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Abstract. A discussion on the residual behaviour of Fibre Reinforced Concrete (FRC) is 

performed based on two selected cases of concrete degradation: the exposure at High 

Temperatures and the development of Alkali Silica Reactions. In addition, and taking in mind 

that the failure mechanism in FRC is strongly related with the fibre pull-out strength, the bond 

strength in damaged matrices was shown concluding that the residual bond strength is less 

affected than the matrix strength. As the damage increases, the compressive strength and the 

modulus of elasticity decrease, being the modulus of elasticity the most affected. There were 

no significant changes produced by the incorporation of fibres on the residual behaviour when 

compared with previous experience on plain damage concrete. Regarding the tensile behaviour 

although the first peak decreases as the damage increases, even for a severely damage FRC the 

residual stresses remain almost unaffected.  

1.  Introduction 

The construction of concrete structures of extended service life represents a key point to improve the 

sustainability of a country’s infrastructure. In addition, the repair and strengthening of existing 

structures has become an important and urgent issue around the world.  

Fibre Reinforced Concrete (FRC) is a high performance concrete particularly efficient for the 

construction of structures exposed to severe conditions as well as for reinforcement and retrofitting. 

Fibres incorporation controls cracking processes in concrete, resulting in great improvements of the 

material toughness and the structures durability. Steel and Polymer FRC have been used for decades in 

slabs on grade, pavements and bridge decks, tunnels, precast elements among others. 

Concrete is a composite material where inclusions of different size and shape, the aggregates, are 

surrounded by a more or less continuous matrix that acts like a binder. The failure mechanism of 

concrete is closely related to the initiation and propagation of cracks, coarse aggregates generate 

weaker zones (interfaces) in which the development of the cracks begins. Furthermore, macrodefects 

(big pores, air bags) generated during compaction or bleeding may concentrate around the bigger 

aggregates and also cracks will appear due to differences in stiffness, shrinkage or thermal expansion 

coefficients between the cement paste and the aggregates. Significant cracking at micro and macro 

levels can also appears when concrete is exposed to more severe conditions, affecting the functionality 

and reliability of the structures. 

As well as plain or conventional reinforced concrete, FRC can be used in structures in contact with 

aggressive environments or exposed to severe external conditions that produce damage in the internal 

structure of the material.  
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Frequently, for the assessment of the capacity in service or for taking decisions about replacement, 

reinforcement or repairing damaged structures, the evaluation of the properties of the existing concrete 

is required. Usually, the evaluation of the structures is made by means of the compressive strength 

measured on drilled cores; however other properties as stiffness, tensile strength or energy of fracture 

can change in a very different magnitude. The same may occur with the transport properties.  

This paper presents a discussion based on previous works on the residual properties of FRC after 

severe degradation processes. The exposure at High Temperatures (HT) and the development of Alkali 

Silica Reactions (ASR) were selected as cases of study; the effect degradation processes on the pull 

out strength of individual fibres is also considered.  

It is known that another very important case of degradation is the bars corrosion in reinforced 

concrete structures. The incorporation of fibres also can lead to benefits through their effect on the 

control of crack widths. However, the analysis of this pathology exceeds the scope of this work.  

2.  Residual properties of damaged plain concrete 

There is extensive literature on the behaviour of damaged plain concrete. A summary of the main 

knowledge regarding the residual properties for the two studied cases is presented. 

2.1.  High temperatures (HT) 

An important case of damage of the internal structure of concrete appears when it is exposed to high 

temperatures (HT) [1-7]. Initially, the increase in temperature results in the elimination of the pore’s 

water and the consequent contraction of the paste with crack formation. Temperature rise over 500 ºC 

produces non-reversible effects, as the loss of chemical bounded water takes place. Microcracking at 

the interfaces appears due to differences between thermal dilatation coefficients of paste and 

aggregates, which increases the size and closeness of the internal cracks.  

The alteration of concrete structure affects the failure mechanism, and this is reflected in the shape 

of the stress-strain curves. In damaged concrete the growth and propagation of matrix cracks starts 

earlier and there is an important decrease in the period of stable matrix crack growth as the 

degradation is more severe. In compression, there were reported decreases in ultimate stress, increases 

in final deformations and rapid and important reduction in Poisson’s ratio. The tensile strength shows 

a great variability, and it is more sensitive than the compressive strength to the changes produced by 

HT. While damage produces a drop in tensile strength the fracture energy is less affected due to the 

greater branching in crack propagation in the post-peak regime [3, 5]. 

Large reductions in ultrasonic pulse velocity and in dynamic modulus of elasticity as temperature 

increases were observed in HT damaged concrete. The modulus of elasticity was more affected than 

the compressive strength, thus the residual values of velocity can diminish much more than those 

corresponding to strength and are very effective to detect damaged zones [4].  

The temperature level, the exposure time and the cooling conditions are the main factors affecting 

the mechanical properties [1, 2]. The type of aggregate represents an important factor meanwhile the 

type of binder seems to be not so significant. Considerable changes can be produced by moisture 

content of concrete, in some cases the vapour pressure in the pores increase during heating and 

spalling takes place. Many times visual inspection showed that specimens exposed to temperatures 

higher than 500 °C had significant surface cracking, which was more important when they were 

cooled quickly.  

Finally, temperatures lower than 200 °C, do not have a significant effect on the compressive 

strength, but can affect the transport properties mainly the external layer of concrete, promoting 

significant changes in concrete durability. In HT damaged concrete the residual velocity and capacity 

of capillary absorption grew with the crack density until a maximum is reached and then decreased, 

although the density and width increased. On the other hand the water permeability showed a direct 

relationship with the level of damage, increasing as the crack density and width increase. It can be 

mentioned that the transport properties can also be affected by less severe conditions as the presence 

of microcracking due to drying shrinkage [8]. 
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2.2.  Alkali-silica reaction (ASR) 

Alkali-silica reaction (ASR) can induce loss in serviceability of concrete structures. ASR occurs in 

concretes with reactive aggregates, when sufficient alkalis (K2O, Na2O), and moisture are available. 

Different levels of damage and cracking appear in concrete microstructure according to the kinetic of 

ASR. Rapid reaction rates induce internal stresses at the interfaces and cement pastes, producing micro 

and macrocracks. On the other hand in concretes with strained quartz, the reactions are localized 

inside the aggregates in reactive zones (intercrystals), where pore solution can reach. This process 

takes place very slowly and the attack is not generalized all around the aggregate surface. [9–12]. 

Usually linear expansions are used to evaluate the material degradation; nevertheless the residual 

mechanical properties could be different for a same expansion. ASR strongly affects concrete tensile 

strength and modulus of elasticity. The reductions in compressive strength are always lower than those 

observed in stiffness, being in some cases compressive strength even not affected.  

The failure mechanism of concrete in compression is also clearly affected by ASR. The shape of 

the stress–strain curves reflects the presence of internal fissures. The growth and propagation of matrix 

cracks tends to start earlier due to defects produced by ASR. The period of stable crack propagation is 

less affected than the period of unstable crack growth which is widely extended, showing that the 

capability of controlling crack propagation decreases leading to premature failure. In tension, the 

differences in the crack pattern of sound and damaged concretes are reflected in the shape of the load 

deflection curves, both in the pre- and post-peak regime. Damaged concretes show an increased non-

linearity before the peak and a more gradual softening. 

Also in this case, the changes on transport properties strongly depend on the characteristics of the 

crack pattern [8].  

3.  Residual bond strength of individual fibres in damaged matrix 

It is well known that the post peak capacity of FRC depends on the type and content of fibers. The 

fibers mainly act after a crack appears in the matrix being the pull out the most important mechanism 

involved. Although fiber – matrix bond increases with the compressive strength, the increments are 

more significant in the later. This behavior was verified for synthetic macrofibres (M) and hooked-end 

steel fibres (S) [13].  

To study the effect of ASR on bond strength pull out tests were performed. Four mortars with w/c 

0.50 were prepared with reactive sand, two incorporated a high content of alkalis (D) and the others 

were used as reference (C). Reactive and reference mortars incorporating synthetic microfibers were 

also done with the aim of evaluating if there is any effect in controlling matrix microcracking and 

consequently in bond strength; they are identified as Cm and Dm. Specimens of 40 x 20 mm section 

and 70 mm length with a single fibre embedded were used; the bond length was half of the fibre 

length. In addition, prisms of 25 x 25 x 300 mm were cast to measure the expansions evolution. 

Figure 1.a shows the evolution of mortar expansions. Mortars D and Dm that incorporate high 

content of alkalis show important expansions over 0.6 %. As expected, mortars C and Cm do not 

expand. Figure 1.b plots the results of bond strength vs. mortar compressive strength obtained with 

hooked end steel fibres (S) and different types of macrosynthetic fibres (M). It can be seen that 

mortars D and Dm show a clear decrease in compressive strength, which is slightly lower in the later. 

However, the variations in pull out strength are significantly lower. In this case, when the matrix is 

damaged by ASR the mortar compressive strength decreased near 40 %, while the bond strength is 

only marginally affected specially fibre S.  

The same tendency was verified when the residual properties were evaluated in matrices damaged 

by HT. The variations in compressive strength are usually higher than those observed in bond. In a 

recent study [14] pull out tests were performed on concrete specimens incorporating steel fibres 

exposed at 20, 300, 375 and 475 °C; no change in pull-out response up to 375°C was observed, and 

only a reduction in load capacity of near 20 % appeared for 475°C. The corresponding concrete 

compressive strengths were 63.7, 55.7, 54.4 and 44.2 MPa respectively.  
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Figure 1. a (left) Evolution of the mortar expansions; b (right) bond strength vs. mortar strength. 

 

4.  Residual properties of FRC affected by HT 

The residual mechanical behaviour of thermally damaged high strength FRC incorporating different 

types and contents of hooked end steel fibres were studied [15]. Two exposure conditions were used, 1 

hour at 500 °C and 24 hours at 150 °C; reference specimens at 20°C were also tested.  

The residual stress strain curves in compression of plain (P) and FRC incorporating 40 kg/m3 (40H) 

or 80 kg/m3 (80H) of High carbon steel fibres and 40 kg/m3 (40L) of Low carbon steel fibres are given 

in Figure 2. The axial, lateral and volumetric strains are plotted. It was found that as cracking increases 

the lateral/axial strains ratio increase at lower stresses and more rapidly.  

 

  

  
Figure 2. Stress vs. axial, lateral and volumetric strain curves in compression. 
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Regarding the failure mechanism in compression, Figure 3 presents the initiation stress (finit, 

associated with the start of matrix cracking), the critical stress (fcrit, associated with the onset of 

unstable crack propagation) which corresponds to the peak volumetric strain [16], and the compressive 

strength (f´c). It can be seen that these parameters tend to increase as fibre content increases and when 

High–carbon steel fibres were used. When concretes are exposed to 500 °C, finit and fcrit decrease, 

being the decrease in fcrit more significant. This means that, due to the cracking generated by high 

temperature, the growth and propagation of matrix cracks started earlier. The period of stable crack 

propagation is reduced and, although the period of unstable crack growth is extended the capability of 

controlling crack propagation decreases. The fibres increase the load-carrying capacity in post-

cracking regime when compared with plain concrete (see P vs. 80H). 

Summarizing, FRC follow similar residual compressive behaviour as the plain concrete, but the 

presence of fibres lead to slight increase in strength and in the stress at which cracks initiate.  

 

 
Figure 3. Stress vs. axial, lateral and volumetric strain curves in compression. 

 

The main benefits of fibre incorporation in concrete are related to the tensile behaviour and the 

corresponding increments in toughness; in this way the characterization of FRC is based on their post 

peak capacity (residual stress). Thus the study of the post peak loading capacity in damage concrete 

becomes relevant.  

To evaluate the tensile behaviour flexural tests on notched beams were performed. Figure 4 

presents typical load – deflection curves in bending. As it was expected, the matrix degradation leads 

to a reduction of the residual mechanical properties of concrete. It was found that the shape of the 

load-deflection curves in FRC exposed to 150 °C was similar to the undamaged concrete. The 

reductions in flexural strength were lower in FRC than in plain concrete, and the post-peak strength 

was less affected than first-crack strength. For the most severe exposure condition the degradation of 
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measured in sound concrete; the UPV method cannot be used to estimate strength but represents a 

useful tool to identify damaged zones [4]. Figure 5 plots the variation of the static elastic modulus with 

the compressive strength and the relationship of the static modulus o elasticity with the UPV; the 

results of concretes P, 40H, 80H and 40L previously presented, exposed to 20, 150 and 500 ªC are 

included. In addition, the residual properties of other fibre concrete exposed to the same conditions are 

shown, all fibre concretes are identified as FRC. As it occurs in plain concrete, there is not a good 

correlation between the residual modulus of elasticity and the residual compressive strength in FRC, 

but concretes prepared with different materials, types and contents of fibres, and exposed to different 

grades of alteration show a very good relationship between the modulus of elasticity and the UPV. 

  

  

Figure 4. Load - deflection curves on notched prisms. 

 

  
Figure 5. Left: Compressive strength vs. elastic modulus. Right: UPV vs. elastic modulus.  
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5.  Residual properties of FRC affected by ASR 

A reference concrete (P) and two FRC incorporating 40 kg/m3 of hooked-end steel fibres (S) or 

3 kg/m3 of synthetic macrofibres (M) were done. All of them were prepared with similar mixture 

proportions and incorporate a 19 mm MSA highly reactive crushed quartzitic sandstone as part of the 

coarse aggregate to promote the development of ASR. The total alkali content in concrete was equal to 

4 kg/m3 (NaOH was added in the mixing water). The expansion along time, as representative of the 

reaction level, and the compressive strength, the modulus of elasticity and the flexural behaviour, as 

characteristic residual mechanical properties, were evaluated [17]. 

 
Figure 6. Linear expansions.  

 

The linear expansions of the different concretes are given in Figure 6. A high rate of expansion can 

be seen until near 150 days and then it markedly decreases, achieving values near 0.2 %. Concrete S 

shows lower expansions; at one year the expansion is near 0.13 %.  

To evaluate the residual mechanical properties compression tests were performed in standard 

cylinders at different ages from 28 days to 1 year. Test at 28 days were used as a reference value as at 

that age the ASR was not significant (see Figure 6). Similarly, bending tests on notched prisms were 

performed at different ages up to 1 year according to the guidelines of the EN 14651 standard [18]; in 

this case the Limit of Proportionality (fL, that correspond to the first peak stress, representative of the 

matrix strength) and the residual stress fR3 (that corresponds to the nominal stress for a Crack Mouth 

Opening Displacement, CMOD, of 2.5 mm) were selected for the analysis.  

 

   

Figure 7. Stress - CMOD curves in bending.  

 

Figure 7 compares typical Stress – CMOD curves of the three concretes at 28 days and 1 year. 

Each FRC shows a different post peak response, in accordance with the type of fibre incorporated. It 

can be seen than in plain concrete as the damage increases the softening branch of the curves become 

more extended, and they even show some residual load capacity. This behaviour is attributed to the 

possibility of greater branching and meandering of cracks [10]. In concrete M, with synthetic 

macrofibres, after achieving the maximum value the loads significantly decrease and they remain 

0.00

0.10

0.20

0.30

0 100 200 300 400

Ex
pa

ns
io

n 
(%

)

Age (days)

P S M

P 1 year

0 1000 2000 3000

CMOD (microns)

0

2

4

6

8

St
re

ss
 (M

Pa
) P 28 days

S 1 year

0 1000 2000 3000

CMOD (microns)

0

2

4

6

8

St
re

ss
 (M

Pa
)

S 28 days

M 1 year

0 1000 2000 3000

CMOD (microns)

0

2

4

6

8

St
re

ss
 (M

Pa
)

M 28 days



8

1234567890

FIBRE CONCRETE 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 246 (2017) 012007 doi:10.1088/1757-899X/246/1/012007

 

 

 

 

 

 

almost constant until the end of the test. The steel FRC presents a very gradual descending branch, 

with high stress values. In both FRC, although the first peak load clearly decreases at 1 year (severely 

damaged), the post peak loading capacity remains almost constant. It can be mentioned that, an 

extensive crack pattern was seen in 150 mm side prisms of these concretes [17].  

Figure 8 summarizes the effect produced by the cracking developed in each concrete on their 

mechanical response; the results of compressive strength, modulus of elasticity, first-peak strength 

(fL), and the residual strength (fR3) versus measured expansions are plotted. As in damaged plain 

concrete, in FRC the compressive strength and the modulus of elasticity decrease as the deleterious 

processes advances; the presence of internal cracking leads to greater reductions in stiffness than in 

strength [8, 10]. In tension, the strength decreases as the expansion increases but the presence of 

fibres, particularly the steel ones, improves the concrete behaviour. When the post peak strength 

capacity is considered a quite different response was found; the residual stress remains almost 

constant, even for very high expansions. Consequently, FRC incorporating steel of synthetic 

macrofibres conserve their residual loading capacity when severe ASR damaged has taken place. This 

is in accordance with previous studies that showed minor changes in fibre-matrix bond strength in 

mortars affected by ASR [13]. 

 

  

  
Figure 8. Relationship between mechanical properties and linear expansions: a) compressive strength, 

b) modulus of elasticity, c) first-peak strength, d) residual stress for a CMOD of 2.5 mm (fR3). 

 

Several codes estimate concrete stiffness from the results of compressive strength. The modulus of 

elasticity vs. compressive strength relationship proposed by the fib Model Code 2010 [19] is 

represented in Figure 9. The values obtained on concretes P, S and M at 28 days and at 6 and 12 

months are plotted. It can be seen that when there is very few cracking, tests performed at 28 days, the 

measured modulus of elasticity is close to the prediction curve. When concrete is damaged the 

conventional expressions that estimate the modulus of elasticity from the compressive strength are no 

longer valid, the experimental values of stiffness are significantly overestimated. 
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Figure 9. Relationship between compressive strength and modulus of elasticity. 

 

Although the incorporation of fibres does not avoid ASR, some fibres may be useful to reduce in 

some extent the expansion rate and level, as well as the induced crack sizes [20-21]. Regarding the 

mechanical performance, it should be emphasized that, FRC maintain their residual properties without 

significant modifications even when severe matrix damage occurred. Then, the use of FRC is a useful 

tool to extend the structures service life as they conserve their residual mechanical properties and 

crack control capacity even if unexpected significant damage processes take place. 

6.  Concluding remarks 

The residual properties of FRC after exposed to different severe conditions have been analysed in this 

paper, the cases of exposure at High Temperatures and the development of Alkali Silica Reactions 

were considered. The main findings are pointed as follows: 

 No significant differences in the residual behaviour in compression have been found between 

plain and FRC. The compressive strength is less affected than the elastic modulus and the 

failure mechanism is clearly affected by the internal damage. The shape of the stress–strain 

curves reflects the presence of internal fissures, the growth and propagation of matrix cracks 

tends to start earlier, the period of stable crack propagation is less affected than the period of 

unstable crack growth which is widely extended, showing a decrease in the capability of 

controlling crack propagation. 

 As well as in plain concrete, the tensile strength decreases as the damage increases but 

residual post-peak strength capacity due to the presence of steel or macrosynthetic fibres is 

mainly no modified, even for very severe damage.  

 The capacity of FRC to conserve a significant part of its post-peak strength capacity is in 

accordance to pull out tests of single fibres, which indicate that in damaged concrete the 

reductions in fibre-matrix bond strength are significantly lower than the decreases measured 

on the matrix compressive strength.  
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