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Summary
Genome inheritance is by segments of DNA rather than by independent loci. We

introduce the ancestral regression (AR) as a recursive system of simultaneous

equations, with grandparental path coefficients as novel parameters. The informa-

tion given by the pedigree in the AR is complementary with that provided by a

dense set of genomic markers, such that the resulting linear function of grand-

parental BV is uncorrelated to the average of parental BV in the absence of

inbreeding. AR is then connected to segmental inheritance by a causal multivari-

ate Gaussian density for BV. The resulting covariance structure (Σ) is Markovian,

meaning that conditional on the BV of parents and grandparents, the BV of the

animal is independent of everything else. Thus, an algorithm is presented to invert

the resulting covariance structure, with a computing effort that is linear in the

number of animals as in the case of the inverse additive relationship matrix.
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1 | INTRODUCTION

From 1986 to 1990, Professor Daniel Gianola supervised
the PhD of the first author at the University of Illinois. His
teaching was insightful and deep; his guidance was essen-
tial to transmit to his students and postdocs a rigorous and
critical thinking. We wish him the best in the occasion of
his retirement, which will probably mean a slow reduction
in office hours but not in papers (as breeders need him to
keep us going in the right direction!).

Speaking of that, we introduce here the ancestral regres-
sion (AR) model: a generalization of the “parental regres-
sion” from the animal model, with extra parameters to
complement the information given by the pedigree with
that provided by a dense set of genomic markers. The AR

is well suited to be fitted in large data sets where few ani-
mals are genotyped, because it does not rely on a reference
population but on the classic idea of “identity by descent”
(Malecot, 1969) at the level of genome segments. The
resulting distribution of breeding values (BV) remains to
be Gaussian, and the covariance structure (which will be
denoted with the Greek letter Σ throughout the manuscript)
is Markovian; that is conditional on the BV of parents and
grandparents, the BV of the animal is independent of
everything else. Moreover, Σ can be inverted by an exten-
sion of the rules of Henderson (1984) for the additive rela-
tionship matrix. For reasons of space, we defer to a further
publication all formal arguments and detailed derivations of
the covariance between relatives and asymptotic normality
of BV under AR.
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1.1 | Causal distribution for breeding values

We seek for a distribution of BV (or vector a, i.e., the sum
of all additive effects across the genome of an individual)
that accounts for the inheritance of the genome across gen-
erations by segments of random length rather than by inde-
pendent loci. In the regular animal model (Henderson,
1984), the Gaussian density represents the Markov process
by which the individual genome and its BV are generated
by the addition of randomly formed half-parental BV plus
a Mendelian segregation residual (/), that is a “genetic
error” term. Recent population genetics literature (Kelleher,
Etheridge, V�eber, & Barton, 2016; Matsen & Evans, 2008)
differentiates between this expected process and the real-
ized genetic process that results from sampling from a
given (or fixed) pedigree (Wakeley et al., 2012). The speci-
fication of inheritance in the distribution of BV relates to
the ancestral contributions from parents and further ances-
tors to the genome of the individual. In the classic setting,
each genetic contribution of a parent to the genome of a
progeny is one half, and each grandparental contribution is
one quarter, and in general 2�G where G is the number of
meioses from the ancestor to the descendant. However,
there are ancestors that leave genealogical descendants but
no genetic material (Chang, 1999; Kelleher et al., 2016;
Matsen & Evans, 2008). This difference between ancestral
contributions to the individual genome is the result of
recombination, linkage and linkage disequilibrium (LD).
For populations ranging in Ne (effective population size)
from 50 to 1000, the fractions of genome shared IBD by
the ancestor with each descendant could be close to zero
(Chang, 1999) after 6–10 generations, respectively. Follow-
ing this reasoning, the realized contribution of each grand-
parent to the genome of the individual could differ from
one quarter, that is greater or smaller, thus being a random
variable with expectation equal to 0.25. As a consequence,
to model inheritance of genome segments across genera-
tions, the distribution must take into account both the
expected relationship or genomic contribution as well as
Mendelian segregation that makes grandparental contribu-
tions to differ across meioses.

As the actual number and the location of the genes con-
trolling the variability of a complex trait is uncertain, iden-
tifiability of BV in the animal model (Henderson, 1984)
historically rested on information from the covariance
structure between related individuals (Kempthorne, 1954).
Let the covariance matrix of a be equal to

P
r2
A, where Σ

is the covariance structure, and r2
A is the additive variance.

We will refer to element ∑XY of Σ as the genome-wide
relationship (GWR) between animals X and Y. FormallyX

XY
¼ PC ðgX ¼ gYjgX  gC ! gYÞ ¼ PðgX � gYÞ (1)

where gX and gY are random variables representing the gen-
omes of X and Y, and gC is the genome of all common
ancestors of both animals. The arrows indicate the passing of
genome material from C to X and Y. Hence, PðgX � gYÞ is
the fraction of genome shared IBD between X and Y (Guo,
1995) and symbolized as ’�‘. Indeed, GWR is the “realized
or observed” relationship that results from the combined
action of the process that produces the “expected relation-
ship” AXY (or additive relationship, Henderson, 1984), plus
the Mendelian segregation. Overall, for individuals X and Y
with BV in a, the covariance between their BV is equal to

covðaX; aYÞ ¼ covðaX; aY
��gX � gYÞPðgX � gYÞ

þ covðaX; aY
��gX 6� gYÞ½1� PðgX � gYÞ�

¼ VarðaiÞPðgx � gYÞ þ 0½1� PðgX � gYÞ�
¼ r2

A PðgX � gYÞ

(2)

The value PðgX � gYÞ is the joint probability:

PðgX � gYÞ ¼ PðX1 � Y1; X2 � Y2; . . .; Xn � YnÞ (3)

where Xi and Yi are random variables representing the
event that the additive effect from gene variant i is carried
by animals X and Y, respectively. In general, n is large
and unknown. Calculating the joint density (3) is a daunt-
ing task, so that (3) is approximated by relaxing some
assumptions. For example, all models employed so far to
predict BV assume independent additive effects such that

PðgX � gYÞ ¼ PðXi � YiÞ (4)

The equality in (4) indicates that the fraction of genome
shared IBD has the same probability at any causal loci.
After scaling the variances of individual additive effects
that give rise to r2

A, the probability in (3) is equal to the
“expected relationship” 2PðXi � YiÞ ¼ 2PðX � YÞ ¼ AXY.
Hence, identifiability of BV under non-independent addi-
tive effects requires approximating the Mendelian segrega-
tion process such that

P
XY � P gX � gYð Þ. For pairs of

linked loci, Weir and Cockerham (1969) attributed to
J.B.S. Haldane the inequality

PðX1 � Y1;X2 � Y2Þ[PðX1 � Y1ÞPðX2 � Y2Þ (5)

The meaning of (5) is that the effect of linkage is to
increase the probabilities of IBD at both loci. Under seg-
mental inheritance and the Mendelian genetic process, the
conditions under which the orthogonal decomposition of
genetic effects rests are violated. Under LD, additive
effects from genes located in the same segment will be
correlated and will pick variability connected with addi-
tive-by-additive effects (M€aki-Tanila & Hill, 2014). This
suggests that relationships calculated with PðX1 � Y1;

X2 � Y2Þ would recover a larger fraction of r2
A in a seg-

mental (or non-independent) inheritance model. Fisher
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(1949) developed a theory of “junctions”: sites in the gen-
ome that separate segments originated in different ances-
tors; or sites where recombination took place. The process
models inheritance of DNA encompassing non-independent
causal variants. In sum, the distribution of additive effects
is undefined by number and location of additive effects
(identification problem) and the complex random beha-
viour introduced by the processes of Mendelian segrega-
tion under linkage and LD.

A well-defined point of departure is to model the inheri-
tance distribution by conditioning on the BV of the immedi-
ate ancestors, that is parents and grandparents, and
departing from Hardy–Weinberg-random mating assump-
tions. A causal distribution (Pearl, 2000) provides a struc-
ture and a set of assumptions from which a joint distribution
can be computed. In our terms, the goal is to predict the
value of a vector of BV at at time t, given the BV of ances-
tors ðat�1Þ measured on a previous time (t - 1), by means of
the conditional probability distribution Pðatjat�1Þ. Once the
pedigree is observed (i.e., fixed), mating is not random and
the resulting distribution is PðatjaR;t�1Þ; R is the set of
ancestral BV responsible for the make-up of the genomes at
time t. The parameters of the conditional distribution
Pðatjat�1Þ are identifiable at the individual level and reflect
the “expected relationship”: the regression coefficients of
the parental BV on the BV of offspring are equal to 0.5
(Bulmer, 1985; Henderson, 1984). However, parameters of
PðatjaR;t�1Þ are not only the two halves associated with par-
ental contributions, but also the differential contributions of
grandparental genomes whose coefficients differ from 0.25.
This new set of parameters is identifiable only with informa-
tion from a dense set of SNPs, CNVs or DNA sequences, as
detection of segments requires locating recombination sites.
If we take a multivariate Gaussian density as the causal dis-
tribution of a (a fact that is described in detail elsewhere),
PðatjaR;t�1Þ represents a structural regression model (Kii-
veri, Speed, & Carlin, 1984; Wermuth, 1980) for the vector
a of order q (the number of animals), which includes the
BV of all individuals from all generations. Parameters of
PðatjaR;t�1Þ are directional or causal path coefficients
(Wright, 1934). The direction is related to the fact that addi-
tive effects from genes that affect BV flow always from
ancestors to descendants and never the opposite direction.
Hence, ancestral BV “cause” descendants BV in causal
inference terms (Pearl, 2000).

The difference between a regression coefficient bXY and
a causal path coefficient bXY.O from a multivariate normal
distribution of BV is seen as follows:

bXY ¼
cov ðaY; aXÞ
VarðaXÞ

bXY:O ¼
P

YX�
P

YO

P�1
OO

P
OXP

XX�
P

XO

P�1
OO

P
OX

(6)

The subscripts in Σ relate to individual X (parent), Y (pro-
geny), and a set of individuals (O) related to Y and X. The
additive variance r2

A cancels out from the parameters in (6)
because it appears in the numerator and the denominator:

bXY:O ¼
P

YX r2
A � r2

A

P
YO

P�1
OO ðr2

AÞ�1
P

OX r2
AP

XX r2
A � r2

A

P
XO

P�1
OO ðr2

AÞ�1
P

OX r2
A

¼
P

YX�
P

YO

P�1
OO

P
OXP

XX �
P

XO

P�1
OO

P
OX

The covariance in the numerator and the variance in the
denominator are adjusted for everything else such that the
set O of BV is marginalized in the estimation process. The
matrix representation of the Gaussian recursive linear sys-
tem is the following:

a ¼ B aþ / (7)

where / is the vector of Mendelian residuals (Bulmer,
1985). Matrix B is lower triangular with nonzero elements
being path coefficients relating the BV of ancestors to
descendants. Solution of (7) is equal to

a ¼ ðI � BÞ�1 / (8)

BV in (8) have expected value and variance, respectively,
equal to

EðaÞ ¼ ðI � BÞ�1Eð/Þ ¼ 0

VarðaÞ ¼ ðI � BÞ�1 DðI � B0Þ�1 r2
A

(9)

We are interested in the covariance structure of a:X
¼ ðI � BÞ�1 DðI � B0Þ�1 (10)

The covariance structure of Mendelian residuals is the
diagonal matrix D. The structure Σ is positive definite as 1)
ðI � BÞ is positive definite (see Lemma 2.1, chapter 6 of
Berman & Plemmons, 1994), and 2) the diagonals of D are
all positive real numbers. Then, ðI � BÞ�1 exists and it is
equal to (Quaas, 1988)

ðI � BÞ�1 ¼ I þ
X/
k¼1

Bk ¼ I þ Bþ B2 þ B3 þ . . . (11)

As ðI � BÞ�1 exists, the unique solution to (7) is (8).
A remarkable property of the Gaussian causal distribution

Pðatj aR;t�1Þ is the Markov recursion to parental and/or
ancestral BV. Moreover, in conditional Gaussian densities,
zero elements in Σ�1 indicate conditional independence
(Wermuth, 1980) and enable the joint density function to be
decomposed into the product of conditional distributions
(Lauritzen & Wermuth, 1989; Speed & Kiiveri, 1986). The
result facilitates computation of Σ�1 with large number of
animals for prediction purposes. The linear system that
results from this setting is referred to as the Bartlett decom-
position (Munilla & Cantet, 2012; expression (4)). It has
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been employed to represent inheritance of BV across genera-
tions by Cantet, Schaeffer, and Smith (1992), expression
[A9]. In the current framework, the Bartlett decomposition
of the covariance matrix of BV is as follows:

VarðaÞ ¼
X

r2
A ¼

P
t�1

P
t�1;tP0

t�1;t 0
P

t

" #
r2
A

¼
P0

t�1
P

t�1Bt
0

Bt
P

t�1 Bt
P

t�1Bt
0 þVar /tð Þ

" #
r2
A

(12)

where the subscripts t - 1 and t indicate the covariance struc-
tures of ancestral and offspring generations, respectively.

1.1.1 | Phasing and probabilities of IBD under
linkage

We assume that the four genomes or haplotypes from two
individuals (X and Y) are phased, so they can be expressed
as a mosaic of segments originated in their eight grandpar-
ents. Aligning the four parental haplotypes in X and Y in the
four possible pairings (i = 1, father of X – father of Y; i = 2,
father of X – mother of Y; i = 3, mother of X – father of Y
and i = 4, mother of X – mother of Y) allows us to estimate
marginal values of

P
XY, which we denote as rXY.

For the causal distribution to account for linkage and
LD, IBD probabilities have to be computed by segments
rather than for independent loci. As a first step, we propose
to detect IBD segments using software such as Beagle
(Browning & Browning, 2013). Let lij be the length of seg-
ment ij shared IBD between X and Y and measured in cM
or Megabases. Subscript j runs from 1 to NIBDi , the last
segment detected IBD for pair i of haplotypes, i = 1,..,4 as
in the previous paragraph. At each value of j, there may be
subsegments of IBD from two individuals. Once segments
are detected to be identical, we calculate the probability of
IBD between segments, PðSX � SYÞ, by multiplying lij by
the probability of IBD sharing between one grandparent of
X and one grandparent of Y, and then summing up to the
last IBD segment. The linkage distribution is tractable if
the dependence structure of the segments is modelled using
probabilities of IBD at two loci. Weir and Cockerham
(1969) and Cockerham and Weir (1973) defined three dif-
ferent probabilities for linked genes at two loci according
to the number of gametes involved (2, 3, or 4), as follows:

Digametic : PðSX � SYÞ ¼ PðX1 � Y1; X2 � Y2Þ
Trigametic : P ðSX � SY; SX � SWÞ ¼ PðX1 � Y1;

X2 � W2Þ
Tetragametic : P ðSX � SY; SW � SZÞ ¼ P ðX1 � Y1;

W2 � Z2Þ
The capital letters to the left indicate the individuals the
gametes belong. Digametic probabilities require expansion

to di-, tri- and tetragametic probabilities, whereas trigametic
probabilities expand in tri- and tetragametic probabilities.
Finally, tetragametic probabilities are functions only of
tetragametic probabilities. All in all

P ðgX � gYÞ ¼
X4
i¼1

XNIBDi

j¼1
lij PðXi1 � Yi1; Wi2 � Zi2Þ (13)

where PðXi1 � Yi1; Wi2 � Zi2Þ is one of the three gametic
probabilities previously described. On dividing (13) by the
total length of genome (L), we obtain

rXY ¼

P4
i¼1

PNIBDi

j¼1
lij PðXi1 � Yi1; Xi2 � Yi2Þ

L
(14)

1.2 | The ancestral regression

Our goal is to provide for a genetic model where BV of
parents and grandparents are uncorrelated. As a result, the
covariance structure of the process is Markovian and direct
inversion of Σ is possible using an algorithm that is linear
in the number of animals (O(q)), as Henderson (1984) did
with the animal model or “parental regression.” By condi-
tioning on the number of generations (GMRCA) to the most
recent common ancestor (MRCA) of a pair of animals,
Palamara, Lencz, Darvasi, and Pe’er (2012) obtained the
distribution of the length of a non-recombinant segment
shared IBD between two individuals. If the pedigree is
known, GMRCA = G or the exact number of generations
between the animals. Under this coalescent specification,
Palamara et al. (2012) observed that “individual segments
carry little information about specific sites unless the com-
mon ancestor is extremely recent (e.g., <10 generations
before present)” that is G ≤ 10. This figure agrees with the
theoretical results derived by Chang (1999) who observed
that at approximately 1.77 log2(Ne) generations all partial
ancestry ends. Consequently, for populations with Ne rang-
ing from 50 to 1,000 (the range of most domestic animal
populations), fractions of genome shared IBD in descen-
dants induce the covariance between BV to be practically
null in 6 to 10 generations. We compared estimation of
GWR with simulated and real data using genomic informa-
tion, without or with the aid of pedigree records. Whereas
both methods produced estimates of GWR that were almost
unbiased, the IBD based method (pedigree and markers)
had higher correlation (0.956) with true or realized GWR
than the method that does not employ the pedigree (0.678)
(Forneris et al., 2016). In a related research, Garc�ıa-Bac-
cino et al. (2016) found that the method that does not use
pedigree information had larger variance of estimation of
half-sib GWR than the method that employs genomic and
pedigree data. Additionally, Kumar, Feldman, Rehkopf,
and Tuljapurkar (2016) observed that GWR estimated
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using solely marker information is a function of the ran-
dom matrix of sampled SNP that has large numbers of very
small singular values. They also found that estimates of
heritability using such GWR were biased and had large
variance. Beside the sampling errors to detect relationship,
methods to estimate GWR using information from markers
unconstrained by the pedigree (identity in state) tend to
pick up distant (6–10 meiosis or more) relationships, that is
GWR � 0.01–0.001. These convey very little information
on the BV of the distant relative and increase prediction
error variance. Therefore, a possible prediction model in
which pedigree and genomic information are complemen-
tary would be based on pedigree—to fix the parental path
coefficients, which are exactly equal to 0.5—and on geno-
mic data to carry information on the Mendelian process
through the path coefficients going from the BV of the
grandparents to the BV of the animal. Within the frame-
work of Pðatj aR;t�1Þ, these additional “regressors” should
reduce the variance of the Mendelian residual ðVarð/XÞÞ
only if the average of the BV of the parents is uncorrelated
to a linear function of grandparental BV. Cantet and Vitez-
ica (2014) proved that the Varð/XÞ arising from the predic-
tion of BV with methods that combine pedigree and
genomic information is always less than (or at best equal
to) Varð/XÞwithPðatjat�1Þ:

The problem is then to find a set of conditions such that
the grandparental path coefficients are identifiable (Kenny,
1979). This occurs when the number of parameters is less
or equal to the number of distinct elements of Σ or correla-
tions among pairs of individuals: 0.5 q(q – 1). More for-
mally, the recursive Gaussian model is as follows:

aX ¼ 0:5 aS þ 0:5 aD þ bX;PGS:R aPGS þ bX;PGD:R aPGD

þ bX;MGS:R aMGS þ bX;MGD:R aMGD þ /X

(15)

To estimate bX,GP|Pwhere GP = GS, GD, and P = S, D,
we will take advantage of a theorem by Cochran (1938),
expressing the total regression coefficient from aGP to aX as

bX;GP ¼ bX;GPjP þ bX;PjGP bP:GP ¼ bX;GPjP þ ð0:5Þ ð0:5Þ
¼ bX;GPjP þ 0:25

A similar expression is obtained from the other grand-
parent of X. If we add both expressions and equate the
result to the parental contribution (equal to 0.5), we obtain

0:50 ¼ bX;GSjP þ bX;GDjP þ 0:50

Consequently, the following over-identification restric-
tions (Kenny, 1979, pp. 42-49) are needed on the grand-
parental path coefficients:

bX;PGSjR ¼ � bX;PGDjR ¼ bS bX;MGSjR ¼ �bX;MGDjR ¼ bD
(16)

Positive values of bS and bD in (16) mean that the pater-
nal and maternal grandsires, respectively, are in excess,
whereas negative values indicate that the granddams are in
excess. To obtain the “AR”, we have to include in (15) the
path coefficients under restrictions (16) as follows:

aX ¼ 0:5 aS þ 0:5 aD þ bS ðaPGS � aPGDÞþ
bD ðaMGS � aMGDÞ þ /X

(17)

The path coefficients for the grandparents are defined as

bS ¼
P

X;PGP�
P

PGP;R

P�1
RR

P
R;PGPP

PGP;PGP �
P

PGP;R

P�1
RR

P
R;PGP

bD ¼
P

X;MGP �
P

MGP;R

P�1
RR

P
R;MGPP

MGP;MGP �
P

MGP;R

P�1
RR

P
R;MGP

(18)

with
aPGP ¼ ½0:5 ðaPGS � aPGDÞ j 0:5 aS ! aX�
aMGP ¼ ½0:5ðaMGS � aMGDÞj0:5 aD ! aX�

Thus, aPGP and aMGP are half the difference between
grandsire and granddam from each parent given the passing
of 0.5 parental BV to X.

1.2.1 | Relationship with the covariance
structure

Consider calculation of the row of Σ related to animal X.
Let R be a set comprised by individuals S, D, PGS, PGD,
MGS and MGD. Any row of matrix B has at most six ele-
ments different from zero and q – 6 zeros. Depending on
date of birth, BV of grandparents and parents are ordered
in a such that the row of B for X may look like

BX ¼ ½0 bS 0 . . . 0 � bS . . . 0. . .0 bD � bD
0:5 0 . . . 0 0:5 . . . 0�

(19)

The diagonal element in (19) is always zero because it corre-
sponds to the BV of animal X. Because of the values of the
path coefficients in (17) or (19), parental BV are uncorrelated
with the linear functions in (18), ðI � BÞ is non-singular and
of rank q, such that

P ¼ ðI � BÞ�1 D ðI � B0Þ�1 is positive
definite. The diagonal element of the Mendelian covariance
matrix for animal X is equal to DX ¼ Varð/XÞ ðr2

AÞ�1. LetP
R be the causal covariance structure among the parents

and grandparents of X, thus a square matrix of order 6. Then,
using the Bartlett decomposition of the covariance structure
(12) and the following “reduced” version BXðrÞ ¼
½bS �bS bD �bXD 0:5 0:5�, we can calculate the relation-
ships between X and its parents and grandparents as follows:

P
R

P
R B
0
XðrÞ

BXðrÞ
P

R BXðrÞ
P

RB
0
XðrÞ þDX

� �
(20)
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The variance of the Mendelian residual of X is equal to

Var ð/XÞ ¼ VarðaX � BXðrÞ aRÞ
¼ ½ð1þ FXÞ þ BXðrÞ

X
R
B0XðrÞ

� 2BXðrÞ
X

R
B0XðrÞ�r2

A

where FX is the inbreeding coefficient of X calculated as
0.5 rSD. Thus

Var ð/XÞ ¼ ½ð1þ FXÞ � B0XðrÞ
X
R

BXðrÞ�r2
A ¼ DXr

2
A (21)

1.2.2 | Estimation of bS and bD

In the framework of the Gaussian causal model of inheri-
tance discussed so far, it is possible to use the Bartlett
decomposition of Σ to write the multivariate normal distri-
bution of the vector of BV a as follows:

f ðaÞ ¼ f ðaR; aO; aXÞ ¼ f ðaO; aX j aRÞ f ðaRÞ (22)

where aX is the BV of X, aR are the BV of the grandpar-
ents and parents of X and aO are the BV of all other indi-
viduals which are neither X nor the parents and
grandparents of X. Now, we take advantage of the Markov
property (Speed & Kiiveri, 1986) of this Gaussian density
and, conditional on aR, aX is independent of aO and (22) is
written as:

f ðaÞ ¼ f ðaO j aRÞ f ðaX j aRÞ f ðaRÞ (23)

Hence, all statistical information on bS and bD is contained
on the normal density f ðaX j aRÞ, and sufficient statistics
for bS and bD belong to this distribution. A closer look to
(23) suggests that the conditional covariancesX

XðPGS�PGDÞjR ¼
X

X;PGP
�

X
PGP;R

X�1
RR

X
R;PGP

X
XðMGS�MGDÞjR ¼

X
X;MGP

�
X

MGP;R

X�1
RR

X
R;MGP

are sufficient for bS and bD (Lauritzen & Wermuth, 1989).
Hence, using the difference of GWR between X and each
grandparent calculated with (14) produces estimates of the
conditional covariances of the differences:X̂

X ðPGS�PGDÞjR ¼ rXPGSjR � rXPGDjRX̂
X ðMGS�MGDÞjR ¼ rXMGSjR � rXMGDjR

(24)

Under the causal distribution, the expected value of both
estimators are

E
X̂

X ðGS�GDÞjR

� �
¼ 0:25þ bP � 0:25 � � bPð Þ ¼ 2 bP

Then, moment estimators of bS and bD respectively are
equal to

b̂S ¼ 0:5 rXPGSjR � rXPGDjR
� �

b̂D ¼ 0:5 rXMGSjR � rXMGDjR
� � (25)

Once the values of bSand bD are estimated, the row BX

associated with animal X is formed as in (19) by setting to
the following: (i) zero: all elements in the columns pertain-
ing to individuals in a that do not belong to the set R; the
last element or position of X is also equal to zero; (ii) bS,
bD, � bS and � bD: in the columns of the grandparents; 3)
0.5: in both parental columns.

1.3 | Algorithms for calculating Σ�1

The algorithm is a variant of the one given by Henderson
(1984) to calculate A�1. Let ðI � BÞX be the row of
ðI � BÞ related to X, and D�1X the inverse of the corre-
sponding diagonal element of D. As noted by Quaas
(1988) for A�1, we can compute Σ�1 as follows:

X�1 ¼
Xq
i¼1
ðI � BÞ0iðI � BÞiðD�1ii Þ (26)

The first step is to set up the pedigree in an array com-
posed by the individual, both parents and the four grand-
parents; ordered by date of birth. Then, do the following:

(i) calculate the GWR, rij, using (14);
(ii) compute

P�1 on a row by column basis starting from
the first individual (oldest) and ending with the last
one (youngest);

a estimate bS and bD for the grandparents and set up
BX as in (19);

b calculate DX using (21);
c update the “reduced” Σ (order 7 9 7: grandparents,

parents and the individual being processed) using
(20);

d expand BX with zeros in all remaining elements in
the row and obtain

ðI � BÞX ¼ ½0 � bS bS . . .0. . .0 � bD
bD � 0:5 . . . � 0:5 0. . .0 1 0. . .0�;

e add the contributions of the matrix in (26), that is

ðI � BÞ0XðI � BÞX ðD�1X Þ;
to the corresponding elements of Σ�1;

f go back to 2)a).

A small data set with 10 animals is presented in supple-
mentary materials to exemplify calculating Σ�1.
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2 | DISCUSSION

The contribution of this research is to obtain a quantitative
genetic model to predict BV, the AR (17), that accounts
for the expected relationship, and part of the Mendelian
segregation process (recombination, linkage and LD) when
BV are formed. The AR reduces Mendelian residual vari-
ance (Cantet & Vitezica, 2014) and increases the individual
accuracy of BV, when compared to the regular animal
model. If there is no inbreeding, the reduction of Men-
delian variance in outbreds would be bounded by 0.125 for
either bS or bD to a minimum of DX = 0.25, but somewhat
more under inbreeding. The AR provides for a unified
framework where the contributions of pedigree and geno-
mic information become complementary; that is, BV of
parents and the function of grandparental BV defined in
(18) are uncorrelated. The model is then Gaussian Marko-
vian (Lauritzen & Wermuth, 1989; Speed & Kiiveri, 1986),
which means that conditional on the BV of parents and
grandparents, the individual BV is independent of every
other BV in a. In the regular infinitesimal model where the
“expected GWR” is calculated with the pedigree, the
covariance between the BV of relatives goes to zero when
the number of generations between the two individuals (G)
increases, such that the speed of convergence to normality
is a function of 2�G. In the segmental inheritance model,
the genetic process induces the covariance structure of BV
to go to zero at the faster rate 2�GQG, where QG is the
expected fraction the genome from the ancestor present in
the descendant (after Lemma 8 in Matsen & Evans, 2008).

The utility of AR goes beyond segmental inheritance
(non-independent loci), where it is most advantageous in
terms of recovering a larger fraction of r2

A and can also be
employed with independent loci using other estimators of
GWR than (14). A distinctive advantage of the AR is that
Σ�1 is computed in a linear fashion O(q) as A�1 by a sim-
ple extension of the rules of Henderson (1984), and direct
inversion is not required. A less advantageous aspect of
AR relates to the observation that prediction of BV with an
IBD derived covariance structure did not gain much more
accuracy, with respect to a method that employs only mar-
ker data to estimate the covariance structure (0.02–0.03,
Forneris et al., 2016). Additionally, two grandparental
parameters enter into the model for each animal and have
to be estimated with all implications of such procedures.

Research is underway to estimate grandparental path
coefficients when grandparents are not genotyped but
related individual, non-ancestors and contemporaneous are.
It would be tempting to include path coefficients related to
great-grandparents or further ancestral generations to reduce
the Mendelian variance of the parental regression. How-
ever, adding the BV from great-grandparents or from
ancestors further back will most likely induce correlations

among the estimated path coefficients and overfitting of
BV. This is troublesome as DX has to be smaller than one
for Varð/XÞ[ 0 such that Σ > 0. When discussing the
effect of multicollinearity in models used for prediction
purposes, Shmueli (2010) quoted the following comment in
a textbook by S.G. Makradakis, S.C. Wheelwright and R.
J. Hyndman, R. J, for prediction purposes “multicollinearity
is not a problem unless either (i) the individual regression
coefficients are of interest, or (ii) attempts are made to iso-
late the contribution of one explanatory variable to Y, with-
out the influence of the other explanatory variables.”
Assumptions (i) and (ii) are applicable to prediction of BV
using genomic information because 1) matrices Σ and G
(VanRaden, 2008) are estimates of the true covariance
structure of the inheritance process. Therefore, those esti-
mates will have variance around the true value and the
individual “regression coefficients” (i.e., the ancestral b)
will have an effect on prediction error variance of the indi-
vidual, thus affecting the accuracy of different animals and,
consequently, selection response with those predictions; 2)
the AR accounts for the contributions of the different “ex-
planatory variables,” in our context the BV of ancestral
and related animals in the equations of relatives, as long as
the model remains causal and Markovian. That is not the
case with matrix G that generally has neither properties.
The Markov property in AR is due to orthogonalizing the
grandparental from the parental contributions. Under the
absence of inbreeding, the orthogonalization produces that
the grandparental extra contributions do not inflate the vari-
ance (H€oskuldsson, 1994) of the b coefficients even tough
BV of parents and grandparents are correlated. Hence, the
orthogonalization in the AR allows for a “balance between
the improvement in fit, and the increase in the model
uncertainty” (H€oskuldsson, 1994). As a consequence, AR
is more suited to be fitted into a continuous and traditional
evaluation because of the complementarity between the
pedigree and genomic information that generalize the regu-
lar animal model. Moreover, a large “reference population”
of genotyped animals is not needed for a single individual
to gain in accuracy, but rather a group of ancestors or
related individuals.

A direction for future research is on the search for effi-
cient algorithms to calculate the GWR in (14), as well as
those for estimating bS and bD. The conditions under
which these latter parameters are identifiable when grand-
parents are not genotyped are another issue for future
research.
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