase is obtained if the value of the density is 0.5 

around the bulk. Finally, the CP is gained if there is 

a shock (domain wall) in the density profile such 

that LD and HD coexist.   

 

 

Table 1: The density phase diagram of path 1 and path 2, i.e.:  (1, 1)  and  (2, 2) , respectively, for the 

four way lane TASEP in 2D with a junction. 

 

 α2 0.1 0.5 0.9 

2      α1 

 

  1 

  0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 

0.1 

0.1 CP HD HD CP HD HD CP HD HD 

0.5 LD MC MC LD-MC HD-MC HD-MC LD-MC HD-MC HD-MC 

0.9 LD MC MC LD-MC HD-MC HD-MC LD-MC HD-MC HD-MC 

0.5 

0.1 CP MC-HD MC-HD CP HD-HD HD-HD CP HD-HD HD-HD 

0.5 LD MC-LD MC-LD LD-LD MC MC LD-LD MC MC 

0.9 LD MC-LD MC-LD LD-LD MC MC LD-LD MC MC 

0.9 
0.1 CP MC-HD MC-HD CP HD-HD HD-HD CP HD-HD HD-HD 

0.5 LD MC-LD MC-LD LD-LD MC MC LD-LD MC MC 

0.9 LD MC-LD MC-LD LD-LD MC MC LD-LD MC MC 
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As mentioned before, the phase diagram of the 

TASEP with a junction and two input and output 

rates is similar to that of the ordinary TASEP in 1D 

with open boundary conditions. The main phases of 

the TASEP in 1D still persist, that is LD, HD, CP, 

and MC. However, an additional lane produces a 

combination of phases, which are LD-LD, HD-HD, 

LD-MC, and HD-MC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                   (i)                                                                               (ii) 

 

 

 

 

 

 

 

 

 

 

 

 

                                                  (iii)                                                                                  (iv) 

 

 

 

 

 

 

 

 

 

 

 

                                                        (v)                                                                               (vi) 

 

 

 

Picture 3: The density profiles of the TASEP in 2D for a junction with various input and output rates which are 

combinations of density profiles of the TASEP in 1D. The solid (blue) lines are the density profiles of path 1, 

whereas the dashed (red) lines are the density profile of path 2. In accordance with Table 1, profiles (i), (ii), (iii), 

(iv), (v), and (vi) show the LD-LD, HD-HD, LD-MC, MC-HD, MC-LD, and HD-MC phases of the density 

profiles of path 1, respectively. 

 

 

Take for example 2 = 2 = 1.0. Now, for the 

TASEP in 1D with open boundary conditions this 

would produce a CP where high and low densities 

co-exist. However, when another lattice system is 

embedded in the middle and perpendicular to the 

previous one, then the density of the system varies 

with the input and output rates of the latter lattice 

d
en

si
ty

 

lattice sites 



Jurnal Materi dan Pembelajaran Fisika (JMPF) 43 

 

 

Phase Diagram, Density, And Current Density...  M. Za’im, dkk 

Volume 4 Nomor 2  2014  ISSN  : 2089-6158 

  
system. It may be observed on the upper-left corner 

of Table 1, as 1 and 1 get larger, that the phases of 

the system may be in LD, HD, or MC. Another case 

is 2 = 0.1 and 2 = 0.5. Normally, for the TASEP in 

1D this case produces a simple LD phase. However, 

the presence of the junction enriches the phases as 

1and 1 varies. In fact the MC-HD phase is 

obtained when 1 = 0.5, 0.9 and 1 = 0.1. This is 

because many particles travel on path 1 which 

makes path 2 partly in MC and HD phases. 

However, if 1 is increased to 0.5 or 0.9, the density 

phase becomes MC-LD. This is caused by the 

increase of 1, which makes the particles possibly go 

out from the last site of path 1, making some part of 

path 2 fall from HD into LD. An example of the HD 

phase in the TASEP in 1D is when 2 = 0.9 and 2 = 

0.1. Adding another path 1 onto path 2 results in a 

change of the density phase. For 1 = 0.1 and 1 = 

0.5 or 0.9, the phase of the system becomes LD-MC. 

Although there are many particles on path 2, resulted 

from the high 2 and the low 2, the addition of path 

1 makes half of the lattice sites on path 2 become 

LD and the rest of the lattice sites becomes MC. 

This means that the HD phase of path 2 may be 

relieved to a combination of LD and MC phase by 

adding another path on path 2. This is actually useful 

in the vehicular traffic phenomena. The last phase of 

the TASEP in 1D is the MC phase. As an example 

this is obtained when 2 = 2 = 0.9. Adding path 2 

with 1 = 1 = 0.1 makes the system become CP. 

This means that adding another path lowers the 

density on some parts of path 2, but makes the 

density on the rest of the lattice sites high. 

Furthermore, if 1 is increased to 0.5 or 0.9, the 

density of the lattice sites becomes LD-LD. This is 

interesting since path 2 which should be in a MC 

phase, because of a low density path passing through 

it, lowers path 2 into a LD-LD phase. Again, this 

might be useful in the phenomena of vehicular 

traffic in order to reduce congestion of traffic.  
 

3.2 The Density Profiles of the TASEP for a   

       Junction with Two Entrances and Two Exits 

 
 Consider some examples of the density profiles 

from the phase diagram given in Table 1. These 

density profiles are graphs of the (average) density 

versus the lattice sites, which are obtained 

numerically and, in principle, are of mean-field 

results.  

 Picture 3 shows the density profiles of the 

TASEP in 2D for a junction with two entrances and 

two exits which resulted from combinations of the 

density profiles of the TASEP in 1D. In accordance 

with Table 1, the main density profiles being 

discussed are of path 1 (solid blue lines). It may be 

observed later that the density profiles of path 2 and 

path 1 are symmetrical, so that just one of the paths 

may be discussed. Picture 3(i) of path 1 (solid blue 

line) is the LD-LD phase with 1 = 0.1, 2 = 0.5, 1 

= 0.9, and 2 = 0.5. The overall value of the density 

profile is lower than 0.5. However, there appears to 

be a small shock around the middle of the lattice 

site. This shock is a transition from an LD to another 

LD. From the beginning of the lattice sites until the 

middle of the lattice sites the value of the density 

profile is flat and constant at 0.1, but then from the 

middle of the lattice site until the end, the value 

changes suddenly to 0.2. Hence this shows 

coexistence between two LD phases, with constant 

values of 0.1 and 0.2, respectively. A case of the 

HD-HD phase is shown in Picture 3(ii) with 1 = 

0.5, 2 = 0.5, 1 = 0.1, dan 2 = 0.5. Here, the 

overall density profile of the solid blue line is larger 

than 0.5. From the beginning of the lattice sites, the 

profile starts from below 0.8, and then becomes flat 

and constant at 0.8 until the middle of the lattice site. 

Then an abrupt change to a flat and constant higher 

density of 0.9 happens until the end of the lattice 

site. Hence, coexistence between two high density 

phases happens.  

 An example of a LD-MC phase is given in 

Picture 3(iii) for 1 = 0.1, 2 = 0.5, 1 = 0.5, and 2 

= 0.1. In this case, the (solid blue line) profile starts 

from a flat-constant low density of 0.1 until the 

middle of the lattice site, and then a sudden change 

occurs to a flat-constant higher value of 0.5 until the 

end of the lattice site. Thus, coexistence between 

low density and maximal current occurs in this 

profile. Picture 3(iv) is an example of the MC-HD 

phase for 1 = 0.5, 2 = 0.1, 1 = 0.1, and 2 = 0.5. 

For this case, the density profile (solid blue line) is 

flat-constant at a value of 0.5 until at the middle of 

the lattice site, and then an abrupt change to a 

constant higher density of 0.9 until the end of the 

lattice site. For all cases of Picture 3(i), (ii), (iii), 

(iv), the coexistence occurs because of a sudden 

change from one phase to another. This is a 

characteristic of a first order phase transition which 

occurs because of the junction. Furthermore, Picture 

3(v) and (vi) look similar to Picture 3(i) and (ii), 

where the density profiles of path 2 and path 1 are 

interchanged. This example shows that the density 

profiles of paths 2 and 1 are symmetric. This is also 

obvious from the geometric point of view of the 

lattice system given in Picture 2. 

  

3.4 The Current Density Profiles of the TASEP in  

        2D for a Junction with Two Entrances and  

        Two Exits 
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 Finally, the current density profiles of the 

TASEP in 2D with a junction are discussed. The 

current density determines the average hopping of 

particles from one site to its nearest neighbour at 

each time step. As shown above, the profiles which 

are being discussed are the current density profiles 

of path 1 (solid blue lines), i.e. J. These profiles are 

shown in Picture 4 and are in accordance with the 

density profiles provided in previous sections.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Picture 4: The current density profiles of the TASEP in 2D for a junction with two entrances and two exits. 

Picture (i) is the profile of the LD, HD, and CP phases. Pictures (ii), (iii), (iv), (v), and (vi) are the profiles of 

MC, LD-LD, HD-HD, LD-MC, and HD-MC phases, respectively. 
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density profiles are flat throughout the lattice sites, 
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that the system reaches a non-equilibrium steady 

state, i.e.: a non-zero but constant current exists in 

the system. Hence, the applied time evolution of  5 

105 time steps is legitimate since using this time 

step value, the system may reach a steady state. 

IV. Conclusions 

 From the results and discussion above, it may be 

concluded that the density and current density 

profiles of the TASEP in 2D for a junction with two 

entrances and two exits depend upon the input (1 

and 2) and output (1 and 2) rates specified. The 

TASEP in 2D with two inputs and two output rates 

has ten (10) density phases; namely low density 

(LD), high density (HD), coexistence phase (CP), 

maximal current  (MC), low density-low density 

(LD-LD), high density-high density (HD-HD), high 

density-maximal current (HD-MC), low density-

maximal current (LD-MC), maximal current-high 

density (MC-HD), and maximal current-low density 

(MC-LD). The first four density phases are 

equivalent to the density phases of the TASEP in 1D 

with open boundary conditions, whereas the other 

six density phases are combinations of the first four. 

These last six density phases are not found in the 

TASEP in 1D. The current density profiles are 

generally non-zero and constant throughout the 

lattice sites, except at the middle of the lattice site 

where a sharp peak occurs.  
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