
IaaS Cloud as a Virtual Environment for Experimentation
in Checkpoint Analysis

IaaS Cloud como Entorno Virtual de Experimentación en el Análisis del Checkpoint

Betzabeth León , Pilar Gomez-Sanchez , Daniel Franco , Dolores Rexachs and
Emilio Luque

Computer Architecture and Operating Systems Department, Universitat Autònoma de Barcelona, 08193
Bellaterra, Barcelona, Spain

{betzabeth.leon, pilar.gomez, daniel.franco, dolores.rexachs, emilio.luque}@uab.es

Abstract

Cloud Computing offers the possibility of computing
resources, allowing remote access to software,
storage and data processing through the Internet.
Infrastructures as a Service (IaaS), it is a flexible
space which can be used as an experimental
environment, in which experiments can be carried out
similar to a real environment, such as in a cluster can
be carried out. Before making installations and
changes in a production cluster or select resource in
the cloud, it is important to analyze the impact of this
change. For this reason we propose using the cloud to
carry out the study of previous viability. In this paper,
we observe the viability of using the cloud to analyze
the behavior of the Checkpoint as one of the Fault
Tolerance strategies, establishing the differences that
exist in the information generated in a real
environment (cluster) and a virtual environment
(cloud). The results obtained show that due to the
variability of the cloud, the impact on the benefits
cannot be analyzed. However, the cloud is suitable for
extracting the spatial and temporal behavior pattern
of the checkpoint, which helps to characterize it and
this will help us to know the right configuration and
the development of methodologies and tools that
simulate and predict the execution of the checkpoint
in a real environment.

Keywords: Checkpoint, Cloud Computing, Fault
Tolerance.

Resumen

El Cloud Computing ofrece la posibilidad de recursos
informáticos, que permiten el acceso remoto a
software, almacenamiento y procesamiento de datos
a través de Internet; IaaS, es un espacio flexible que
se puede utilizar como un entorno experimental, en el

que se pueden llevar a cabo experimentos similares a
los de un entorno real, como un clúster. Antes de
realizar instalaciones y cambios en un clúster de
producción o de seleccionar recursos en el cloud, es
importante analizar el impacto de este cambio. Por
este motivo se propone utilizar la nube para realizar
el estudio de viabilidad previa. En este documento
observamos la posibilidad de utilizar la nube para
analizar el comportamiento del checkpoint como una
de las estrategias de tolerancia a fallos, estableciendo
las similitudes y diferencias que existen en la
información generada en un entorno real (clúster) y
un entorno virtual (nube). Los resultados obtenidos
muestran que, debido a la variabilidad de la nube, no
se puede analizar el impacto en las prestaciones, pero
la nube es adecuada para extraer el patrón de
comportamiento espacial y temporal del checkpoint.
Caracterizar el comportamiento del checkpoint
ayudará a configurar el sistema, teniendo en cuenta
los recursos extra que se necesitan y el impacto en
función de la aplicación y los recursos seleccionados.

Palabras claves: Checkpoint, Cloud Computing,
Tolerancia a Fallos.

1. Introduction

Cloud Computing offers a large amount of computing
resources with maintenance, flexibility and easy
access, allowing us to have contact with software,
storage and infrastructure. These can be accessed at
any time and from anywhere, as well as having
special privileges, which are limited in a real cluster.
For these reasons, as indicated in [1], the cloud
infrastructure has awoken interest among the High
Performance Computing (HPC) scientific community
because the IaaS (Infrastructure as Service) allows
access to different resources, enabling us to create and
configure our own virtual cluster in order to execute,
analyze and evaluate parallel applications.

- ORIGINAL ARTICLE -

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-110-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296427552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0003-1778-0237
https://orcid.org/0000-0002-5993-7645
https://orcid.org/0000-0003-0002-7046
https://orcid.org/0000-0001-5500-850X
https://orcid.org/0000-0002-2884-3232

On the other hand, in the HPC environment, it is
important to use fault tolerance so as to maintain the
availability of systems, anticipate emergency
conditions, generate solutions to these conditions and
make state recoveries. The most common failure
modes include machine faults in which hosts go down
and get rebooted, and network faults, where links go
down. Finding a single monolithic solution for fault
tolerance that is acceptable to all user applications is
unlikely [2]. Among the recovery models, there are
strategies such as rollback recovery, in which you can
go back to a previous correct state that has been
previously saved. This is carried out through the
checkpoint that keeps the information of the state of
a process periodically in a stable storage system,
suspending the execution of this while saving it and
consuming I/O resources, as well as network
bandwidth.
 Therefore, using the cloud to have an experimental
system and make decisions about which is the best
strategy to protect a parallel application that uses MPI
can be a good alternative that offers a flexible
environment, allowing us to replicate the behavior of
the checkpoint characterizing it. This will permit us
to analyze its impact prior to its use and explore with
greater freedom of privileges and greater options
because in the cluster, if you do not have root
permission for the use and analysis of checkpoint
libraries and tools analysis is more limited, there may
be limits on storage or for the same size of the test
cluster.
 In this way, as a first step we intend to correlate the
data obtained from the execution of the checkpoint in
a real cluster and a virtual machine in the cloud. By
doing this, we can compare its behavior and establish
which aspects are similar or different, establishing the
parameters that should be used in this virtual
environment of experimentation. Likewise, after this
correlation, we analyze these patterns and establish a
deeper base that provides the necessary information
from various aspects of the checkpoint’s
characteristics. In this respect, we can ask ourselves
the following questions: Does the virtual machine add
extra information in the checkpoints? What and how
much information? How is the mapping done? How
does the checkpoint scale? What are the influential
factors? Can they be analyzed using virtual
machines? Can you use the public cloud with virtual
machines to extract information applicable in a
cluster HPC bare metal? Which cloud configuration
is the most appropriate according to the type of
experiments that we need to perform in order to
resemble those carried out in the cluster?
 In this paper a proposal for the systematic study of
the checkpoint is presented. We carry out an
evaluation of checkpoint strategies for applications,
comparing checkpointing at two different scenarios:
virtualized on Amazon Cloud and physical, running

on physical machines (Cluster).
 The structure of this paper is as follows: Section 2
presents a Literature review and Section 3 looks at the
background with a general view of the checkpoint as
a fault tolerance strategy. Section 4 shows analysis
methodology. Section 5 describes the experimental
environment, the characterization and analysis of
checkpoint is made in Section 6 and then in Section
7, we continue with conclusions, future work and
references.

2. Literature Review

Cloud computing [3] is a method which can be used
for representing computing models where IT services
are delivered via internet technologies. These have
attracted millions of users. In order to make the most
of these advantages offered by the cloud, it can be
used as a remote laboratory experimentation
environment [4] whose resources are in a location
remote to the user interacting with them and whose
nature can be real or simulated. Cloud computing has
many advantages, including service scalability and
flexibility. However, the most common concerns
from the user’s perspective are performance,
reliability, control, security, and privacy. Cloud users
expect services to be available at all times and to have
access to their data from any location [5].
Furthermore cloud computing can acquire and
release resources on-demand and they can
configure and customize their own Virtual Cluster.
For these reasons, parallel scientific applications can
benefit from these platforms [6].
 As it is a flexible environment in which various
applications can be executed, this platform can also
be used to investigate the behavior of some fault
tolerance strategies, such as check pointing/restart.
This technique is very efficient for long-running
applications. In this task-level fault tolerance
technique, whenever some task failure occurs, it is
provisioned to restart from the state which was most
recently checked [7].
 In this way, cloud computing makes use of the
virtual machines [8] being implemented using
specialized hardware, software or both. It provides
services in the same way that the real physical
machine does. The Cloud service provider can have
direct access to the virtual machine. From this, you
can perform experiments with root privileges and you
can have full access checkpoint-restart approaches
achieving fault tolerance by periodically saving the
global state of the application persistently to stable
storage and restarting from an intermediate state in
case of failures [9].
 In [10] the authors evaluated the performance of
two of the most commonly used checkpoint/restart
techniques (Distributed Multithreaded Checkpointing
(DMTCP) and Berkeley Lab Checkpoint/Restart
library (BLCR) integrated into the OpenMPI

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-111-

framework). In this paper the authors aimed to test
their validity and evaluate their performance in both
local and Amazon Elastic Compute Cloud (EC2)
environments. The findings proved that DMTCP
performs better than BLCR for checkpoint and restart
speed, data scalability and compute processes
scalability experiments. This paper is related to this
research because we also use the DMTCP as a library
for coordinated checkpoints and study its behavior in
the cloud as an experimental environment.

3. Background

Fault Tolerance (FT) has now become a fundamental
element to ensure the availability and operation of
systems in High Performance Computing (HPC)
environments, avoiding serious malfunctions through
prevention and recovery protocols. The checkpoint is
a FT technique in computer systems that is
responsible for storing the global status of each
process. According to [11], global checkpoint
consists of taking a snapshot of the entire system state
regularly (not necessarily periodically), so that when
a failure occurs in any process, all the system rolls
back to the latest checkpoint image to continue the
computation.
 There are several types of checkpoints, such as
coordinated, uncoordinated and semi-coordinated,
each of which depends on how the processes are
coordinated amongst themselves to store the
checkpoint [12]. With coordinated checkpoints (Fig.
1), all processes are coordinated to perform the
checkpoint at the same time, generating a global state.
In the case of uncoordinated checkpoints, each
process performs the checkpoint independently,
without the need for any coordination. In the case of
semi-coordinated checkpoints, the processes are
coordinated by groups.
 In this way, each process generates a checkpoint
file, which must be stored in a stable storage system.

Fig. 1 Coordinated Checkpoint

 The size of each checkpoint file depends on several
aspects, such as the size of the application data and
mapping, which must be taken into account when

managing the fault tolerance in applications. This is
because it generates an overhead in terms of storage
time, in addition to the space that it occupies and
therefore it must be managed efficiently. In this paper
a coordinated checkpoint will be used, as explained in
[13], as it is an effective technique for crash recovery
support in software distributed shared memory
(SDSM). It creates a checkpoint, during the
synchronization process where a globally consistent
state of execution is established to save all
computation that SDSM has performed, until just
prior to checkpoint creation. The Distributed
MultiThreaded Checkpointing (DMTCP) library will
be used for the generation of the checkpoint, which as
indicated in [14] is a transparent user-level
checkpointing package for distributed applications.
DMTCP includes a checkpointing library that is
injected into each process of the target application.
This library creates a checkpoint thread in each
process, to communicate with the coordinator and to
copy process memory and other states to a checkpoint
image [15].
 Checkpointing [11] has a significant overhead
increasing the application execution time, so it is
important to deepen its operation to find a way to
reduce this overhead and this implies observing its
behavior in the generation of patterns of space, time,
structure, among other relevant characteristics. This
is because coordinated checkpointing represents a
very effective solution to assure the continuity of
distributed and parallel applications in the occurrence
of failures [16].

4. Analysis Methodology

In order to establish similarities and differences in the
behavior of the checkpoint coordinated, between an
experimentation environment in a cluster and in a
virtual experimentation environment such as the
cloud, its characteristics were observed regarding
files sizes, zones and I/O behavior. For this, following
methodology was followed:

Fig. 2 Methodology for Checkpoint Analysis in the

Cloud

 Figure 2 shows the steps that were followed to
perform the analysis of the checkpoint in the cloud
based on its comparison with the information on the
execution of the checkpoint in the cluster. In this way,
as an initial step, an analysis of the size of the files
generated in the cloud is performed. If they are of

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-112-

similar sizes with the size obtained in the cluster, it
continues analyzing the contents of the checkpoint
file, where the information that is stored in the image
of the checkpoint is observed. This is composed
mainly of application data, libraries and information
related to shared memory or communications within
the node. Next, an analysis of the spatial and temporal
pattern of the files is carried out, identifying the
number of zones, the writing bursts, the order and the
time involved in writing the checkpoint snapshot.

Elements necessary to configure the checkpoint
in the cloud
Below are some necessary elements to take into
account to execute the checkpoint in the cloud:

1. Select instance type.
2. Select the number of instances according to

the number of processes to use.
3. Choose the storage device for the

checkpoint.
4. Calculate the checkpoint interval.
5. Run the app with fault tolerance.

 For point 1 and 2, the impact behavior of the
checkpoint must be taken into account, it is important
to analyze how the size increases depending on the
mapping.
 With respect to point 3, it should be remembered
that the storage of the checkpoint is temporary,
because when the application finishes running, the
checkpoint files no longer have any use. But in
addition to the protection offered by the checkpoint,
the image of the same EBS volume could be captured,
as indicated by [10], which says: For additional
reliability boost, EBS volume can be backed up to the
highly reliable object-based Amazon Simple Storage
Service (S3) by creating a snapshot of that volume.
 For point 4 it is necessary to characterize the
checkpoint time, the time depends on the size, and the
size depends on the selected system and the mapping.

5. Experimentation environment:

For the execution of the experiments in the present
investigation the following environment was used:

In the cluster:

 In the cluster, experiments have been carried out on
different types of machines, with different
architectures and different file systems:

A. AMD Opteron™ 6200 @ CPU 1,56 GHz,
Processors: 4, cpu cores: 16, Memory: 256 GiB
– File system: ext3. (HDD)

B. AMD Athlon(™) II X4 610e CPU 800.000MHz,
Processors: 1, cpu cores: 4. Memory: 16 GiB -
File system: NFS. (HDD)

C. AMD Athlon(™) II X4 610e CPU 800.000MHz,
Processors: 1, cpu cores: 4. Memory: 16 GiB -
File system: PVFS. (SSD)

In the cloud:

 The following Amazon instances were selected for
having a cheaper cost and for having different virtual
CPU numbers:

1. T2.micro, virtual CPU: 1, Memory: 1 GiB.
Storage Instance: 1x8GiB SSD (EBS).
Performance Network: from low to moderate.

2. C3.xlarge, virtual CPU: 4, Memory: 7,5GiB.
Storage Instance: 2x40 GiB SSD. Performance
Network: moderate.

3. C3.2xlarge, virtual CPU: 8, Memory:
15GiC3.2xlargeB. Storage Instance: 2x80 GiB
SSD. Performance Network: high.

In relation to the software used:
• Mpich-3.2.1 was used for the execution of

the applications.
• DMTCP-2.4.5 for the checkpoint library.
• The application used: the MPI version of the

NASA Advanced Supercomputing (NAS)
product, which is called NAS Parallel
Benchmarks (NPB). We used Block Tri-
diagonal solver (BT) benchmarks of the
NPB, Class B and C [17].

• The strace tool and the readdmtcp.sh script
were used for the instrumentation.

• OS:
 Cloud: Ubuntu Server 16.04 LTS.
 Cluster: Centos 5.8.

6. Checkpoint Characterization and
Analysis

6.1 Number of files and checkpoint file sizes:
To observe the behavior (size) of the checkpoint in
different environments, Table 1 shows an example for
the BT.B.4 app with two different mappings. 4 nodes
with 1 process in each node (4N x 1P) and 1 node with
4 processes (1N x 4P). When comparing the size of
the files generated from the checkpoints, we find they
are the same or very similar between the executions
carried out in different machines and with different
file systems, but there is a greater difference when
running the app with different mapping. In this way,
we can see that with the different execution modes,
mapping is an element that can significantly influence
the size of the files. As long as there are more
processes within the same node, the checkpoint file is
bigger.
 It is also important to indicate that although it is the
same application with the same class, this distribution
influences the size of the checkpoint. As you can see,
the size of the checkpoint is smaller in the cases where

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-113-

the processes are in different nodes rather than in a
single node. This is because the memory shared
within a node significantly affects the size of the
checkpoint, causing it to be larger when there are
more processes within the same node, which occurs
because of the MPI implementation used which is
MPICH.
 Likewise, in the execution of checkpoints we can
see that several files are generated, every checkpoint
consists of a shared data segment, a (local) data
segment and a stack segment. The checkpoint
creation time corresponds to the time used by each
process to create a checkpoint in coordination.

Table 1 Comparison of the size of checkpoint files with
execution in different types of cluster

App: BT.B.4

Cluster Processes No.
Files

Size per
ckpt file
(MiB)

Total Size
Ckpt (MiB)

A 4N x 1P 4 143 572
1N x 4P 4 157 628

B 4N x 1P 4 141 564
1N x 4P 4 155 620

C 4N x 1P 4 141 564
1N x 4P 4 155 620

 The checkpoints generate a file for each process
executed, in addition to generating other smaller files
related to the execution, communication between
nodes and to the restart. Table 2 shows several
examples for app BT, Class C, with different
mappings in the cloud. It is observed that the size of
the checkpoint files is maintained even if the instance
changes.

Table 2 Comparison of the size of checkpoint files
with execution in different types of instances

Cluster Processes No.
Files

Size per
ckpt file
(MiB)

Total Size
stored
(MiB)

t2.micro
App: BT.C.4

4I x 1P 4 444 1909.80

c3.xlarge

App: BT.C.4
4I x 1P 4 444 1909.80
1I x 4P 4 458 1880

App: BT.C.16
4I x 4P 16 161 2709.80

c3.2xlarge

App: BT.C.4
4I x 1P 4 444 1909.80
1I x 4P 4 458 1880

App: BT.C.16
4I x 4P 16 161 2709.80
2I x 8P 16 180 2956.60

 Table 3 shows a comparison between the cluster
and the cloud of the sizes of the files generated by the
checkpoints. For this experiment, the instance
c3.2xlarge was used in the cloud and machine “A”
was used as the cluster. In this Table 3, all the
generated files are shown.

Table 3 Comparison of Checkpoint file sizes generated
in the Cluster and in the Cloud

App

BT.B.4

Name
of the

file

CLUSTER
(A)

CLOUD
(C3.2xlarge)

No.
files

Size
files

(MiB)

No.
files

Size
files

(MiB)

1Nx4P

ckpt_bt 4 155 4 157

pmi_pro
xy

1 19 1 26

mpiexec 1 19 1 26

4Nx1P

ckpt_bt 4 141 4 145

pmi_pro
xy

1 19 1 24

3 2.7 3 2.9

mpiexec 1 19 1 24

ssh 3 18 3 23

sshd 3 2.5 3 2.7

The BT application was used with 4 process and a

different number of nodes. The symbology used in
Table 3 is as follows: 1N x 4P = means in the cluster
environment to 1 node with 4 processes and in the
environment of the cloud 1 instance with 4 virtual
CPU; 4N x 1P = in the cluster environment it refers
to 4 nodes and 1 process per node and in the cloud
environment it means 4 instances and 1 virtual CPU
per instance. The files ckpt_bt_* are the main
checkpoint files where the status of the process is
saved at the moment the checkpoint was executed. It
can be seen that when comparing the size of these
files in the cluster and in the cloud, they are similar.
For example, for the BT.B.4 (1N x 4P) the size of the
checkpoint file in the cluster was 155 MiB and in the
cloud of 157 MiB this size is independent from the
infrastructure. In another case, with a different
number of nodes, with the BT.B.4 (4N x 1P) in the
cluster the file size is 141 MiB and in the cloud 145
MiB. This similarity is observed in the following
examples shown in the table, but although they are
similar, it can be observed that the checkpoint files in
the cloud are larger in all the observed cases, even in
the rest of the files related to the execution.

This increase in size in the checkpoint files could
be due to the fact that it indicates [13] the state of the
computation defined at each moment in time by two

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-114-

main components: (1) the state of each of the Virtual
Machine (VM) instances; and (2) the state of the
communication channels between them (open
sockets, in transit network packets, virtual topology,
etc.). Thus, the general case implies saving both the
state of all VM instances and the state of all active
communication channels among them. Therefore, the
state of the Virtual Machine could be influencing in
some way the increase in the size of these files.

Characteristics of the checkpoint file:

The generated checkpoint files are described below:

• ckpt_bt.* : This file is generated one per process
and contains information on the content of the
checkpoint snapshot, which is structured by three
different types of information:
Data of the app, Libraries, Shared memory/
communications. This information can be
observed inside the checkpoint files in different
memory zones.

• ckpt_hydra_pmi_proxy_*: the application uses
hydra, which is a process management system to
start parallel jobs, creating a proxy process in
each node. The proxy, which is a process
administrator, divides the MPI processes. In this
way, the proxy sends I/O information from the
application's processes to a main proxy or
process administrator.

• ckpt_mpiexec.hydra_*: It is related to the
management of processes.

• ckpt_dmtcp_ssh_* and ckpt_dmtcp_sshd_*:
when working with several nodes in the
coordinator, the ssh file is created and in the
client, the sshd file is originated. In these files,
information related to communication is stored.

• dmtcp_restart_*: script to restore the application
from the last performed checkpoint.

 Content of the checkpoint file:

In order to read the contents of the checkpoint file,
a "readdmtcp.sh" script must be executed, which is
part of the utilities that the DMTCP library has. The
way to use it is after the checkpoint files have been
generated. This script is executed for some
checkpoint files and in this way you get all the
information regarding the content that the checkpoint
has saved. Thus, if we rely on the contiguity of the
memory addresses used, we can say that the following
zones have been detected:

a) Data Zone:

 In Table 4, we can see the data zone of the
checkpoint file. In the first three columns, we can see
the zone of the checkpoint snapshot with the start and
end memory address, as well as the size of each
operation and the total size.

Table 4 Data zone for a checkpoint file of the BT.B.4 app
CLUSTER CLOUD

Listing
ckpt

image
area

Total Size
(Bytes)

Listing
ckpt

image
area

Total Size
(Bytes)

400000-
418000

98304 400000-
418000

98304

618000-
619000

4096 617000-
618000

4096

619000-
7388000

114749440 618000-
619000

4096

 619000-
7388000

114749440

92e3000-
9347000
[heap]

409600 8b8e000-
8bd6000
[heap]

294912

Bytes 115261440 Bytes 115150848
MiB 109.92 MiB 109.82

 The total size of the data zone for the checkpoint of
the application BT.B.4 is 109 MiB, and this size is the
same for the two experimental environments such as
the cluster (A) and the cloud (c3.2xlarge).

b) Libraries Zone and Shared Memory Zone:

Table 5 shows part of the information shown in the
file generated by "readdmtcp.sh" in relation to the
content of the checkpoint for a BT.B.4, in the zone of
libraries and shared memory.

Comparison of the Input and Output (I/O)
behavior of the Checkpoint file:

 As noted in the previous point, the image stored in
the checkpoint has a structure, which consists of a
fixed part (libraries and shared memory). These
depend on the system and the implementation of MPI.
Likewise, the checkpoint has a variable part
dependent on the data of the application. In this
respect, the information regarding how the
checkpoint is related to the I/O system also has a
behavior, which we need to study if we want to
characterize a checkpoint in a complete way.

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-115-

Table 5 Libraries and Shared Memory Zone for a
checkpoint file of the BT.B.4 app

CLUSTER CLOUD

Listing
ckpt

image
area

Total Size
(Bytes)

Listing
ckpt

image
area

Total Size
(Bytes)

3079a00
000-
3079a20
000

131072 7f27cc
000000
-
7f27cc
021000

135168

3079c1f0
00-
3079c20
000

4096 7f27cc
021000
-
7f27d0
000000

66973696

3079c20
000-
3079c21
000

4096 7f27d0
44c000
-
7f27d0
7d2000

3694592

… …
7f4fe320
9000-
7f4fe320
a000

4096 7f27d5
17b000
-
7f27d5
17c000

4096

7f4fe320
a000-
7f4fe320
d000

12288 7f27d5
17c000
-
7f27d5
17e000

8192

7fff1086f
000-
7fff1125
e000
[stack]

10416128 7fffef6
e8000-
7fffefec
9000
[stack]

8261632

Bytes 37494784 Bytes 36179968
MiB 34.50 MiB 34.75

 Therefore, in the cloud it is worthwhile
observing the behavior referred to the operations of
input and output that the checkpoint performs when it
generates the snapshot, in order to compare it with its
behavior in the cluster, as show in Table 6. For
example, comparing of the bursts generated (one
burst being a contiguous number of write or read
operations) for a checkpoint of the app BT.B.4 (1N x
4P), in the cluster it has been observed that the
coordinated checkpoint has an I/O behavior in which
two bursts of writing are observed. For BT.B.4, a first
one is observed in which 44 consecutive writings are
made with a weight of 8192 bytes and a second burst
of 163 writings of 155.12 MiB.
 In the case of the cloud, two bursts were also
identified with a first burst having a weight of 8192
bytes, as in the cluster, but it made more writes (51
writes). In the case of the second burst in the cloud

(172 writes), it also made more writes than in the
cluster (163 writes) and has a slightly larger size of
158.77 MiB compared to 155.12MiB in the cluster.

6.2. Times of the applications executed with a
Checkpoint:

With regard to times, the execution times of the
application and the times of the application with a
checkpoint. The times were measured in two ways,
with the clock of the app itself and the command
"time" of linux. In Table 7, the same experiment was
executed ten times in the cluster. The experiment was
done with BT.C.4 with two different distributions of
processes, 1 process in each node and 4 processes in
a same node. The BT.C.16 app was also used, to
which the processes were also distributed in two
different ways. Four processes distributed one in each
node and eight processes in two nodes each.
 The different distributions of the processes to put
fault tolerance in the app affect the time of the
application. In Table 7, it is observed that the BT.C
app was executed more quickly when 16 processes
distributed in two nodes (8 processes each node) were
used.
 The time also depends on the architecture of each
experimental environment. Below is a comparison of
the times obtained in some of the instances of the
cloud, to get an idea of the differences and similarities
that may exist in the times between instances when
introducing fault tolerance to the application.
 Regarding the cloud, the instance T2.micro
presented a great variability over time in the ten
executions, as show Table 8. It was the most variable
instance. While the others remained more constant,
but according to their characteristics differences are
observed among them, where the app with checkpoint
is faster than in other cases. At this point, the number
of processes used and the number of instances must
also be taken into account, since this also has an
influence when storing the checkpoint.
 In Fig. 3 it can be seen that there are differences
between sizes and times with respect to the
distribution of the processes used in one and in four
instances. The size of each checkpoint of app BT.C.4,
when we distribute the processes in 4 instances (4I x
1P), is 444 MiB and in 1 instance (1I x 4P) the size is
458 MiB. The total stored 1909.80 MiB (4I x 1P) and
1880 MiB (1I x 4P), including the files that the
DMTCP generates of comunication and management
when doing each checkpoint:

• ckpt_bt.C.4_*,
• ckpt_hydra_pmi_proxy_*,
• ckpt_mpiexec.hydra_*,
• ckpt_dmtcp_ssh_*,
• ckpt_dmtcp_sshd_*

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-116-

Table 6 Comparison of the size, number and order of events of writes generated in the cluster and in the cloud

BURST 1 (Bytes) BURST 2 (Bytes) BURST 2 (Bytes) BURST 2 (Bytes) BURST 2 (Bytes)
CLUSTER CLOUD CLUSTER CLOUD CLUSTER CLOUD CLUSTER CLOUD CLUSTER CLOUD

28 28 4096 4096 94208 4096 4096 4096 4096
13 13 98304 98304 4096 4096 90112 4096 4096
4 4 4096 4096 4096 4096 4096 4096 4096
4 4 4096 4096 4096 4096 4096 4096 8192
4 4 4096 4096 4096 4096 4096 102400 4096
4 4 114749440 4096 4096 28672 503808 4096 8269824
4 4 4096 4096 16384 4096 4096 4096 4096
4 4 430080 114749440 4096 4096 12288 4096 Total Size (Byte)
4 4 4096 4096 8192 4096 4096 4096 162652160 148799488
4 4 4071424 274432 4096 4096 20480 4096 Total No. Write
4 4 4096 4096 4096 4096 4096 512000 163 172
6 6 17567744 135168 4096 98304 53248 4096
4 4 4096 4096 4096 4096 4096 8192
5 40 135168 4096 4096 4096 4096 4096
4 4 4096 32768 1613824 4096 4096 4096

12 6 4096 4096 4096 4096 110592 4096
4 4 266240 266240 16384 4096 4096 16384

12 4 4096 4096 4096 16384 4096 4096
24 4 49152 266240 4096 4096 4096 65536
24 4 4096 4096 4096 937984 401408 4096
24 24 4096 266240 20480 4096 4096 4096
4 24 4096 4096 4096 32768 12288 4096
4 8 4096 3694592 258048 4096 4096 4096
4 8 4096 4096 4096 8192 4096 4096
4 8 4096 49152 4096 4096 4096 106496
8 8 4096 4096 4096 86016 8192 4096
8 24 4096 4096 94208 4096 4096 4096
8 4 1048576 4096 4096 1830912 4096 4096
8 4 4096 4096 4096 4096 4096 4096
8 4 4096 4096 4096 16384 4096 4096
8 4 4096 17567744 536576 4096 4096 413696
8 8 4096 4096 4096 8192 4096 4096
4 4 4096 4096 4096 4096 4096 8192

12 8 131072 4096 4096 20480 131072 4096
4 8 4096 8388608 4096 4096 4096 4096

57 8 983040 4096 4096 81920 266240 4096
4 8 4096 4096 1351680 4096 4096 4096

57 8 8192 4096 4096 4096 266240 4096
12 8 4096 4096 8192 4096 4096 8192
4 4 4096 4096 4096 4096 1413120 4096
7 5 4096 212992 221184 4096 4096 4096
4 4 28672 4096 4096 1060864 16384 4096

3663 52 4096 4096 4096 4096 4096 4096
4096 4 4096 4096 4096 4096 45056 4096

 52 4096 4096 2498560 4096 4096 8192
 12 4096 4096 4096 4096 4096 4096
 4 4096 2322432 73728 4096 4096 4096
 7 1691648 4096 4096 1118208 4096 4096
 4 4096 57344 237568 4096 4096 4096
 3615 40960 4096 4096 4096 4096 4096
 4096 4096 16384 45056 4096 4096 143360

Total Size (Byte) 8192 4096 4096 8192 10416128 4096
8192 8192 4096 237568 4096 4096 4096 2015232

Total No. Write 16384 4096 4096 221184 4096
44 51 4096 12288 4096 4096 65536

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-117-

Fig. 3 Time in the c3.xlarge instance of the app and
the app with checkpoint

 However, it seems that the storage of these files,
since they are smaller than the checkpoint, although
there are more of them, does not affect the final time
of the execution of the application with the
checkpoint.

 The same behavior was observed with the instance
c3.2xlarge (Fig. 4), the size of the checkpoint remains
the same as in the previous experiment 444 MiB and
458 MiB. With respect to the time, this almost did not
present differences between the time of the app and
the time of the application with tolerance to failures.
In this case it is important to indicate that this instance
has better features than the previous one. For that
reason the time improved when concentrating the four
processes in a single node.

Table 7 Executions made in different instances in the cluster and the measured times (seconds)

Cluster: A

Name of the app: BT CLASS: C

Np Mt 1 2 3 4 5 6 7 8 9 10 A Sd

4N
 x

 1
P

Ta_A 769.92 768.72 769.07 838.89 951.83 835.97 769.76 768.96 766.89 858.54 809.86 58.42

Ta_L 781.09 776.04 776.38 846.29 959.30 843.34 777.09 776.30 774.20 865.98 817.60 58.22

Ta+
FT_A 848.85 866.63 878.63 850.03 862.48 844.95 850.04 847.35 848.98 846.14 854.41 10.52

Ta+
FT_L 858.56 875.63 887.65 859.02 871.51 853.92 859.02 871.66 857.95 855.13 865.00 10.47

1N
 x

 4
P

Ta_A 487.23 537.86 542.93 497.62 496.76 551.23 507.3 493.03 494.66 494.85 510.35 22.73

Ta_L 492.26 542.09 547.24 501.86 501.00 555.42 511.65 497.25 498.89 499.08 514.67 22.65

Ta+
FT_A 496.97 485.54 508.79 511.95 496.80 492.75 513.46 553.01 501.70 499.72 506.07 17.68

Ta+
FT_L 502.36 490.74 514.16 517.36 502.02 498.03 518.84 558.70 507.11 505.05 511.44 17.81

4N
 x

 4
P

Ta_A 346.75 453.54 311.32 386.96 377.05 325.59 284.26 292.32 357.69 304.98 344.05 49.30

Ta_L 353.91 457.87 317.09 390.30 389.05 330.31 289.00 301.99 362.49 309.29 350.13 49.10

Ta+
FT_A 308.22 369.99 334.98 440.12 427.95 427.95 324.22 388.83 442.25 270.18 298.76 58.47

Ta+
FT_L 325.68 378.47 342.64 463.37 436.36 436.36 341.30 394.83 448.27 280.38 307.38 58.07

2N
 x

 8
P

Ta_A 170.39 179.58 155.82 168.96 148.11 175.56 176.76 154.91 186.40 175.07 169.16 11.68

Ta_L 172.99 182.06 157.73 170.96 149.98 177.59 178.66 156.86 188.59 177.08 171.25 11.80

Ta+
FT_A 183.45 184.15 184.38 183.21 186.42 178.87 192.75 180.09 187.24 187.06 184.76 3.73

Ta+
FT_L 186.96 187.59 188.03 186.54 189.98 182.16 196.25 183.49 190.81 190.48 188.23 3.79

Ta: Time app Ta+FT_A: Time app + FT (App time)
Ta_L: Time app (Linux time) Ta+FT_L: Time app + FT (Linux time)
Ta_A: Time app (App time) Mt: Time measured in seconds
Ta+FT: Time app + FT P: Number of processes
A: Average Sd: Standard deviation
I: Instance

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-118-

Table 8 Executions made in different instances in the cloud and the measured times (seconds)

Name of the app: BT CLASS:C

I P Mt 1 2 3 4 5 6 7 8 9 10 A Sd

t2
.m

ic
ro

4I

 x
 1

P

Ta_A 325.5 325.68 320.56 329.61 329.90 1779.66 3234.99 361.44 360.54 358.11 772.6 926.5
Ta_L 328.5 328.67 323.57 332.93 332.93 1785.54 3267.30 364.64 363.70 361.48 778.9 934.5
Ta+
FT_A 361.8 1442.07 3386.99 2752.65 3456.08 322.61 335.89 331.35 331.07 330.42 1305 1292.9
Ta+
FT_L 366.1 1449.75 3394.37 2760.21 3463.58 327.20 340.02 335.65 335.49 334.75 1310.7 1294.3

c3
.x

la
rg

e
4I

 x
 1

P

Ta_A 309.8 311.25 310.36 310.86 310.60 311.02 310.21 310.41 310.21 310.58 310.5 0.4
Ta_L 312.9 314.17 313.28 313.77 313.52 313.93 313.12 313.33 310.58 313.49 313.2 0.9
Ta+
FT_A 311.3 311.4 311.89 311.19 311.91 314.41 312.67 310.72 312.51 310.89 311.9 1.03
Ta+
FT_L 315.5 315.47 315.95 315.27 315.98 318.48 316.73 314.77 316.59 314.97 315.9 1.03

c3
.x

la
rg

e
1I

 x
 4

P

Ta_A 467.3 468.29 469.27 469.26 468.07 467.85 468.97 468.89 468.54 468.96 468.5 0.62
Ta_L 471.9 472.55 473.52 473.52 472.30 472.09 473.20 473.14 472.77 473.22 472.8 0.56
Ta+
FT_A 474.7 475.54 472.78 476.77 472.66 477.29 471.85 477.79 471.60 477.09 474.8 2.29
Ta+
FT_L 480.1 480.88 478.10 482.08 477.96 482.61 477.15 483.10 491.60 482.41 481.6 3.90

c3
.x

la
rg

e
4I

 x
 4

P

Ta_A 123.3 123.04 122.73 123.49 122.59 122.89 123.80 122.89 123.29 123.44 123.1 0.36
Ta_L 124.8 124.38 124.11 124.91 123.99 124.31 125.20 124.30 124.70 124.83 124.5 0.37

Ta+
FT_A 125 124.53 128.97 130.62 127.77 128.46 132.58 130.35 132.92 131.60 129.2 2.75

Ta+
FT_L 128 127.15 131.55 153.47 145.47 131.12 135.21 133.01 135.58 134.35 135.5 7.68

c3
.2

xl
ar

ge

1I
 x

 4
P

Ta_A 315.1 318.07 313.73 313.69 313.7 315.24 313.05 311.61 313.71 314.6 314.2 1.61

Ta_L 317.9 320.82 316.45 316.40 316.43 317.98 315.76 314.31 316.42 317.34 316.9 1.63

Ta+
FT_A 324.6 280.12 293.83 315.39 301.91 315.53 300.58 309.98 304.13 313.9 306 12.14

Ta+
FT_L 328.4 283.78 297.36 319.09 305.51 319.22 304.18 313.66 307.74 317.60 309.6 12.18

c3
.2

xl
ar

ge

4I
 x

 1
P

Ta_A 306.4 306.48 306.94 306.95 306.62 306.42 306.86 306.64 306.38 307.2 306.6 0.25

Ta_L 309.6 309.36 309.81 309.83 309.49 309.30 309.74 309.54 309.25 310.03 309.6 0.24

Ta+
FT_A 307.4 307.6 306.91 306.62 306.62 310.69 308.98 307.67 307.76 307.1 307.7 1.18

Ta+
FT_L 311.5 311.62 310.92 310.63 310.67 314.71 313.01 311.69 311.78 311.16 311.7 1.17

c3
.2

xl
ar

ge

4I
 x

 4
P

Ta_A 89.8 89.13 89.33 89.84 90.03 89.67 89.4 89.84 89.56 89.84 89.6 0.27

Ta_L 90.8 90.16 90.35 90.87 91.04 90.74 90.48 90.92 90.66 90.86 90.7 0.27

Ta+
FT_A 90.1 90.02 89.71 95.19 90.93 90.35 94.8 92.84 90.25 89.99 91.4 1.97

Ta+
FT_L 92.3 92.20 92.02 97.40 93.13 93.13 96.98 95.05 92.45 92.23 93.6 1.94

c3
.2

xl
ar

ge

2I
 x

 8
P

Ta_A 140.6 140.67 141.69 140.23 141.08 140.66 139.67 141.70 141.70 141.00 140.9 0.64

Ta_L 142.1 142.23 143.19 141.74 142.60 142.21 142.21 141.19 143.24 142.56 142.3 0.58

Ta+
FT_A 153.3 138.58 136.53 140.85 137.60 141.99 138.71 141.56 137.61 141.66 140.8 4.55

Ta+
FT_L 156 141.33 139.20 143.55 140.30 144.66 141.42 144.25 140.31 144.35 143.5 4.57

-119-

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

Fig. 4 Time in the c3.2xlarge instance of the app and
the app with checkpoint

 When executing the application and the
checkpoint in the instance C3.2xlarge with 16
processes (4I x 4P) in four instances, a shorter time
was observed. The second best time was also
observed with the same number of instances (4) and
processes (16) as the previous one and with the
instance C3.xlarge, as show in Fig. 5.

Fig. 5 Time of app BT.C.16 in the c3.xlarge and
c3.2xlarge instances with checkpoint and without

checkpoint

 Figure 5 shows the graphic representation of the
implementation of the app BT.C.16 in two different
instances c3.xlarge (1 mapping: using four instances)
and c3.2xlarge (2 mapping: using four instances and
two instances). The observed behavior refers mainly
to the variation in the times between the instances,
with the execution in the instance c3.2xlarge being
faster. As well as this, the proper selection of
resources is important, it is observed that the best
distribution of the processes was in 4 instances with
four processes in each instance, in comparison with
the execution in two instances with eight processes in
each one. This makes us confirm that mapping is an

element that has a significant influence when putting
fault tolerance in an application.
 Depending on the configuration of the checkpoint,
the overhead can increase or decrease. Therefore, it is
important to know in advance how your behavior will
be in order to configure it in the most appropriate
way.
 Given the large service diversity, selecting an
appropriate virtual cluster configuration for an
application with FT is a non-trivial challenge. While
functional properties can be compared by studying
provider information, non-functional properties, such
as performance, need to be quantified tediously
[18].
 As for the instances used in the cloud, these can
have an influence according to their performance
characteristics. For example, experiments using the
instance c3.2xlarge showed a better behavior in terms
of time used than with the instance c3.xlarge.
 In this way, we can observe that the sizes of the
checkpoints remained constant in all cases, while the
times decreased when using the instance c3.2xlarge,
which has more memory, CPU and storage resources
than the other two instances used: t2.micro and the
c3.xlarge.

Table 9 Difference of the percentage of time of an app
and the time of an app with FT in several instances

App:
BT.C I

Time
app
(s)

Difference
App + FT
Time (%)

I
Time
app
(s)

Difference
App + FT
Time (%)

4I x
1P

c3
.x

la
rg

e 311.88
0.66%

c3
.2

xl
ar

ge
 308.15 0.52%

1I x
4P 470.68 5.85% 315.62 2.47%
4I x
4P 123.85 6.9% 90.17 2.65%
2I x
8P 141.62 0.4%

 Table 9 shows the percentage difference in time
when fault tolerance is applied to an app in the
instances of the cloud used. It was observed that in
most cases the time i ncreased by a small percentage
and in one of them it decreased.

7. Discussion of the results

Table 10 summarizes the results in terms of the
patterns obtained when executing a coordinated
checkpoint in the cluster and in the cloud.
 From this information, we have an overview of the
behavior of the coordinated checkpoint executed with
the DMTCP library, the BT application has been used
to show the results, which allows us to know that
there is a great similarity in behavior in both
environments (cluster and cloud). This will contribute
to being able to use the cloud in order to know the
most appropriate configuration of the checkpoint

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-120-

before taking it to an environment of a cluster in
production.

Table 10 General Characteristics of the Observed
Patterns

Observed
elements

Cluster Cloud

Checkpoint file
sizes

You can correlate files that are
generated and their sizes.

Characteristics
of the content
of the
checkpoint file

The content information of the
checkpoint is composed of Data,
Libraries and Shared Memory.

Memory
mapping,
memory
location

Distribute
information in 3
memory zones

Distribute
information in 2
memory zones

Comparison in
the I/O
behavior of the
Checkpoint file

Two bursts of
writes

Two bursts of
writes

The pattern of the writes and the
order is different

Times of
applications
executed with
Checkpoint

Similar time Variable time

Infrastructure Mapping affects: Size and time.
Instance affects: Time

 With regard to the selection of resources in the
cloud, the number of instances, the distribution of the
processes must be taken into account. In the examples
shown in this paper, we consider that the best option
is to choose 4 instances (few processes per node, and
nodes with more features). It is also better to choose
4 instances with fewer benefits, than to choose 2 with
more features but grouping more processes, because
it increases the checkpoint size and storage time.

8. Conclusions and Future Works

The cloud is a flexible environment that has allowed
us to execute the checkpoint in an environment of
experimentation similar to the cluster, with greater
freedom of choice. The behavior of the checkpoint
has been similar in most of the elements that have
been taken into account to evaluate what the size of
the checkpoint files is, the content and its structure. In
this way, the cloud has served to perform an analysis
of the abstract behavior of the spatial and temporal
application. That analysis in turn provides us with
information to select the resources and it can be done
with a limited set of resources. We were also able to
observe that in the case of the study of benefits, as
well as in the case of time, there is some variability
depending on instance. Therefore, in our case, the
cloud is better suited to the study of checkpoint
behavior.
 As future work, we intend to continue using the
cloud to execute new fault tolerance strategies such
as uncoordinated or semi-coordinated checkpoints
that may need to use tools that need root privileges,
since they use special system resources. In this way,

it will allow us to know the impact prior to its use in
a production cluster. As well as this, in the future we
can attain the most global behavior of these strategies,
being able to generate tools that mimic the I/O
behavior of the checkpoint without having to execute
it and being able to take them to the cluster and carry
out a deeper study of the response of the system
before the behavior of the checkpoint will enable us
to reduce the overhead caused by the I/O of these fault
tolerance strategies.

Acknowledgment

This publication is supported under contract
TIN2017-84875-P, funded by the Agencia Estatal de
Investigación (AEI), Spain and the Fondo Europeo de
Desarrollo Regional (FEDER) EU and partially
funded by a research collaboration agreement with
the Fundación Escuelas Universitarias Gimbernat
(EUG). Appreciation to the CloudMas as
Government Competency of AMAZON Web
Services (AWS) by the access and use of its
computation resources.

Competing interests

The authors have declared that no competing interests
exist.

References

[1] P. Gomez, S. Mendez, J. Panadero, B. Aprigio,
D. Rexachs and E. Luque, “Cloud, a flexible
environment to test HPC I/O configurations,”
Int'l Conf. Par. and Dist. Proc. Tech. and Appl.
PDPTA'18, pp. 197-203, 2018.

[2] J. Weissman, “Fault Tolerant Wide-Area Parallel
Computing,” International Parallel and
Distributed Processing Symposium, pp. 1214-
1225, 2000.

[3] D. Mittal and N. Agarwal, "A review paper on
Fault Tolerance in Cloud Computing," 2nd
International Conference on Computing for
Sustainable Global Development (INDIACom),
New Delhi, 2015, pp. 31-34.

[4] F. Santamaría, J. Ballesteros and J. González,
“Plataforma cloud computing como
infraestructura tecnológica para laboratorios
virtuales, remotos y adaptativos -Cloud
computing as technologic infrastructure for
virtual, remote and adaptive labs”, Revista
Científica, 3(23), pp. 98-110, 2016.

[5] A. Mohammad, Al-Rousan Mohammad, Y.
Eman and E. Hanem, “A Study on Fault
Tolerance Mechanisms in Cloud Computing,”

-121-

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

https://link.springer.com/conference/ipps
https://link.springer.com/conference/ipps

International Journal of Computer Electrical
Engineering, pp. 62-71, 2017.

[6] P. Gómez and D. Rexachs, “Methodology to
select a I/O configuration (hardware resources
and stack software) in cloud platform,” BSC
Doctoral Symposium, 2nd ed. Barcelona:
Barcelona Supercomputing Center, pp. 143-144,
2015.

[7] D. Kochhar and H. Jabanjalin, “An approach for
fault tolerance in cloud computing using machine
learning technique,” International Journal of
Pure and Applied Mathematics, volume 117, No.
22, pp. 345-351, 2017.

[8] K. Devi and D. Paulraj, "Multi level fault
tolerance in cloud environment," International
Conference on Intelligent Computing and
Control Systems (ICICCS), Madurai, pp. 824-
828, 2017.

[9] B. Nicolae and F. Cappello, "BlobCR: Efficient
checkpoint-restart for HPC applications on IaaS
clouds using virtual disk image snapshots," SC
'11: Proceedings of 2011 International
Conference for High Performance Computing,
Networking, Storage and Analysis, Seatle, WA,
pp. 1-12, 2011.

[10] B. Azeem and M. Helal, "Performance
evaluation of checkpoint/restart techniques: For
MPI applications on Amazon cloud," 9th
International Conference on Informatics and
Systems, Cairo, pp. 49-57, 2014.

[11] A. Bouteiller, P. Lemarinier, G. Krawezik and F.
Capello, "Coordinated checkpoint versus
message log for fault tolerant MPI," Proceedings
IEEE International Conference on Cluster
Computing, Hong Kong, China, pp. 242-250,
2003.

[12] L. Fialho, D. Rexachs and E. Luque, "What is
Missing in Current Checkpoint Interval
Models?," 31st International Conference on
Distributed Computing Systems, Minneapolis,
MN, pp. 322-332, 2011.

[13] A. Kongmunvattana, S. Tanchatchawal and
Nian-Feng Tzeng, "Coherence-based

coordinated checkpointing for software
distributed shared memory systems,"
Proceedings 20th IEEE International Conference
on Distributed Computing Systems, Taipei,
Taiwan, pp. 556-563, 2000.

[14] A. Jason, A. Kapil and G. Cooperman, “DMTCP:
Transparent Checkpointing for Cluster
Computations and the Desktop,” 23rd IEEE
International Parallel and Distributed Processing
Symposium, 2007.

[15] J. Cao, K. A. Kapil, R. Garg, S. Matott, D. Panda,
H. Subramoni, J. Vienne, G. Cooperman,
"System-Level Scalable Checkpoint-Restart for
Petascale Computing," IEEE 22nd International
Conference on Parallel and Distributed Systems
(ICPADS), Wuhan, pp. 932-941, 2016.

[16] L.M. Silva and J.G. Silva, “An Experimental
Evaluation of Coordinated Checkpointing in a
Parallel Machine,” EDCC-3. EDCC Lecture
Notes in Computer Science, vol 1667. Springer,
Berlin, Heidelberg, 1999.

[17] D. Bailey, “The Nas Parallel Benchmarks,”
International Journal of High Performance
Computing Applications, pp. 63-73, 1991.

[18] J. Scheuner and P. Leitner, “Estimating Cloud
Application Performance Based on Micro-
Benchmark Profiling” IEEE 11th International
Conference on Cloud Computing (CLOUD), pp.
90-97, 2018.

Citation: B. León, P. Gómez-Sánchez, D.
Franco, D. Rexachs and Emilio Luque. IaaS
Cloud as a Virtual Environment for
Experimentation in Checkpoint Analysis.
Journal of Computer Science & Technology,
vol. 19, no. 2, pp. 110-122, 2019.
DOI: 10.24215/16666038.19.e11
Received: April 1, 2019 Accepted: August
16, 2019.
Copyright: This article is distributed under
the terms of the Creative Commons License
CC-BY-NC.

-122-

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

