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Virtualization technologies are massively adopted to cover those requirements in which Operating Systems (OS) 
have shown weakness, such as fault and security isolation. They also add features like resource partitioning, 
server consolidation, legacy application support, management tools, among others, which are attractive to Cloud 
service providers. 

Hardware virtualization, paravirtualization, and OS-level virtualization are the most widely used technologies to 
carry out these tasks, although each of them presents different levels of server consolidation, performance, 
scalability, high-availability, and isolation. 

The term “Virtual Machine” (VM) is used in issues related to hardware virtualization and paravirtualization 
technologies to describe an isolated execution environment for an OS and its applications. Containers, Jails, 
Zones are the names used in OS-level virtualization to describe the environments for applications confinement. 
Regardless of the definition of the virtualization abstraction, its computing power and resource usage are 
limited to the physical machine where it runs. 

The proposed virtualization architecture model breaks this issue, distributing processes, services, and resources 
to provide distributed virtual environments based on OS factoring and OS containers. The outcome is a 
Distributed Virtualization System (DVS) which allows running several distributed Virtual Operating System 
(VOS) on the same cluster. A DVS also fits the requirements for delivering high-performance cloud services 
with provider-class features as high-availability, replication, elasticity, load balancing, resource management, 
and process migration. Furthermore, a DVS is able to run several instances of different guest VOS concurrently, 
allocating a subset of nodes for each instance (resource aggregation), and to share nodes between them (resource 
partitioning). Each VOS runs isolated within a Distributed Container (DC), which could span multiple nodes of 
the DVS cluster. The proposed architecture model keeps the appreciated features of current virtualization 
technologies, such as confinement, consolidation and security, and the benefits of DOS, such as transparency, 
greater performance, high-availability, elasticity, and scalability. 

A DVS allows running multiple Distributed VOSs as guests that can extend beyond the limits of a physical 
machine. Each DVOS could have more computing power and could provide greater scalability and elasticity in 
its configuration as a consequence of resource and computing power aggregation. The set of resources (both 
physical and abstract) and the set of processes that constitute a DVOS can be scattered (and eventually 
replicated) in the nodes of a cluster. Several related processes (in the same DC) could be executed in different 
nodes using the same abstract resources as those offered by the DVOS. This feature simplifies application (or 
library) programming since standard APIs, such as operations on semaphores, message queues, mutexes, etc. can 
be used. On the other hand, the process location transparency is helpful for application administrators since it 
avoids dealing with IP addresses, ports, URLs, etc., simplifying applications deployment and management, and 
reducing costs and implementation times. 

A DVS is suitable as infrastructure for this new trend in software development, like applications based on 
Microservices Architecture (MSA) or Service Oriented Architecture (SOA), because it is inherently distributed. 
Furthermore, thousands of legacy applications would benefit because they would not require modifications to 
take advantage of DVS features. Migration of legacy applications from on-premises servers to a Cloud execution 
environment requires changes in their design and coding. If a standard interface, such as POSIX is available in 
the Cloud, the migration task is simplified by reducing costs and time. 

The main components of the DVS architecture are: 

1) Distributed Virtualization Kernel (DVK): It is the core software layer that integrates the resources of the
cluster, manages and limits the resources assigned to each DC. It provides interfaces for low-level protocols and 

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-183-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296427634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ppessolani@frsf.utn.edu.ar
mailto:toni.cortes@bsc.es
mailto:fernando@info.unlp.edu.ar
mailto:sgonnet@santafe-conicet.gov.ar
https://orcid.org/0000-0002-1388-0831


services, which can be used to build a VOS, such as InterProcess Communication (IPC), Group Communication 
System (GCS), synchronization, replication, locking, leader election, fault detection, mutual exclusion, 
performance parameter sensing, processes migration mechanism, and key-value services. The DVK provides 
interfaces to manage all DVS resources, such as nodes, DCs and processes. Process management allows the DVS 
administrator to assign processes to a DC and to allocate nodes for it. The node in which the process runs can be 
changed, as in case of a migration, or when the process was replaced by another one, such as a backup process. 
For communication purposes, location changes made by the replacement or migration of a process are hidden 
from the other processes within the DC. 

2) Distributed Virtualization Management System (DVMS): It is the software layer that allows the DVS
administrator to both manage the resources of the cluster, providing a DC for each VOS or distributed 
application, and perform DVS monitoring.  

3) Container: It is a host-OS abstraction which provides an isolated environment to run the components of a
VOS or distributed application. A set of related Containers (one on each node) makes up a Distributed Container. 

4) Distributed Container (DC): It is a set of single Containers, each one being set up by the DVMS in the host-
OS of each node. There is one DC per VOS or distributed application, and a DC can span from one to all nodes. 

5) Virtual Operating System (VOS): Although any kind of VOS can be developed or modified to meet DVS
architecture requirements, a DVOS can obtain greater benefits because it is able to distribute its processes in 
several nodes. Each VOS (single or distributed) runs within a DC. The task of modifying an existing OS to turn 
it into a VOS is simplified because it does not need to deal with real hardware resources but with virtual ones. 
Moreover, a VOS needs to manage neither virtual memory nor CPU scheduling because it is done by the host-
OS. 

6) VOS applications: They are applications (single or distributed) running within the same DC, using VOS-
provided services. 

The resource allocation unit for a DOS is the node as a whole; but for a Distributed VOS (running within a DC) 
it is each single virtual resource provided by the host-OS on each node. This higher degree of granularity of the 
infrastructure unit allows a better use of resources and provides greater elasticity and efficiency. 

The proposed DVS model combines and integrates Virtualization and DOS technologies to provide the benefits 
of both worlds, making it suitable to deliver provider-class Cloud services. A DVS prototype was developed to 
check the design and implementation correctness; and after several testing environments, the feasibility of the 
proposed model was proved.  

This thesis is divided into seven chapters: 

- Chapter 1: presents an introduction to the topic of the thesis and defines the main goals and 
contributions. 

- Chapter 2: is a general description related technologies such as Virtualization, Distributed Operating 
Systems, Multiserver Operating Systems, Group Communication Systems, Process Migration, 
Containers and Replication. 

- Chapter 3: presents the proposed architecture model, the abstractions used to describe it and its 
components. 

- Chapter 4: details the DVS prototype used to evaluate the model and its components. 

- Chapter 5: presents the different tests carried out on the prototype, their results and evaluation. 

- Chapter 6: proposes future works as a research continuation of those topics related distributed 
virtualization. 

- Chapter 7: is a summary of the contributions and benefits of the architecture model. 
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