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Abstract

The objective of this study was to propose a multi-criteria optimization and decision-making tech-
nique to solve food engineering problems. This technique was demonstrated using experimental data
obtained on osmotic dehydration of carrot cubes in a sodium chloride solution. The Aggregating Func-
tions Approach, the Adaptive Random Search Algorithm, and the Penalty Functions Approach were
used in this study to compute the initial set of non-dominated or Pareto-optimal solutions. Multiple
non-linear regression analysis was performed on a set of experimental data in order to obtain particular
multi-objective functions (responses), namely water loss, solute gain, rehydration ratio, three different
colour criteria of rehydrated product, and sensory evaluation (organoleptic quality). Two multi-criteria
decision-making approaches, the Analytic Hierarchy Process (AHP) and the Tabular Method (TM),
were used simultaneously to choose the best alternative among the set of non-dominated solutions. The
multi-criteria optimization and decision-making technique proposed in this study can facilitate the as-
sessment of criteria weights, giving rise to a fairer, more consistent, and adequate final compromised
solution or food process. This technique can be useful to food scientists in research and education, as
well as to engineers involved in the improvement of a variety of food engineering processes.

Keywords: multi-objective optimization, multi-criteria decision-making, osmotic dehydration, adap-
tive random search, aggregating functions, sophisticated software.

1 Introduction

In industrial food processes, several response
variables or particular objectives can describe
quality characteristics of the final product. These
different particular objectives may be conflict-
ing, non-conflicting, or partially conflicting (Seng
& Rangaiah, 2008). Conflicting objectives refer
to situations in which a particular objective can
only be improved by compromising the other ob-

jectives, whereas non-conflicting objectives share
a similar optimal point. Finally, partially con-
flicting objectives refer to cases in which the ob-
jectives are conflicting only within a particular
range of values. It should be noted that there
are various definitions of the term “conflicting” in
the literature dealing with multi-objective opti-
mization and decision-making (Brockhoff & Zit-
zler, 2009). For example, Deb (2001) defines a set
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of objectives as conflicting if no one solution si-
multaneously achieves the optimal value for each
criterion; otherwise the set is non-conflicting.
Deb and Saxena (2006), on the other hand, con-
sider that the pair-wise correlation between ob-
jectives is the indicator of conflict between them.
Tan, Khor, and Lee (2005) presented a refine-
ment of this definition in which a conflict de-
notes the existence of incomparable solutions in
the search space. A similar notion of conflict
has been suggested by Purshouse and Fleming
(2003), in which conflict is defined as a binary re-
lation between single objectives. Multi-objective
optimization (MOO) of a problem, with conflict-
ing or partially conflicting objectives, yields not
just one but many optimal solutions. These solu-
tions are called non-dominated or Pareto-optimal
solutions (Steuer, 1985). Each of the Pareto-
optimal solutions can be considered as a final
“compromise” solution of multi-objective opti-
mization problems because it has no a priori
advantage over other Pareto-optimal solutions.
Therefore, an important task in multi-objective
optimization is to identify a representative sub-
set of the Pareto-optimal solutions, since the ini-
tial set of multi-criteria alternatives can be re-
duced significantly. The following approaches
have been successfully used over the last few
decades to compute Pareto-optimal solutions:

1. aggregating functions approach, that con-
sists of transforming the MOO problems
into a single global optimization problem
such that their optimal solutions for several
chosen parameters yield one Pareto-optimal
point (Marler & Arora, 2004);

2. Parameter Space Investigation (PSI)
method, which is based on the search of
the parallelepiped with points of uniformly
distributed sequences (LPτ sequences)
(Statnikov & Matusov, 1995; Statnikov,
Bordetsky, & Statnikov, 2005);

3. multi-objective evolutionary algorithms,
which are based on the utilization of genetic
algorithms (Siinivas & Deb, 1994; Deb,
2001; Zitzler & Thiele, 1999; Joshua &
David, 2000).

The construction of the set of Pareto-optimal so-
lutions is of primary importance in the MOO.

However, once the Pareto-optimal solutions are
found, a further step is required, known as multi-
criteria decision-making analysis (MCDA); this
involves further considerations in order to choose
a final solution. MCDA is an umbrella term used
to describe the collection of formal approaches
that use an explicit account of multiple criteria
in order to help individuals or groups explore
decisions that matter. Decisions matter when
the level of conflict between criteria, or between
different stakeholders regarding what criteria are
relevant, assumes such proportions that decision-
making based on one’s intuitive “gut-feeling” is
no longer satisfactory (Belton & Stewart, 2002).
Within the multi-criteria analysis theory the two
following mainstreams exist (Treitz, Schollen-
berger, Schrader, Geldermann, & Rentz, 2005;
Vassilev, Genova, & Vassileva, 2005; Belton &
Stewart, 2002):

1. the “classical” approaches, which are based
on the assumption that clear judgements
exist about utility values of the attributes
and their weightings, which have to be for-
malized within the multi-criteria technique.
Examples are the multi attribute utility
(value) theory methods (Keeney & Raiffa,
1993), UTA method (Beuthe & Scannella,
2001), MACBETH method (Costa & Cha-
gas, 2004), direct weighting method (Von
Winterfeldt & Edwards, 1986) and AHP
weighting methods (Saaty, 1990);

2. the outranking methods are based on the as-
sumption that there exists limited compara-
bility among the alternatives. Examples are
the ELECTRE, PROMETHEE and TAC-
TIC methods (Figueira, Greco, & Ehrgott,
2005; Vansnick, 1986).

Multi-objective optimization has been success-
fully implemented in the analysis of the follow-
ing kinds of food processes: thermal steriliza-
tion of packaged food (Erdogdu, 2003; Send́ın,
Alonso, & Banga, 2010; Abakarov, Sushkov, Al-
monacid, & Simpson, 2009); evaporator systems
(Seng & Rangaiah, 2008; Sharma, Rangaiah, &
Cheah, 2012), roasting (Goñi & Salvadori, 2011;
Goñi & Salvadori, 2012), drying (Kiranoudis &
Markatos, 2000), baking (Hadiyanto, Boom, Van
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Straten, Van Boxtel, & Esveld, 2009), minimiza-
tion of the food safety risk (Thakur, Wang, &
Hurburgh, 2010). The most interesting applica-
tions of multi-objective optimization in the food
industry were described in Seng and Rangaiah
(2008). The use of multi-criteria decision-making
analysishas also been suggested in the area of
food science (Bevilacqua, D’Amore, & Polonara,
2004; Xu, Shiying, Xiufang, & Da-Wen, 2001;
Fogliatto & Albin, 2003). In industrial osmotic
dehydration processes, several responses or par-
ticular objective functions describe the quality
characteristics of the final products (Barbosa-
Cánovas & Vega-Mercado, 1996). One of the crit-
ical points in this case is the conflicting nature
of these responses. For example, the ratio of wa-
ter loss to solid gain depends on both the so-
lute concentration and its molecular weight. By
using highly concentrated solutions, a consider-
able product weight loss can be achieved along
with a low solute gain (Eren & Kaymak-Ertekin,
2007). In contrast, at low solute concentrations
in the dehydrating solution, solute gain by the
product is favored, and, likewise, the use of so-
lutes of high molecular weight favours water loss
at the expense of solid gain (Eren & Kaymak-
Ertekin, 2007). In such situations, each response
can have a different optimum point, in other
words, no levels exist that are concurrently op-
timal for all responses. These situations can be
carried out with the multi-objective and decision
making approaches. The most widely used multi-
objective optimization approach for the opti-
mization of osmotic dehydration processes is the
Response Surface Methodology coupled with the
Desirability Functions Approach (DFA)wherein
equal weights or importance are defined for all re-
sponses (Singh, Paramjit, Nanda, & Bera, 2008;
Erdogdu, F, 2009; Noshad, Mohebbi, Shahidi,
& Mortazavi, 2012). DFA is a nonlinear scalar-
ization technique that converts a multi-objective
problem into a maximization problem with a sin-
gle objective which is the geometrical mean of
the individual desirability values of different ob-
jectives (Derringer & Suich, 1980). In order to
use the DFA, a decision maker should assess not
only the bounds of a response and the desirability
function shape (e.g. linear, convex, or concave),
but also the relative weights or importance of
each response. Thus, knowing the true meaning

and validity of these weights prior to solving the
multiple response optimization problem is crucial
in order to avoid the improper use of the DFA.
In other words, the DFA emphasizes the need to
introduce relative importance weights, but does
so without any discussion of how such value judg-
ments should be carried out. For the case when
all relative weights are equal, the implementa-
tion of the DFA cannot always guarantee a con-
sistent and adequate final solution. Thus, addi-
tional methods must be simultaneously used with
the DFA when assessing these complex tasks. In
order to avoid this disadvantage, the desirabil-
ity functions have been coupled with different
expert identified constraints, including maximiz-
ing moisture loss, weight reduction, and/or min-
imizing solid gain (Azarpazhooh & Ramaswamy,
2012). Significant developments in the process of
osmotic dehydration reveal the importance of the
use of this effective preprocessing technique as a
unit operation in the food processing industry
(Azarpazhooh & Ramaswamy, 2012). Neverthe-
less, there is still a problem with the optimiza-
tion of this multi-objective process in economic
and final product quality terms. Therefore, in
this work, which is an extension of that originally
presented by Abakarov (2011), we propose an al-
ternative technique to solve the multi-criteria op-
timization and decision-making problems arising
in the field of food engineering. The proposed
technique has been demonstrated using experi-
mental data collected on osmotic dehydration of
carrot cubes in a sodium chloride solution.

2 Materials and Methods

2.1 Pareto-optimal solutions

A general multi-objective optimization problem
can be formulated as follows (Abakarov et al.,
2009):

Φ(x) = hf1(x), f2(x), . . . , fl(x)i →min
x∈X (1)

where: X ⊂ Rn is a non-empty set of fea-
sible decisions (a proper subset of Rn), x =
hx1, x2, ..., xni ∈ X is a real n-vector decision
variable, and fi = Rn → R are particular multi-
objective functions. We assume that all of the
constraints are included in the particular objec-
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tive functions (1) by utilizing the penalty func-
tions. If no vector x∗ = hx∗

1, x
∗
2, ..., x

∗
ni ∈ X ex-

ists such that x∗ =argmin
x∈X fi(x),∀i ∈ 1 : l, that is

if no vector exists that is optimal for all objec-
tives concurrently, then there is no unique opti-
mal solution, and a concept of acceptable solu-
tions is needed. The subset WP (X) = {xp∈ X:
such that there does not exist an x ∈ X with
fi(x) ≤ fi(x

p),∀i ∈ 1 : l} is called the set
of Pareto-optimal solutions of the problem (1).
Pareto-optimal solutions are the only acceptable
solutions of a multi-objective optimization prob-
lem, since any other solution can be improved.
Pareto-optimal solutions are also known as non-
dominated or efficient solutions. The space in
E1 formed by the points of the set P (X) = {x |
x ∈ WP (X)} is called a Pareto optimal fron-
tier or front. Figure 1 provides a visualization
of the definitions made for the two-dimensional
MOO problem (1) and two particular objectives
(Abakarov et al., 2009). The utopia vector Φ∗ =
hf1(x∗), f2(x

∗), . . . , fl(x
∗)i is the vector contain-

ing the individual global minima of the particular
objectives.

Figure 1: Visualization of the definitions made
for the two-dimensional MOO problem (1) and
two particular objectives (Abakarov et al., 2009).

2.2 Approach to compute
Pareto-optimal solutions

The computation of Pareto-optimal solutions is
based on optimizing the following aggregating
functions by using the adaptive random search
algorithm (Abakarov et al., 2009). Weighted min-
max aggregating function (Steuer, 1985; Belton
& Stewart, 2002)

Φ(x) = minx∈Xmaxi∈1:lλifi(x) (2)

lX
i=1

λi = 1λi ≥ 0

Linear weighted sum aggregating function
(Steuer, 1985; Belton & Stewart, 2002)

Φ(x) =

lX
i=1

λifi(x) →min
x∈X (3)

lX
i=1

λi = 1λi ≥ 0

where λi is the weight used for the i-th particular
objective function fi(x). The penalty aggregat-
ing function (Abakarov et al., 2009)

Φ(x) = fk(x
s) +

lX
j=1

Pj(x
s) →min

x∈X (4)

where k, k ∈ 1 : l is a randomly chosen number
at the first step of an adaptive random search
of a particular objective function, fk(x

s) is the
value of the k-th particular objective function at
step s of the adaptive random search algorithm,
and Pj(x

s) is the penalty function of the j-th
particular objective function computed at step
of the adaptive random search algorithm. The
following formula is used to compute the penal-
ties Pj(x

s), j ∈ 1 : l:

Pj(x
s) = A(| fj(xs)− fj(x

s−1) |
+fj(x

s)− fj(x
s−1))

(5)

where A is a sufficiently large number.

2.3 Penalty Functions Approach

A Penalty Functions Approach can be coupled
with the Aggregating Functions Approach in or-
der to compute the Pareto-optimal solutions,
which can satisfy some additional constraints re-
lated to the decision maker’s preferences. For the
following constraint,

aj ≤ fj(x) ≤ bj (6)

where aj and bj are functions dependent on vec-
tor x and fj(x) is a particular objective func-
tion, or constant value. In order to satisfy the
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constraint (6), the following penalty function is
proposed (Abakarov & Nuñez, 2012):

Θj = A(| aj−fj(x) | + | bj−fj(x) | −(bj−aj)) (7)

Where A is a sufficiently large number. Thus,
the following optimization problem is solved in
this case:

ΦΘ(x) = Φ(x) + Θj (8)

where Φ(x) is any of the above aggregating func-
tions: equations (2), (3) or (4). For a candidate
solution with no limit violation, the penalty func-
tion (7) becomes zero and the merit function (8)
is equal to the objective function value. On the
other hand, if there is any violation in the lower
or upper limit of the decision variables, a cor-
responding penalty value is added to the objec-
tive function based on the amount of the viola-
tion. Since this penalty value is proportional to
the distance to the feasible domain, the adaptive
random search algorithm can find multi-objective
solutions that satisfy all the given constraints.

2.4 Desirability Functions
Approach

In a multi-response optimization problem, a re-
sponse Yk(x), k ∈ 1 : K, is a function Yk :
Rn → R of vector of independent variables
x = (x1, x2, . . . , xn) (Del Castillo, 2007). An in-
dividual desirability function dk(Yk(x)) scales a
response into the interval [0,1], i.e., dk : R →
[0, 1],K ∈ 1 : K, which means that the function
d becomes 0 for completely undesirable values of
response, and it becomes 1 for totally desirable
or ideal values of the response. The individual
desirabilities are then combined using the geo-
metric mean, which gives the overall desirability
or desirability index (DI) value:

D =

 
kY

k=1

dk(Yk(x))

! 1
k

(9)

Depending on whether a particular response
Yk(x)(is to be maximized, minimized, or assigned
a target value, different desirability functions
dk(Yk(x)) can be used (Del Castillo, 2007). A
useful class of desirability functions was proposed
by Derringer and Suich (1980). When the im-
portance of individual desirability functions may

differ in computing the overall desirability func-
tions, a weighting strategy is possible (Derringer,
1994):

D =

 
kY

k=1

dk(Yk(x)
wk)

! 1
wk

(10)

where wk −
kP

k=1

wk. These weights can be speci-

fied by a decision maker next to the shapes of the
curves of desirability functions, taking into ac-
count relative importance of the product, process
and system responses with respect to each other
(Derringer & Suich, 1980; Derringer, 1994). Usu-
ally these weights are not easy to determine and
on the other hand there is no general guideline to
do it. The following theorem gives a relationship
between the DFA and the aggregating function
approach (Mehnen & Trautmann, 2006).

Theorem 1. Let a process characterized by qual-
ity criteria Yk(x), k ∈ 1 : K, and influence fac-
tors xi, i ∈ 1 : n , be given. Optimal influence
factor levels xopt = (xopt

1 , xopt
2 , ..., xopt

n ) are as-
sumed to have been determined based on desir-
ability functions dk(Yk(x)) and the computed by
equation (9). Then it holds that xopt is Pareto-
optimal.

The equation (10) used for computing a
weighted overall desirability functions is known
in MOO theory as a particular case of the
weighted product aggregation function used in
(Marler & Arora, 2004). Therefore, the DFA can
be considered as a particular case of used in this
study aggregating functions approach.

2.5 Adaptive Random Search
Algorithm

The adaptive random search method belongs to
a specific class of global stochastic optimization
algorithms (Zhigljavsky & Zilinskas, 2008). This
class of algorithms is based on generating the de-
cision variables from a given probability distribu-
tion, and the term “adaptive” consists of modifi-
cations to the probability distribution used in the
searching process, which, throughout the whole
search process, locates global solution. A dis-
crete analogue of the normal distribution — the
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pedestal probability distribution — is included in
the adaptive random search algorithm (Abakarov
& Nuñez, 2012). During the search process, a
random search generates random vector values
x0, x1, ..., xs; calculates the optimization prob-
lem Φ(x) → minx∈X ; accumulates information
about the solved problem; and transforms the
pedestal frequency distribution according to the
computations performed. Transformations con-
sist of reducing the deviation of the pedestal dis-
tribution around the mean (or the center point
x0
i , i ∈ 1 : n), which is the current best solution

x0 ∈ X,Φ(x0) < Φ(xj),∀j ∈ 1 : s.

2.6 Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) proposed
by Saaty (1990) is a powerful and flexible multi-
criteria decision-making approach for dealing
with complex problems where both qualitative
and quantitative aspects need to be considered.
The AHP helps analysts to organize the criti-
cal aspects of a problem into a hierarchy rather
like a family tree. By reducing complex deci-
sions to a series of simple comparisons and rank-
ings, then synthesizing the results, the AHP not
only helps analysts to arrive at the best deci-
sion, but also provides a clear rationale for the
choices that are made. AHP simplifies complex
problems by arranging the decision factors in a
hierarchical structure (Bevilacqua et al., 2004).
The AHP method is implemented through the
following steps

1. Define decision criteria in the form of a hier-
archy of objectives. The hierarchy is struc-
tured on different levels: from the top (i.e.
the overall objective), through intermedi-
ate levels (the criteria and sub-criteria on
which subsequent levels depend), to the low-
est level (i.e. the alternatives);

2. Construct a set of square pair-wise compari-
son matrices for each of the lower levels with
one matrix for each element in the level im-
mediately above. For this purpose, the AHP
uses simple pair-wise comparisons to deter-
mine weights and ratings so that the ana-
lyst can concentrate on just two factors at a

time. Verbal judgements are then translated
into a score using discrete 9-point scales;

3. The hierarchy synthesis function is used to
weight the eigenvectors by the weights of
the criteria and the sum is taken over all
weighted eigenvector entries corresponding
to those in the next lower level of the hier-
archy.

One of the strengths of the AHP approach is that
it allows decision-makers to specify their prefer-
ences using the verbal scale shown in Table 1
(Grandzol, 2005).

2.7 Tabular Method

The Tabular Method (TM) (Sushkov, 1984) is a
flexible multi-criteria decision-making approach
that can be effectively used for quickly selecting
the best alternatives from a range of initial alter-
natives. The car selection problem will be con-
sidered here as an example in order to concretize
the Tabular Method’s basic idea. TM consists of
the following steps:

1. A table is created wherein the column num-
ber k is related to the decision criterion
k, k ∈ 1 : K, and the row number m is
related to the alternative involved in the
decision-making process, m,m ∈ 1 : M .
Let δ[m, k] be a value in the table at row m
and column k. Table 2 contains initial data
prepared for the osmotic dehydration con-
ditions selection problem. The criteria used
to select the preferred conditions are the fol-
lowing: water loss(%), solute gain (%) and
weight reduction (%).

2. For each column (criterion) of the table, the
alternatives are arranged in order from the
most to the least desirable. In other words, if
responses are to be maximized, the alterna-
tives are arranged in decreasing order, but if
the responses are to be minimized, the alter-
natives are arranged in increasing order. Let
δ[σkm, k] be a value in the table at row m
and column k after the preference ordering
of the alternatives, where σk is a permuta-
tion of the set {1, 2, . . . ,M}. Table 3 shows
the initial data arranged in order from the
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Table 1: The fundamental scale for pair-wise comparisons used in the AHP approach.

Intensity of importance Definition
1 Equal importance
3 Moderate importance
5 Strong importance
7 Very strong importance
9 Extreme importance

2, 4, 6, 8 For compromises between the above

Table 2: Initial table for the osmotic dehydration conditions selection problem*.

Criteria
N Water loss (%) Solute gain (%) Weight reduction (%)

Process 1 28 5 22
Process 2 19 2 14
Process 3 32 15 17
Process 4 18 1.5 19
Process 5 21 4 10
Process 6 25 6 20

* the criteria used to select the preferred conditions (process) are the following: water loss (%), solute gain (%) and
weight reduction (%)

most to the least desirable. Since the low-
est solute gain will be the best choice, the
values of the second column are arranged
in increasing order. The other two columns
are arranged in decreasing order, since the
higher values of the water loss and weight
reduction will be the most desirable ones.

3. Each non-Pareto-optimal alternative is
deleted from the table. The alternative (pro-
cess) number 6 with the criteria values: wa-
ter loss = 25%, solute gain = 4%, weight
reduction = 20%, not a Pareto-optimal one,
because it is worse than alternative num-
ber 1 on all criteria simultaneously; thus, we
delete the data of process conditions number
6 from the table.

4. Constraints are imposed on each of the crite-
ria (columns), namely the worst-case values
that are acceptable for each of the criteria.
Let γk, k ∈ 1 : K, be a worst-case value,
acceptable for criterion k, and thus all val-
ues of the table that satisfy the constraint

δ[σkm, k] ≥ γk, where ≥ indicates prefer-
ence, will be acceptable. Let the worst-case
value for the criterion water loss be equal to
21%, which means that the decision-maker
or food engineer prefers to have a process
with the water loss criterion value higher
than 21%. Also, the food engineer prefers a
process with the solute gain criterion value
below 5%, and with the weight reduction cri-
terion value higher than 19%. Table 4 shows
the results after step number 4. The cells
marked in yellow are acceptable for each of
the criteria whereas those marked in red are
not acceptable.

5. The table is then examined for non-empty
sets of solutions (alternatives) that satisfy
the imposed constraints. Namely, if there
exists such a m,m ∈ 1 : M , that for all
k ∈ 1 : K, δ[σkm, k] ≥ γk, then the alterna-
tive m is a solution of the problem. After
examination of Table 4 we can see that the
alternative number 1 with the criteria val-
ues water loss = 28%, solute gain = 5% and
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weight reduction = 22% is the best choice
for the food engineer or decision-maker. It
is preferable that after step 5 more than one
solution is found that satisfies the imposed
constraints. In accordance with the number
of objects that an average human can hold
in working memory (Miller, 1956), we rec-
ommend obtaining not more than 7±2 final
alternatives with the Tabular Method. If af-
ter step 5 there is no solution that satisfies
all of the constraints, the constraints should
then be reduced by the decision-maker.

Table 3: Alternatives of the osmotic dehydration
conditions selection problem arranged in order
from the most to the least desirable*.

Criteria
Water Solute Weight
loss (%) gain (%) reduction (%)

32 1.5 22
28 2 20
25 4 19
21 5 17
19 6 14
18 15 10

* since the lowest solute gain will be the best choice, the
values of the second column are arranged in increasing
order; the other two columns are arranged in decreasing

order, since the higher values of the water loss and
weight reduction will be the most desirable ones.

2.8 Decision making approach

The decision-making approach proposed in this
study is based on the consecutive utilization
of the TM and AHP methods for a given set
of Pareto-optimal solutions. It is well known
that a major drawback of AHP is that high-
dimensional decision-making problems produce
a large number of AHP pair-wise comparisons
which are needed to obtain the final solution
(Carmone, Kara, & Zanakis, 1997). In addition,
it is well established that even under the best
circumstances, the respondent in a very long in-
terview is likely to suffer from information over-
load; thus, a large number of pair-wise compar-
isons can cause information overload and con-

Table 4: Results after step 4 of the Tabular
Method*.

Criteria
Water Solute Weight
loss (%) gain (%) reduction (%)

32 1.5 22
28 2 19
21 4 17
19 5 14
18 15 10

*the cells marked in yellow are acceptable for each of the
criteria whereas those marked in red are not acceptable
(the worst-case values for the criteria: water loss, solute
gain and weight reduction are equal to 21%, 5% and

19%, respectively).

fused decision-making (Miller, 1956). However,
when there are only a few levels and sublevels,
the AHP becomes a powerful tool that can be
successfully applied in a straightforward manner
to derive the weights or relative preferences of
the alternatives. Therefore, in this study, the
TM method is first used as the decision-making
approach in order to reduce the initial number of
the Pareto-optimal solutions or alternatives. The
TM method is a relatively easy and fast decision-
making approach. Once this is carried out, the
AHP method is then used to choose the best
alternative among the reduced initial set of al-
ternatives. Thus, the whole multi-objective and
decision-making approach proposed in this study
consists of the following phases:

1. A multiple non-linear regression analysis of
the experimental data is performed in or-
der to obtain the mathematical equations
for each of the responses or particular multi-
objective functions. The following second
order polynomial equation can be used to
fit the experimental data of each response:

Yk = βk
0+

nX
i=1

βk
i xi+

nX
i=1

βk
iix

2
i+

n−1X
i=1

nX
j=i+1

βk
ijxixj

(11)

where Yk, k ∈ 1 : K is the response variable
or particular objective function, βk

0 , β
k
i , β

k
ii

and βk
ij are the regression coefficients, and
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xi, i ∈ 1 : n are the coded or un-coded inde-
pendent variables.

2. A set of Pareto-optimal solutions is com-
puted for each particular multi-objective
function.

3. A decision-making approach based on the
AHP and TM methods is performed on the
previously obtained set of multi-objective al-
ternatives.

2.9 Additional analysis underlying
the need for a multi-objective
optimization and decision
making technique

In order to demonstrate that a multi-objective
optimization and decision-making technique was
necessary to address the problem described
above, the following computations were per-
formed in this study. We create a table in which
columns and rows are related to the decision cri-
teria or responses. Let δ[m, k] be a value at row
m and column k in this table, m, k ∈ 1 : K,
computed as follows:

δ[m, k] =
| yoptm − ym(x∗

k) |
(ymax

m − ymin
m )

(12)

where ymax
m and ymin

m are the minimum and max-
imum values of the response ym, respectively,
yoptm is the optimal value of the response ym,
ym(x∗

k) is the value of the response ym evaluated
at point x∗

k, where x∗
k is the optimal solution of

the response yk. In other words, the value δ[m, k]
represents the relative loss of response ym, when
the solution vector x∗

k of the response yk is used
as a solution vector of the response ym.

2.10 Decision-making software
packages

The following two graphic user interface (GUI)
software packages were used in this study for
decision-making computations Abakarov (2011)
1:

1“MPRIORITY” and “T-CHOICE”
software packages are freely available at
http://tomakechoice/dm/index.html

❼ “MPRIORITY” a software package based
on AHP methodology, and

❼ “T-CHOICE” a software package based on
the Tabular method.

C++ Builder 6.0 was used to design both soft-
ware packages. These packages assist the user in
all phases of the decision-making problem solv-
ing process, from model formulation to final re-
port output. The Pareto-optimal solution com-
putations were performed on a notebook with an
Intel, Triple-Core, 2.40 GHz CPU with 3.0 GB
of RAM. The necessary numerical computation
programs were prepared with the Microsoft Vi-
sual C++ Express 2010.

3 Results and Discussion

3.1 Multiple non-linear regression
analysis and ANOVA

Table 5 contains experimental data, for an os-
motic dehydration process of carrot cubes in
a sodium chloride solution, obtained through
the Face-Centered Central Composite Design by
Singh et al. (2008). The independent process
variables were: osmotic solution concentration,
process duration and osmotic solution temper-
ature. The low and high levels for these inde-
pendent variables were taken as: 5-15% sodium
chloride (w/v), 30-50➸C and 90-150 minutes for
osmotic solution concentration, temperature and
process time, respectively (Singh et al., 2008).
The responses of osmotic dehydration were: wa-
ter loss (WL), solute gain (SG), rehydration ratio
(RR), three different criteria of colour of rehy-
drated product, namely L-value, a-value, and b-
value, and sensory evaluation (organoleptic qual-
ity). The carrot to solution ratio was kept as 1:5
(Singh et al., 2008). In Singh et al. (2008) for each
experiment, known weights of carrot cubes of di-
mension 1 cm3(100-120 g) were put in stainless
steel containers containing calculated volumes of
osmotic solutions of different concentrations pre-
set at the desired temperature in a shaking hot
water bath. The temperature was maintained
during osmosis. Samples were agitated to reduce
mass transfer resistance at the surface of the car-
rots. During experimentation, it was assumed
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Table 5: Experimental data for an osmotic dehydration process: carrot cubes in a sodium chloride
solution as obtained through the Face-Centred Central Composite Design by Singh et al. (2008).

Coded levels of variables Un-coded levels variables Responses or particular objective functions
Conc. Time Temp. Conc. Time Temp. Water Solute Reh. L a b Sensory

loss gain Ratio score
0 0 0 10 120 40 19.3 3.8 3.0 36.5 25.7 19.9 6.6
0 0 -1 10 120 30 18.3 3.4 3.2 35.7 27.1 18.0 7.5
1 -1 -1 15 90 30 19.1 4.2 2.7 36.4 25.6 17.2 6.5
1 1 -1 15 150 30 21.9 6.3 2.6 36.6 26.0 17.5 7.4
-1 -1 -1 5 90 30 13.9 2.0 4.0 36.5 26.7 19.5 4.1
-1 1 1 5 150 50 18.4 0.3 3.4 39.9 26.9 20.5 5.0
0 0 0 10 120 40 19.4 3.8 3.0 36.5 25.2 19.9 6.7
0 0 0 10 120 40 19.3 3.9 3.0 36.5 25.2 20.0 6.4
0 0 0 10 120 40 19.3 3.8 3.0 36.5 25.2 20.0 6.5
0 -1 0 10 90 40 18.0 3.4 3.1 37.7 24.1 20.0 5.9
-1 1 -1 5 150 30 17.0 1.0 3.7 38.6 27.8 18.5 5.2
0 0 0 10 120 40 19.3 3.8 3.0 36.5 25.2 19.9 6.5
-1 0 0 5 120 40 16.1 1.0 3.6 37.5 26.8 21.0 4.5
0 0 0 10 120 40 19.4 3.9 3.0 36.5 25.2 19.9 6.4
1 1 1 15 150 50 23.4 9.5 2.4 37.4 27.0 19.5 6.0
1 0 0 15 120 40 21.1 6.7 2.5 36.2 25.2 19.2 6.3
-1 -1 1 5 90 50 15.1 0.6 3.5 40.6 26.2 20.8 4.2
1 -1 1 15 90 50 20.3 6.7 2.4 40.0 24.7 18.5 6.1
0 0 1 10 120 50 19.6 4.3 2.9 38.2 26.3 19.5 6.4
0 1 0 10 150 40 21.1 4.3 3.0 37.5 24.6 20.1 6.8

that the amount of solid leaching out of carrots
during osmosis was negligible. At the specified
times the carrot cubes were removed from the os-
motic solutions and rinsed with water to remove
surplus solvent adhering to the surfaces. These
osmotically dehydrated cubes were then spread
on the absorbent paper to remove the free water
present on the surface. A proportion of the pre-
treated carrots (15-20g) was used for determina-
tion of dry matter by oven drying. The remaining
part of each product sample was dried to a final
moisture of 5% (wet basis) using a hot air drier
pre-set at 65➸C air temperature and 1.5 m/s air
velocity. The dried samples were cooled in a des-
iccator containing silica gel for one hr, packed
in HDPE (high density polyethylene) bags and
kept at ambient temperature for quality analy-
sis. The experiments were conducted randomly
to minimize the effects of unexplained variability
in the observed responses as a result of exter-
nal factors. The colour of rehydrated carrot was
measured in terms of ‘L’, ‘a’ and ‘b’ values af-
ter grinding the samples. Variation in the values
of ‘L’, ‘a’, and ‘b’ values were observed due to

different osmotic pretreatments and also due to
the different proportion of xylem (central core
of carrot) and phloem (red portion) present in
samples. To reduce this variation, observations
were recorded in triplicate after proper mixing of
ground samples. The colour properties of the re-
hydrated product were measured using a Hunter-
Lab MiniScan XE Plus Colourimeter (U.S.A.).
The ground material of rehydrated carrot cubes
was completely filled into a plane Petri dish. In
Hunter scale “L” varies from 0 (darkness) to 100
(whiteness). The chromatic portion of the solid
is defined by: +a (red); -a (green); +b (yellow);
-b(blue). Organoleptic quality of dried carrot
cubes was determined with the help of a ten-
member consumer panel using a 9-point hedo-
nic scale following standard procedures (Singh
et al., 2008). The aspects considered for rehy-
drated carrots were colour, appearance, taste,
flavour, and overall acceptability. The average
scores of all 10 panelists were computed for dif-
ferent characteristics (Singh et al., 2008). Mul-
tiple non-linear regression analysis and ANOVA
were conducted to fit a second-order polynomial
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model (11) to the experimental data presented
in Table 5, and to determine significant effects of
process variables on each response using the Mat-
Lab Statistic Toolbox (MatLab, version 7.10.0,
R2010a). Thus, regression coefficients of the pro-
posed models and statistical significance of all
main effects for each response were computed,
and non significant effects (p > 0.05) were re-
moved from the model. ANOVA showed that
the lack of fit was not significant for all response
surface models at the 95% confidence level. Ta-
ble 6 contains the coefficients of the regression
model (11) computed for all responses. These
results agree well with those originally reported
by Singh et al. (2008).

3.2 Additional analysis underlying
the need for multi-objective
optimization and decision
making technique

In Singh et al. (2008) the optimization of the
osmotic dehydration process was aimed at find-
ing the levels of independent variables that will
give maximum possible water loss, rehydration
ratio, “L-value”, “a-value”, sensory score, and
lowest solute gain and “b-value” of colour. Table
7 presents information about the optimal levels
and values of each response that were found by
the adaptive random search algorithm. Table 7
shows that each response has a different opti-
mum point, in other words, no combination of
factors/levels exist, that is concurrently optimal
for all responses. In order to show the difference
between the optimal solutions in Table 7, the
additional computations based on equation (12)
were performed (see Table 8). Table 8 shows that
any vector x∗

k = arg opt
x∈X

yk(x), k ∈ 1 : K, taken

as the solution vector for all responses, gives a
significant loss for each of the responses. In ad-
dition, the average loss for all responses does not
fall below 50%.
Table 9 shows the pair-wise correlation of the re-
sponses. It can be observed from Table 9 that
no strongly correlated responses exist, thus, all
responses are in conflict with each other. The ex-
perimental data presented in Table 5 above and
the subsequent computations show that a multi-

objective optimization and decision-making tech-
nique is needed for the optimization of osmotic
dehydration processes.

3.3 Computation of
Pareto-optimal solutions in
the final product

The distributions of 1000 Pareto-optimal fron-
tier points over the codomains of each response
were computed using the aggregating functions
(2), (3), and (4), respectively. The results sug-
gest that for problem solving, the penalty ag-
gregating function (4) gives an advantage over
the linear weighted sum (3) and the weighted
min–max (2) functions. The penalty aggregating
function (4) demonstrates an ability to generate
well-distributed Pareto-optimal frontier points
over the Pareto-optimal frontier, which is im-
portant for identifying a representative subset
of non-dominated frontier solutions. As an ex-
ample, we show in Figures 2a-2c the distribu-
tions of 1000 Pareto-optimal frontier points com-
puted for the WL response by the aggregating
functions (2), (3) and (4), respectively. In this
study, in order to obtain a representative subset
of Pareto-optimal solutions, 100 Pareto-optimal
points were computed by each of the aggregating
functions (2), (3), and (4). Thus, the obtained
subset of 300 Pareto-optimal solutions was used
to perform the decision-making approach based
on the AHP and TM methods.

3.4 Decision making analysis of
Pareto-optimal alternatives

Firstly, the TM method was used in order to re-
duce the initial number of the Pareto-optimal so-
lutions. These computations were performed by
the “T-CHOICE” software package. The Pareto-
optimal frontier point, as published by Singh et
al. (2008) through the DFA, was used in this
study in order to impose the required constraints
on each response. In general, however, this is
based on the values and preferences of the de-
cision maker(s). The frontier point, denoted as
point A, included the following conditions: 19.0
g water for every 100 g of fresh carrot (WL),
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Table 6: Coefficients of the prediction regression model (11) for all responses.

Coefficients
Source and Term Water loss Solute gain RR L-value a-value b-value Sensory Score

Constant 295.583 110.924 67.722 416.985 398.991 6.895 -2.532
Conc 108.705 -0.8272 -0.1769 0.1067 -0.8802 -0.5254 13.896
Time -0.03349 -0.0574 -0.0113 -0.1550 0.2371 -0.07532 0.0974
Temp 0.29841 -0.2188 -0.058 0.1033 -12.236 0.97015 -0.2389

Conc*Conc -0.02601 -0.0003 0.0008 0.0119 0.0273 0.0056 -0.04618
Time*Time 0.00034 -0.00001 0.00001 0.0011 -0.0011 0.00013 -0.00023
Temp*Temp -0.00326 0.0001 0.00027 0.004 0.0137 -0.01195 0.00395
Conc*Time -0.00054 0.0053 0.00024 -0.0031 0.0008 0.00209 -0.00092
Conc*Temp 0.00009 0.0194 0.00059 -0.0025 0.0031 -0.00012 -0.00425
Time*Temp 0.00023 0.0005 0.00011 0.0023 0.0007 0.00056 -0.00054

Table 7: Optimal levels and values of each response.

Factor Response
WL SG RR L-value a-value b-value Sensory score

Concentration 15 5 5 5 5 15 12.17
Time 150 150 90 90 123.33 101.515 150

Temperature 50 50 30 50 30 30 30
Objective value Max: 23.4 Min: 0.3 Max: 4.0 Max: 40.3 Max: 27.9 Min: 17.2 Max: 7.7

Table 8: Relative losses of each response (%).

Response
Response Water Solute Rehydration L- a- b- Sensory

loss gain ratio value value value score
Water loss 0.00 51.38 99.85 87.44 84.62 41.14 24.14
Solute gain 99.99 0.00 18.19 3.35 12.40 47.16 50.04

Rehydration ratio 98.10 37.69 0.00 29.36 9.30 78.30 65.96
L-value 79.20 31.05 85.76 0.00 88.93 99.99 89.14
a-value 46.62 33.80 28.51 49.48 0.00 50.03 61.34
b-value 50.08 75.93 53.73 83.97 37.70 0.00 9.56

Sensory score 44.38 73.10 92.51 88.89 69.71 22.25 0.00
Average loss 69.73 50.49 63.09 57.08 50.44 56.48 50.03
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Table 9: The correlation matrix from the data presented in Table 2.

Response
Response WL SG RR L- a- b- Sensory

value value value score
Water loss 1.00 0.85 -0.91 -0.24 -0.31 -0.31 0.74
Solute gain 1.00 -0.89 -0.30 -0.31 -0.41 0.58

Rehydration ratio 1.00 0.14 0.46 0.38 -0.67
L-value 1.00 0.16 0.28 -0.56
a-value 1.00 -0.13 -0.39
b-value 1.00 -0.50

Sensory score 1.00

2.5 g solute for every 100 g of fresh carrot (SG),
3.4 (RR), L value: 37.8, a value: 25.6, b value:
18.1, and sensory score: 6.9. Figure 3 shows
the main window of the “T-CHOICE” software
with a table that demonstrates the results after
applying the TM method to 100 Pareto-optimal
frontier points, as computed using the weighted
min–max function (2). The columns of this table,
from left to right, are Water Loss (WL), Solute
Gain (SG), Rehydration Ratio (RR), L-value, a-
value, b-value, and Sensory Score, respectively.
Each cell in the table corresponds to alternative
m (line) and criterion k (column). The values
presented are the (estimated) response, and an
index (in brackets) that indicates the number
of alternative solutions that satisfy the imposed
constraints if the cell at row m will be chosen as a
worst-case value (constraint) for the criterion k.
The alternatives of each column in Figure 3 are
arranged in order from most to least desirable.
The cells marked in yellow are acceptable for each
of the criteria whereas those marked red are not
acceptable. For example, the worst-case value
for the water loss response (first column in Fig-
ure 3) is equal to 17.3%; the value of water loss
for point A is 19.0%, but as seen from the table,
this value cannot be used as a worst-case value of
the water loss response, since there are no solu-
tions that satisfy the imposed constraint. Thus,
the value 17.3% was chosen as the constraint (i.e.,
WL ≥ 17.3%), which guarantees at least three fi-
nal Pareto-optimal solutions. For the solute gain
response, a worst-case value of 1.8% is chosen,
which is smaller than that for point A. There

are three solutions that satisfy the imposed con-
straint SG ≤ 1.8% (Figure 3). Using the same
approach, the following constraints were imposed
for the other responses: RR ≥ 3.5, L-value ≥
36.9, a-value ≥ 26.4, b-value ≤ 18.8, and Sensory
Score ≥ 5.7. Figure 3 shows that there are three
solutions that satisfy the imposed constraints,
and are shown in Table 10 (numbers 1–3). Thus,
the point A solution was improved only for the
following responses: solute gain, rehydration ra-
tio, and a-value; this means that point A is non-
dominated. Figure 4 shows the results after ap-
plying the TM method to 100 Pareto-optimal
frontier points, as computed using the weighted
sum aggregating function (3). The columns of
this table are the same as those in Figure 3,and
the alternatives of each column are also arranged
in order from most to least desirable. The follow-
ing constraints were imposed for all responses:
WL ≥ 19.2%, SG ≤ 3.0%,RR ≥ 3.2, L-value ≥
37.6, a-value ≥ 26.1, b-value ≤ 20.2, and Sen-
sory Score ≥ 5.6. Figure 4 shows that there are
three solutions that satisfy these imposed con-
straints, and are shown in Table 10 (numbers
4–6).The point A solution was improved for the
following responses: water loss, solute gain, L-
value, and a-value. Figure 5 shows the results
after applying the TM method to 100 Pareto-
optimal frontier points, computed by using the
penalty aggregating function (4). The columns
and their alternatives are arranged as they are in
Figures 3 and 4. The following constraints were
imposed for all responses: WL ≥ 19.3%, SG ≤
3.7%, RR≥ 3.0, L-value ≥ 36.9, a-value ≥ 25.2,
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Figure 2: Distributions of 1000 Pareto-optimal
frontier points over the codomains of the WL re-
sponse using the aggregating functions (2), (3)
and (4), respectively.

Figure 3: Results after applying the TM method
to100 Pareto-optimal frontier points, as com-
puted using the weighted min–max function (2);
the cells marked in yellow are acceptable for each
of the criteria whereas those marked in red are
not acceptable.

b-value ≤ 20.3, and Sensory Score ≥ 5.9. Figure
5 shows that there are three solutions that sat-
isfy the imposed constraints, which are shown in
Table 10 (numbers 7–9). The point A solution
was improved for the following responses: water
loss and a-value.Thus, the resulting subset of 300
Pareto-optimal alternatives was reduced to only
nine non-dominated alternatives as presented in
Table 10. The final stage of the decision-making
process consisted of utilizing the AHP approach
to choose the preferred alternative among the
nine choices obtained. Figure 6 shows the main
window of the “MPRIORITY” software with a
hierarchy of decisions corresponding to the prob-
lem of choosing the most preferred osmotic de-
hydration process; the main goal is set at the
top of the hierarchy, while the decision alterna-
tives (i.e., those presented in Table 10) are at
the bottom. The relevant attributes of the deci-
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Figure 4: Results after applying the TM method
to100 Pareto-optimal frontier points, as com-
puted using the sum aggregating function (3);
the cells marked in yellow are acceptable for each
of the criteria whereas those marked in red are
not acceptable.

sion problem (i.e. water loss, solute gain, rehy-
dration ratio, L-value, a-value, b-value, and sen-
sory score) make up the middle of the hierarchy.
A set of pair-wise comparison matrices is devel-
oped for every level of the hierarchy as shown
in Figure 6. Table 11 shows the results of the
pair-wise comparisons for the main criteria with
respect to the main goal. We based our com-
parisons on the recommendations given by Singh
et al. (2008). The main criteria are arranged
in the following order: sensory score (impor-
tance: 0.3284), water loss(importance: 0.199),
a-value (importance: 0.1878), L-value (impor-
tance: 0.0995), rehydration ratio (importance:
0.085), solute gain(importance:0.0554), and b-
value (importance: 0.0447). Table 12 shows
the weights computed for each alternative with
respect to each main criterion and final AHP
priority-weights vector. The alternative 3 with

Figure 5: Results after applying the TM method
to100 Pareto-optimal frontier points, as com-
puted using the penalty aggregating function (4);
the cells marked in yellow are acceptable for each
of the criteria whereas those marked in red are
not acceptable.

criteria values: WL = 17.9%, SG = 1.8%, RR
= 3.6, L-value = 37.1, a-value = 26.5, b-value =
18.3, Sensory score = 6.2, is chosen as the final
solution to the multi-objective osmotic dehydra-
tion decision-making problem, since this alter-
native has a maximum priority value of 0.1457.
Thus, the solution corresponding to the Pareto-
optimal point A (with criteria values: WL =
19.0%, SG = 2.5%, RR = 3.4, L-value = 37.8,
a-value = 25.6, b-value = 18.1, Sensory score =
6.9) was improved by alternative 3 for the follow-
ing responses: solute gain, rehydration ratio, and
a-value; however, for the two most important cri-
teria, namely sensory score and water loss, alter-
native 3 demonstrates worse values in compari-
son to those in point A. Nevertheless, the Pareto-
optimal solutions, which demonstrate better val-
ues for sensory score and water loss, can be com-
puted by repeating the above computations; on
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the other hand, the penalty function (7) can be
run. In the Penalty Functions Approach, it is as-
sumed that the expert(s) or decision maker(s)
is able to correctly use additional information
about the multi-objective decision-making prob-
lem at hand; if not, the non-promising solution(s)
cannot be implicitly eliminated from the set of
Pareto-optimal solutions. Table 13 shows the re-
sults after using the penalty function (7) with the
following additional constraints: f1(x) ≥ 19.0
and f7(x) ≥ 7.0; in other words, only the Pareto-
optimal solutions that demonstrate better values
for the sensory score and water loss criteria will
be considered in the decision-making process. In
this case, the penalty function (7) was coupled
with the linear aggregating function (2), and the
following optimization problem was solved by the
adaptive random search algorithm:

lX
i=1

λifi(x) + Θ1 +Θ7 →min
x∈X (13)

Table 13 shows the values related to water loss
and sensory score that are now better than the
corresponding values of point A; however, worse
values were obtained for the other responses.
The decision-making analysis presented above
can be used with the Pareto-optimal alternatives
shown in Table 13 in order to choose the best
alternative.
All stages of the multi-criteria optimization

and decision-making technique as presented in
this study and implemented in the software pack-
ages developed by Abakarov (2011) can be re-
peated as many times as necessary in order for
the decision maker(s) to obtain the fairest, most
consistent, and adequate final compromised so-
lution.

4 Conclusions

An alternative technique to solve multi-objective
optimization problems arising in food engineer-
ing is proposed in this study. This technique has
been demonstrated using experimental data ob-
tained on osmotic dehydration of carrot cubes
in a sodium chloride solution. Multiple non-
linear regression analysis was performed on a set
of experimental data in order to obtain multi-
objective functions (responses). The Aggregat-

ing Functions Approach, the Adaptive Random
Search Algorithm, and the Penalty Functions
Approach were used to compute the initial set of
the non-dominated or Pareto-optimal solutions.
All the aggregating functions presented in this
study were implemented simultaneously in or-
der to guarantee a representative subset of the
Pareto-optimal solutions. The well-known AHP
method and TM were used simultaneously for
choosing the best alternative among the com-
puted subset of non-dominated solutions for os-
motic dehydration processes. The TM allowed
for simplification so that the AHP method could
be used in a straightforward manner. The soft-
ware packages “T-CHOICE” and “MPRIOR-
ITY,” developed by the authors and used in
this study, can significantly simplify a decision-
making process based on the TM and AHP meth-
ods. This technique can be useful to food scien-
tists in research and education, as well as to en-
gineers involved in multi-objective optimization
of various food engineering processes.
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Figure 6: Hierarchy of decisions corresponding to the problem of choosing the most preferred osmotic
dehydration process; the main goal (BEST PROCESS) is set at the top of the hierarchy; the decision
alternatives ALT.N.1-ALT.N.9 are at the bottom (see Table 10); the criterion of the decision problem
(i.e. water loss (WL), solute gain (SG), rehydration ratio (RR), L-value, a-value, b-value, and sensory
score(S.SCORE)) make up the middle of the hierarchy.

Table 10: Reduced set of alternatives obtained through the use of the Tabular Method.

Alterntive Number Water Solute Rehydration L- a- b- Sensory
loss gain ratio value value value score

1 17.6 1.4 3.6 37.4 26.6 18.3 5.8
2 17.3 1.4 3.6 37.3 26.7 18.4 5.7
3 17.9 1.8 3.6 37.1 26.5 18.3 6.2
4 19.9 2.1 3.2 38.3 26.1 20.1 5.8
5 19.6 1.8 3.2 38.4 26.2 20.2 5.6
6 19.8 2.0 3.2 38.4 26.2 20.1 5.8
7 19.8 2.7 3.1 37.4 25.5 20.3 6.0
8 19.5 3.4 3.0 37.6 26.4 19.7 6.4
9 19.4 2.7 3.1 37.7 26.3 20.0 6.1

Table 11: Results of pair-wise comparison of the main criteria and their computed criteria weights.

Criterion Water Solute Rehydration L- a- b- Sensory Criterion
loss gain ratio value value value score weight

Water loss 1 4 3 2 1 4 1⁄2 0.199
Solute gain 1⁄4 1 1 1⁄2 1⁄4 1 1⁄5 0.0554

Rehydration ratio 1⁄3 1 1 1 1⁄2 3 1⁄4 0.085
L-value 1⁄2 2 1 1 1⁄2 3 1⁄4 0.0995
a-value 1 4 2 2 1 4 1⁄2 0.1878
b-value 1⁄4 1 1⁄3 1⁄3 1⁄4 1 1⁄5 0.0447

Sensory score 2 5 4 4 2 5 1 0.3284
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Table 12: Weights for each alternative with respect to each main criterion and the final AHP priority-
weights vector.

Alternative Water Solute Rehydration L- a- b- Sensory Final priority
number loss gain ratio value value value score vector

1 0.0291 0.2176 0.2426 0.0375 0.2027 0.2423 0.0675 0.1133
2 0.0249 0.2213 0.2531 0.0239 0.2828 0.2077 0.0433 0.1178
3 0.0339 0.1432 0.1878 0.0149 0.1361 0.3506 0.2202 0.1457
4 0.1776 0.0876 0.0681 0.2090 0.0439 0.0342 0.0486 0.0925
5 0.1455 0.1486 0.0623 0.2844 0.0619 0.0251 0.0371 0.0957
6 0.1644 0.0904 0.0695 0.2438 0.0445 0.0293 0.0465 0.0928
7 0.2238 0.0379 0.0438 0.0415 0.0136 0.0216 0.0953 0.0893
8 0.0934 0.0195 0.0297 0.0889 0.1405 0.0486 0.2591 0.1447
9 0.1069 0.0335 0.0427 0.0556 0.0734 0.0399 0.1820 0.1077

Table 13: Results after using the penalty function (13).

Criterion
Number of Water Solute Rehydration L- a- b- Sensory
solution loss gain ratio value value value score

1 20.3 3.9 3.1 36.3 25.5 17.8 7.5
2 21.8 6.1 2.7 35.8 25.5 17.4 7.5
3 20.7 4.4 3.0 36.2 25.4 17.7 7.7
4 21.5 6.2 2.6 35.4 25.9 17.4 7.3
5 19.9 3.5 3.2 36.5 25.6 17.9 7.4
6 21.2 5.1 2.9 36.0 25.4 17.6 7.7
7 20.9 5.6 2.7 35.2 26.1 17.4 7.5
8 19.7 3.2 3.2 36.6 25.7 17.9 7.3
9 21.0 4.9 2.9 36.0 25.4 17.6 7.7
10 21.8 6.2 2.7 35.8 25.6 17.4 7.4
11 19.2 2.8 3.3 36.8 25.8 18.0 7.0
12 21.9 6.3 2.7 35.7 25.6 17.4 7.4
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