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a b s t r a c t

We propose a class of robust estimates for multivariate linear models. Based on the
approach of MM-estimation (Yohai 1987, [24]), we estimate the regression coefficients
and the covariance matrix of the errors simultaneously. These estimates have both a
high breakdown point and high asymptotic efficiency under Gaussian errors. We prove
consistency and asymptotic normality assuming errors with an elliptical distribution.
We describe an iterative algorithm for the numerical calculation of these estimates. The
advantages of the proposed estimates over their competitors are demonstrated through
both simulated and real data.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Consider a multivariate linear model (MLM) with random predictors, i.e., we observe n independent identically
distributed (i.i.d.) (p + q)-dimensional vectors, zi = (y′

i, x
′

i) with 1 ≤ i ≤ n, where yi = (yi1, . . . , yiq)′ ∈ Rq, xi =

(xi1, . . . , xip)′ ∈ Rp, and ′ denotes the transpose. The yi are the response vectors and the xi are the predictors, and both
satisfy the equation

yi = B′

0xi + ui 1 ≤ i ≤ n, (1.1)

where B0 ∈ Rp×q is the matrix of the regression parameters and ui is a q-dimensional vector independent of xi. If xip = 1
for all 1 ≤ i ≤ n, we obtain a regression model with intercept.

We denote the distributions of xi and ui by G0 and F0, respectively, and 60 is the covariance matrix of the ui. The
p-multivariate normal distribution with mean vector µ and covariance matrix 6 is denoted by Np(µ,6).

In the case of ui with distribution Nq(0,60), the maximum likelihood estimate (MLE) of B0 is the least squares estimate
(LSE), and the MLE of 60 is the sample covariance matrix of the residuals. It is known that these estimates are not robust: a
small fraction of outliers may have a large effect on their values.

Several approaches have been proposed to deal with this problem. The first proposal of a robust estimate for the MLM
was given by Koenker and Portnoy [13]. They proposed to apply a regression M-estimator, based on a convex loss function,
to each coordinate of the response vector. The problemswith this estimate is lack of affine equivariance and zero breakdown
point. Several other estimates without these problems were defined later. Rousseeuw et al. [20] proposed estimates for the
MLMbased on a robust estimate of the covariancematrix of z = (x′, y′). Bilodeau andDuchesne [4] extended the S-estimates
introduced by Davies [6] for multivariate location and scatter; then Van Aelst and Willems [23] studied the robustness of
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these estimators. Agulló et al. [1] extended the minimum covariance determinant estimate introduced by Rousseeuw [19]
and Roelandt et al. [18] extended the definition of GS-estimates introduced by Croux et al. [5]. These estimates have a
high breakdown point but are not highly efficient when the errors are Gaussian and q is small. In order to solve this,
Agulló et al. [1] improved the efficiency of their estimates, maintaining their high breakdown point, by considering one-
step reweighting and one-step Newton–Raphson GM-estimates. García Ben et al. [7] extended τ -estimates for multivariate
regression, obtaining a estimate with high breakdown point and a high Gaussian efficiency. Another important approach to
obtain robust and efficient estimates is constrainedM (CM) estimation, proposed byMendes and Tyler in [17] for regression
and by Kent and Tyler in [12] for multivariate location and scatter. The bias of CM-estimates for regression was studied by
Berrendero et al. in [3]. Following this approach, Bai et al. in [2] proposed CM-estimates for the multivariate linear model.

In this paper, we propose robust estimates for the linear model based on the MM approach, first proposed by Yohai [24]
for the univariate linear model, and later by Lopuhaä [15], Tatsuoka and Tyler [22], and Salibián-Barrera et al. [21] for
multivariate location and scatter.We show that our estimates have both a high breakdown point and high normal efficiency.

In Section 2, we define MM-estimates for the MLM and prove some properties. In Sections 3 and 4, we study their
breakdown point and influence function. In Sections 5 and 6, we study the asymptotic properties (consistency and
asymptotic normality) of theMM-estimates assuming randompredictors and errorswith an elliptical unimodal distribution.
In Section 7, we describe a computing algorithm based on an iterative weighted MLE. In Section 8, we present the results of
a simulation study, and we present a real example in Section 9. All the proofs can be found in [14].

2. Definition and properties

Before defining our class of robust estimates for the MLM, we will define a robust estimate of scale.

Definition 1. Given a sample of size n, v = (v1, . . . , vn), an M-estimate of scale s(v) is defined as the value of s that is
solution of

1
n

n−
i=1

ρ0

vi
s


= b, (2.1)

where b ∈ (0, 1), or s = 0 if ♯(vi = 0) ≥ n(1 − b), where ♯ is the symbol for cardinality.

In this paper, we use b = 0.5, which ensures the maximal asymptotic breakdown point (see [10]).
The function ρ0 should satisfy the following definition.

Definition 2. A ρ-function will denote a function ρ(u) which is a continuous nondecreasing function of |u| such that
ρ(0) = 0, supu ρ(u) = 1, and ρ(u) is increasing for nonnegative u such that ρ(u) < 1.

Note that according to the terminology of Maronna et al. [16] this would be a ‘‘bounded ρ-function’’. A popular ρ-function
is the bisquare function:

ρB(u) = 1 − (1 − u2)3I(|u| ≤ 1), (2.2)

where I(·) is the indicator function.

Definition 3. Given a vector u and a positive definite matrix V, the Mahalanobis norm of u with respect to V is defined as

d(u,V) = (u′V−1u)1/2.

For particular givenB ∈ Rp×q and6 ∈ Rq×q, we denote by di(B,6) (i = 1, . . . , n) theMahalanobis norms of the residuals
with respect to the matrix 6; that is,

di(B,6) = (ui(B)′6−1ui(B))1/2,

withui(B) = yi − B′xi.

Using the concepts defined above, we can describe anMM-estimate for the MLM by the following procedure.
Let (Bn,6n) be an initial estimate of (B0,60), with a high breakdown point and such that |6n| = 1, where |6n| is the

determinant of6n. Compute the Mahalanobis norms of the residuals using (Bn,6n),

di(Bn,6n) = (u′

i(
Bn)6−1

n ui(Bn))
1/2 1 ≤ i ≤ n. (2.3)

Then, compute the M-estimate of scale σ̂n := s(d(Bn,6n)) of the above norms, defined by (2.1), using the function ρ0 as
specified in Definition 2 and b = 0.5.

Let ρ1 be another ρ-function such that

ρ1 ≤ ρ0, (2.4)
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and let Sq be the set of all positive definite symmetric q × qmatrices.
Let (Bn,0n) be any local minimum of

S(B,0) =

n−
i=1

ρ1


di(B,0)
σ̂n


(2.5)

in Rp×q
× Sq which satisfies

S(Bn,0n) ≤ S(Bn,6n) (2.6)

and |0n| = 1. Then the MM-estimate of B0 is defined asBn, and the respective estimate of 60 is6n = σ̂ 2
n
0n. (2.7)

In the MM-estimates for the univariate linear model, the residuals are used as a tool of outlier detection; in the
MM-estimates for the multivariate linear model, the Mahalanobis norms of the residuals play the same role. To compute
the M-scale it is necessary to have an initial estimate of B0, to compute the residuals, and an initial estimate of the shape of
60, 60/|60|

1/q, to compute the Mahalanobis norms of the residuals.

Remark 1. Onemethod of choosing the ρ-functions ρ0 and ρ1 in such a way that they satisfy (2.4) is the following. Let ρ be
a ρ-function and let 0 < c0 < c1. We take

ρ0 = ρ(u/c0) and ρ1 = ρ(u/c1). (2.8)

The value c0 should be chosen such that the asymptotic value of σ̂n is one when the errors ui, with i = 1, . . . , n, have
distribution Nq(0, I). The choice of c1 will determine the asymptotic efficiency of the MM-estimate. For more details, see
Remark 5.

The following theorem implies that the absoluteminimumof S(B,0/|0|
1/q) inRp×q

×Sq exists. Clearly, from this absolute
minimumwe can obtain an MM-estimate. However, any other local minimum (B,0)which satisfies (2.6) may also be used
to get an MM-estimate with a high breakdown point and with high efficiency under Gaussian errors.

Before stating the theorem, we define kn as the maximum number of observations (y′

i, x
′

i) of a sample that are in a
hyperplane; i.e.,

kn := max
‖v‖+‖w‖>0

#{i : v′xi + w′yi = 0}. (2.9)

Theorem 1. Let Z = {z1, . . . , zn} be a sample of size n satisfying the MLM (1.1), where zi = (y′

i, x
′

i). If kn/n < 0.5, then there
is a pair (Bn,0n) that minimizes the function S(B,0), defined in (2.5), for all (B,Γ ) ∈ Rp×q

× Sq such that |Γ | = 1.

In the following theorem, we obtain the estimating equations of MM-estimates.

Theorem 2. Assume that ρ1 is differentiable. Then the MM-estimates (Bn,6n) satisfy the following equations:

n−
i=1

W

di(Bn,6n)

ui(Bn)x′

i = 0 (2.10)

6n = q

n∑
i=1

W

di(Bn,6n)

ui(Bn)ui(Bn)
′

n∑
i=1
ψ1

di(Bn,6n)


di(Bn,6n)

, (2.11)

where ψ1(u) = ρ ′

1(u) and W (u) = ψ1(u)/u.

Remark 2. As we can see in Eq. (2.10), the jth column ofBn is the weighted LSE corresponding to the univariate regression
whose dependent variable is the jth component of y, the vector of independent variables is the same as that in the
multivariate regression, and observation i receives the weightW


di(Bn,6n)


. Furthermore, by (2.11),6n is proportional to

the sample covariance matrix of the weighted residuals with the same weights. As these weights depend on the estimatesBn and 6n, we cannot use the relations (2.10) and (2.11) to compute the estimates, but they will be used to formulate an
iterative algorithm in Section 6.

Remark 3. IfBn is regression, affine, and scale equivariant and6n is affine equivariant and regression and scale invariant,
thenBn will be regression, affine, and scale equivariant and6n will be regression and scale invariant and affine equivariant.
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3. Breakdown point

Now, to investigate the robustness of the MM-estimates, we will seek a lower bound of their finite sample breakdown
point. The finite sample breakdown point of the coefficient matrix estimate is the smallest fraction of outliers that make the
estimator unbounded, and the finite sample breakdown point of the covariance matrix estimate is the smallest fraction of
outliers that make the estimate unbounded or singular.

Let Z = {z1, . . . , zn} be a sample of size n that satisfies the MLM (1.1), where zi = (y′

i, x
′

i), and letB and6 be estimates
of B0 and 60, respectively.

We define

Zm = {Z∗
= {z∗

1, . . . , z
∗

n} such that ♯{i : zi = z∗

i } ≥ n − m},

Sm(Z,B) = sup{‖B(Z∗)‖2 with Z∗
∈ Zm},

S+

m (Z,6) = sup{λ1(6(Z∗))with Z∗
∈ Zm},

and

S−

m (Z,6) = inf{λq(6(Z∗))with Z∗
∈ Zm},

where λ1(6(Z∗)) and λq(6(Z∗)) are the largest and smallest eigenvalues of6(Z∗), respectively.

Definition 4. The finite sample breakdown point of B is ε∗(Z,B) = m∗/n, where

m∗
= min{m : Sm(Z,B) = ∞},

the finite sample breakdown point of 6 is ε∗(Z,6) = m∗/n, where

m∗
= min


m :

1
S−
m (Z,6) + S+

m (Z,6) = ∞


,

and ε∗
n(Z,B,6) = min{ε∗(Z,B), ε∗(Z,6)}.

The following theorem gives a lower bound for the breakdown point of MM-estimates.

Theorem 3. Let Z = {z1, . . . , zn}, with zi = (y′

i, x
′

i) that satisfies the MLM (1.1), and kn defined in (2.9). Consider ρ0 and ρ1 to
be two ρ-functions that satisfy (2.4), and suppose that kn < n/2. Then

ε∗

n(Z,Bn,6n) ≥ min

ε∗

n(Z,Bn,6n),
[n/2] − kn

n


. (3.1)

Since kn is always greater than or equal to p + q − 1, if ε∗
n(Z,Bn,6n) is close to 0.5, the maximum lower bound will be

([n/2] − (p + q − 1))/n; i.e., when the points are in general position the finite sample breakdown point is close to 0.5 for
large n.

If we did not fix b = 0.5 and if kn < n(1 − b), we would have the same bound as in (3.1) but with [n(1 − b)] in place of
[n/2]. In this case, the maximum finite sample breakdown point would be attained in b = 0.5 − kn/n, which is very close
to our choice of b = 0.5 when kn/n is small.

4. Influence function

Consider an estimateθn depending on a sample Z = {z1, . . . , zn} of i.i.d. variables in Rk with distribution Hθ , where θ ∈

Θ ⊂ Rm. Let T be an estimating functional of θ such that T(Hn) =θn, where Hn is the corresponding empirical distribution.
Suppose that T is Fisher consistent, i.e., T(Hθ) = θ. The influence function of T, introduced by Hampel [8], measures the effect
on the functional of a small fraction of point mass contamination. If δz denotes the probability distribution that assignsmass
1 to x, then the influence function is defined by

IF(z, T, θ) = lim
ε→0

T((1 − ε)Hθ + εδz)− T(Hθ)

ε
=
∂T((1 − ε)Hθ + εδz)

∂ε


ε=0
.

In our case, z = (y′, x′)′ satisfies the linear model (1.1), θ = (B0,60) and Hθ = H0. Let T0,1, T0,2 be the functional
estimates associated to the initial estimates Bn and 6n, and T1, T2 the functional estimates corresponding to the MM-
estimatesBn and6n. Then, according to (2.10) and (2.11), given a distribution function H of (y′, x′)′, the pair (T1(H), T2(H))



1284 N.L. Kudraszow, R.A. Maronna / Journal of Multivariate Analysis 102 (2011) 1280–1292

is the value of (B,6) satisfying

EHW (d(B,6))u(B)x′
= 0,

6 = q
EHW (d(B,6))u(B)u(B)′
EH0ψ1 (d(B,6)) d(B,6)

,

and

6 = S(H)20, with |0| = 1,

where d(B,6) = d(u(B),6),u(B) = y − B′x and

EHρ0


d(T0,1(H), T0,2(H))

S(H)


= 0.

Note that the M-estimate of scale, σ̂n, used in the definition of MM-estimates (Bn,6n), verifies σ̂n = S(Hn), where Hn is
the empirical distribution of z1, . . . , zn.

Nextwewill state the influence function ofMM-estimators for the casewhere errors in (1.1) have an elliptical distribution
with unimodal density. For that, we need to make the following assumptions.

(A1) ρ1 is strictly increasing in [0, κ] and constant in [κ,+∞) for some constant κ < ∞.
(A2) PG0(B

′x = 0) < 0.5 for all B ∈ Rp×q.
(A3) The distribution F0 of ui has a density of the form

f0(u) =
f ∗

0 (u
′6−1

0 u)
|60|

1/2
, (4.1)

where f ∗

0 is nonincreasing and has at least one point of decrease in the interval where ρ1 is strictly increasing.
(A4) G0 has second moments and EG0(xx

′) is nonsingular.

Theorem 4. Let (y′

0, x
′

0) be a random vector satisfying the MLM (1.1) with parameters B0 and 60. Assume that (S1)–(S4) hold
and that the partial derivatives of EH0W (d(B0,60)/S(H0))u(B0)x′ can be obtained by differentiating with respect to each
parameter inside the expectation, where H0 is the distribution of (y′, x′)′. Suppose that the functional estimates associated to
the initial estimatesBn and6n are affine equivariant. Then, the influence function for the functional estimator T1 corresponding
to the MM-estimateBn is

IF(z0, T1, B0,60) = cW


(y0 − B′

0x0)
′6−1

0 (y0 − B′

0x0)
1/2

σ0


60(y0 − B′

0x0)x
′

0EG0(xx
′)−1,

where σ0 = S(H0) and

c =
EF0W

′

(u′60u)1/2/σ0


(u′60u)1/2

σ0
+ EF0W


(u′60u)1/2

σ0


.

As in the case of MM-estimators for univariate linear regression, the influence function of the proposed MM-estimate is
unbounded.

5. Consistency

Wewill now show the consistency of MM-estimates for multivariate regression for the case in which errors in (1.1) have
an elliptical distribution with an unimodal density. For this, we need the following additional assumptions.

Theorem 5. Let (y′

i, x
′

i), 1 ≤ i ≤ n, be a random sample of the MLM (1.1) with parameters B0 and 60. Assume that ρ0 and
ρ1 are ρ-functions that satisfy the relation (2.4), that (A1)–(A3) hold, and that the initial estimator Bn is regression and affine
equivariant and6n is affine equivariant, and that both are consistent for B0 and 00, respectively, where 00 = 60|60|

−1/q; then
the MM-estimatesBn and6n satisfy

(a) limn→∞
Bn = B0 a.s.,

(b) limn→∞
6n = σ 2

0 60 a.s., with σ0 defined by

EF0


ρ0


(u′0−1

0 u)1/2

σ0


= b. (5.1)
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6. Asymptotic normality

Before obtaining the limit distribution ofBn, we need to make some additional assumptions.
(A5) ρ1 is differentiable, ψ1 = ρ ′

1, andW (u) = ψ1(u)/u is differentiable with bounded derivative.
(A6) EG0‖x‖

4 < ∞, EG0‖x‖
6 < ∞, EH0‖x‖

4
‖y‖2 < ∞ and EH0‖x‖

2
‖y‖4 < ∞, where H0 is the distribution of z = (y′, x′)′.

(A7) Let θ = (B,6) and

φ(z; θ) = W (d(B,6)) vec((y − B′x)x′). (6.1)

The function Φ(θ) = EH0φ(z; θ) has a partial derivative ∂Φ/∂vec(B′)′ which is continuous at θ0 = (B0, σ
2
0 60), and the

matrix

3 =
∂Φ(B,6)
∂vec(B′)′

(B0, σ
2
0 60) (6.2)

is nonsingular.

Theorem 6. Let zi = (y′

i, x
′

i), with 1 ≤ i ≤ n, be a random sample frommodel (1.1)with parameters B0 and60. Assume that the
ρ-function ρ1 satisfies (A1), that (A2)–(A7) hold, and that the estimatesBn and6n are consistent for B0 and 00 = 60|60|

−1/q,
respectively; then n1/2vec(B′

n − B′

0)
d

→ Nqp(0,V), where
d

→ denotes convergence in distribution and

V = 3−1M3−1′
, (6.3)

whereM is the covariance matrix φ(z1, (B0, σ
2
0 60)), with φ defined in (6.1), and 3 is defined in (6.2).

Assumptions (A4)–(A7) are sufficient to prove Theorem 6, but we conjecture that the limit distribution ofBn can be
proved under less restrictive hypotheses.

Remark 4. Note that the rate of convergence of the MM-estimates depends only on the consistency of, and not on the rate
of convergence of, the initial estimates.

Under suitable differentiability conditions, we can obtain a more detailed expression of the covariance matrix V of
Theorem 6.

Proposition 7. If W1(u) = W (
√
u) is differentiable with bounded derivative and the initial estimates (Bn,6n) are affine

equivariant, then

V =


σ 2
0

q
EF0


ψ1


v

σ0

2
EF0W

∗


v

σ0

2

(EG0xx

′)−1
⊗ 60, (6.4)

where

W ∗


v

σ0


=

1
qσ 2

0
W ′

1


v2

σ 2
0


v2 + W


v

σ0


(6.5)

and

v =

u′6−1

0 u
1/2

.

From the proof of Proposition 7 (see the Appendix of [14]), it is easily seen that, if W1(u) is continuously differentiable
with bounded derivative, assumption (A7) holds if and only if EF0W

∗


u′6−1

0 u
1/2

/σ0


≠ 0.

Remark 5. The covariance matrix of the MLE is given by

V =

EF0(v

2)/q

(EG0xx

′)−1
⊗ 60.

Then the asymptotic relative efficiency (ARE) of the MM-estimateBn with respect to the MLE is

ARE(ψ1, F0) = EF0(v
2)


EF0W

∗


v
σ0

2
σ 2
0 EF0


ψ1


v
σ0

2 . (6.6)

As we mentioned in Remark 1, to obtain an MM-estimate which simultaneously has a high breakdown point and high
efficiency under normal errors, it suffices to choose c0 and c1 in (2.8) appropriately. The constant c0 can be chosen so that

E


ρ


(u′0−1

0 u)1/2

c0


= b, (6.7)
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Table 1
Values of c0 for the bisquare function.

q 1 2 3 4 5 10

c0 1.56 2.66 3.45 4.10 4.65 6.77

Table 2
Values of c1 for the bisquare function to attain given values of the asymptotic relative efficiency (ARE) under normal errors.

ARE q
1 2 3 4 5 10

0.80 3.14 3.51 3.82 4.10 4.34 5.39
0.90 3.88 4.28 4.62 4.91 5.18 6.38
0.95 4.68 5.12 5.48 5.76 6.10 7.67

where u is Nq(0,60), 60 = |60|
1/q00, and b = 0.5; this ensures a high breakdown point and that the asymptotic relative

efficiency (6.6) depends only on c1. Then, c1 can be chosen so that the MM-estimate has the desired efficiency without
affecting the breakdown point, which depends only on c0.

Table 1 gives the values of c0 verifying (6.7) for different values of q. Table 2 gives the values of c1 needed to attain different
levels of asymptotic efficiency. In both cases the function ρ from (2.8) is equal to the bisquare function, ρB, given in (2.2).

7. Computing algorithm

In this section, we propose an iterative algorithm to computeBn and6n based on Remark 2. Let zi = (y′

i, x
′

i) be a sample
of size n, and assume that we have computed the initial estimatesBn and 6n with high breakdown point and such that
|6n| = 1.

1. Using the initial valuesB(0) = Bn and Γ (0)
= 6n, compute the M-estimate of scale σ̂n := s(d(B(0),Γ (0)

)), defined by
(2.1), using a function ρ0 as in the definition and b = 0.5 and the matrix Σ(0)

= σ̂ 2
n
Γ (0).

2. Compute the weights ωi0 = W

di(B(0),Σ(0)

)

for 1 ≤ i ≤ n. These weights are used to compute each column ofB(1)

separately by weighted least squares.
3. Compute the matrix

C(1) =

n−
i=1

ωi0ui(B(1))u′

i(
B(1)),

and with it the matrix Σ(1)
= σ̂ 2

n
C(1)/|C(1)|1/q.

4. Suppose that we have already computedB(k−1) and Σ(k−1). ThenB(k) and Σ(k) are computed using steps 2 and 3, but
starting fromB(k−1) and Σ(k−1) instead ofB(0) and Σ(0).

5. The procedure is stopped at step k if the relative absolute differences of all elements of the matricesB(k) andB(k−1) and
the relative absolute differences of all theMahalanobis norms of residualsui(B(k)) andui(B(k−1))with respect to6(k) and6(k−1), respectively, are smaller than a given value δ.

The following theorem shows that the iterative procedure to compute MM-estimates yields the descent of the objective
function.

Theorem 8. If W (u) is nonincreasing in |u|, then at each iteration of the algorithm the function
∑n

i=1 ρ1 (di(B,6)) is
nonincreasing.

8. Simulation

8.1. Simulation design

To investigate the performance of the proposed estimates we performed a simulation study.

- We consider the MLM given by (1.1) for two cases: p = 2, q = 2 and p = 2, q = 5. Due to the equivariance of
the estimators we take, without loss of generality, B0 = 0 and 60 = Iq. The errors ui are generated from an Nq(0, I)
distribution and the predictors xi from an Np(0, I) distribution.

- The sample size is 100 and the number of replications is 1000. We consider uncontaminated samples and samples that
contain 10% of identical outliers of the form (x0, y0)with x0 = (x0, 0, . . . , 0) and y0 = (mx0, 0, . . . , 0). The values of x0
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considered are 1 (low-leverage outliers) and 10 (high-leverage outliers). We take a grid of values of m, starting at 0. The
grid was chosen in order that all robust estimates attain the maximum values of their error measure.

- LetB(k) be the estimate of B0 obtained in the kth replication. Then, since we are taking B0 = 0, the estimate of the mean
squared error (MSE) is given by

MSE =
1

1000


1000−
k=1

p−
i=1

q−
j=1

B(k)ij

2
.

It must be recalled that the distributions of robust estimates under contamination are themselves heavy tailed, and it is
therefore prudent to evaluate their performance through robust measures (see [10, Sec. 1.4, p. 12] and [9, p.75]). For this
reason, we employed both theMSE, and the trimmedmean squared error (TMSE), which compute the 10% (upper) trimmed
average of

p−
i=1

q−
j=1

B(k)ij

21000

k=1

.

The results given below correspond to this MSE, although the TMSE yields qualitatively similar results (in the
uncontaminated case the results are the same).

8.2. Description of the estimators

For each case, four estimates are computed: the MLE, an S-estimate, a τ -estimate, and an MM-estimate.
For the MLM, the S-estimates are defined by

(B,6) = argmin{|6| : (B,6) ∈ Rp×q
× Sq}

subject to

s2(d1(B,6), . . . , dn(B,6)) = q,

where s is an M-estimate of scale.
García Ben et al. [7] extended τ -estimates to the MLM by defining

(B,6) = argmin{|6| : (B,6) ∈ Rp×q
× Sq}

subject to

τ 2(d1(B,6), . . . , dn(B,6)) = κ, (8.1)

where the τ -scale is defined by

τ 2(v) = (s2(v)/n)
n−

i=1

ρ2 (|vi|/s(v)) , (8.2)

where v = (v1, . . . , vn), ρ is a ρ-function, and s is an M-estimate of scale.
The robust estimates are based on bisquare ρ-functions. The M-estimate of scale used in the S-estimate is defined by

ρ0(u) = ρB(u/c0), and b = 0.5 so that the S-estimate has breakdown point 0.5 (see Table 1). The τ -estimate uses the same
ρ0 and b as the S-estimate to compute the M-scale and ρ2(u) = ρB(u/c2), where c2 is chosen together with the constant
κ , from Eq. (8.1), so that the τ -estimate has an ARE equal to 0.90 when the errors are Gaussian (see Table 2 in [7] in which
κ = 6κ2/c22 ). The initial estimate needed to compute the τ -estimate is computed using 2000 subsamples. TheMM-estimate
uses the same ρ0 as the S-estimate to compute the M-estimate of scale and ρ1(u) = ρB(u/c1), where c1 is chosen so that
the MM-estimate has an ARE equal to 0.90 when the errors are Gaussian (see Table 2). We use the S-estimates as (Bn,6n),
and the value of δ in step 5 of the computing algorithm is taken equal to 10−4.

8.3. Results

Table 3 displays the mean squared errors, the standard errors, and the relative efficiencies and asymptotic relative
efficiencieswith respect to theMLE for the uncontaminated case. It is seen that the relative efficiencies of all robust estimates
(computed as the ratio of their respectiveMSEs and theMSE of theMLE) are close to their asymptotic values. The τ -estimate
and MM-estimate have similar high efficiencies, and both outperform the S-estimator.

In Figs. 1–4, we show the MSEs of the different estimates under contamination.
In Fig. 1, which corresponds to q = 2 and x0 = 1, we observe that the MM-estimate and the τ -estimate behave

similarly, both having a smaller MSE than the S-estimate except when m is (approximately) between 2.8 and 4. In this
case, the S-estimate has the largest maximumMSE among the robust estimates. As expected, the MSE of the MLE increases
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Table 3
Simulation: mean squared error (MSE), standard error of the MSE (SE), relative efficiency (REFF), and asymptotic relative efficiency (ARE) of the estimates
in the uncontaminated case for n = 100 and p = 2.

Estimate q = 2 q = 5
MSE SE REFF ARE MSE SE REFF ARE

MLE 0.041 0.001 1.00 1.00 0.103 0.002 1.00 1.00
S-estimate 0.074 0.002 0.55 0.58 0.125 0.002 0.83 0.85
τ -estimate 0.046 0.001 0.89 0.90 0.116 0.002 0.90 0.90
MM-estimate 0.046 0.001 0.89 0.90 0.116 0.002 0.90 0.90

Fig. 1. Simulation: mean squared errors for q = 2 and x0 = 1.

Fig. 2. Simulation: mean squared errors for q = 2 and x0 = 10.

Fig. 3. Simulation: mean squared errors for q = 5 and x0 = 1.
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Fig. 4. Simulation: mean squared errors for q = 5 and x0 = 10.

Fig. 5. QQ-plots of the Mahalanobis norms of the residuals of the MM-estimate (left), the MLE (right), and the MM-estimate in the same interval as the
MLE (center).

without bound for large m. Fig. 2 shows the results for q = 2 and x0 = 10. The S-estimate, the τ -estimate, and the
MM-estimate behave similarly. In Fig. 3, which corresponds to q = 5 and x0 = 1, the three robust estimates are seen
to follow essentially the same pattern. For m ≤ 4.8 (approximately), the τ -estimate and the MM-estimate have similar
behaviors, both outperforming the S-estimate. For m > 4.8, the S-estimate and the MM-estimate have similar behaviors,
both outperforming the τ -estimate. For q = 5 and x0 = 10 (Fig. 4), the behavior of the robust estimates is similar to that
observed for q = 2 and x0 = 10 (Fig. 2).

In general, we see that the proposedMM-estimator competes favorablywith theMLE, the τ -estimate, and the S-estimate
with respect to both efficiency and robustness.

9. An example with real data

In this section, we analyze a dataset corresponding to electron-probe X-ray microanalysis of archeological glass vessels
([11]). For each of n = 180 vessels we have a spectrum on a set of equispaced frequencies numbered between 1 and 1920
and the contents of 13 chemical compounds; the purpose is to predict the contents on the basis of the spectra. In order to
limit the size of our dataset, we considered only two compounds (responses): P2O5 and PbO; and we chose 12 equispaced
frequencies between 100 and 400. This interval was chosen because the values of xij are almost null for frequencies below
100 and above 400. We therefore have p = 13 and q = 2.

We considered two multivariate regression estimates: the MLE and our MM-estimate. As initial estimate for the
MM-estimate we use an S-estimate. The S-estimate and theMM-estimate employ bisquare ρ-functions with constants such
that the MM-estimate has Gaussian ARE equal to 0.95 and the S-estimate has breakdown point 0.5. In Fig. 5, we present QQ-
plots of theMahalanobis normsof the residuals of theMLE and theMM-estimate against the root quantiles of the chi-squared
distribution with q degrees of freedom. The QQ-plot of the MM-estimate shows clear outliers.

In Fig. 6we compare the sorted absolute values of the residuals of theMLEwith those corresponding to theMM-estimator
for each component of the response.
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Fig. 6. QQ-plots of sorted absolute residuals of MM-estimates versus sorted absolute residuals of the MLE for each component of the response. The left
plot corresponds to P2O5(the first component) and the right to PbO (the second component).

Table 4
MLE and MM-estimate of the covariance matrix of the errors.

MLE MM-estimate
0.0645 −0.0008

−0.0008 0.0348

 
0.0102 −0.0014

−0.0014 0.0084



The right and left panels of Fig. 5 show respectively the QQ-plots of the Mahalanobis norms of the residuals of the MLE
and the MM-estimate against the square root quantiles of the chi-squared distribution with q degrees of freedom. For ease
of comparison, the center panel shows the MM-estimate’s QQ-plot truncated to the size of the MLE’s QQ-plot. The latter
shows a very good fit of the norms to the chi-squared distribution, and therefore points out no suspect points, while the
MM-estimate’s QQ-plot indicates some 30 possible outliers, i.e., about 16% of the data.

The MLE’s norms are in general smaller than the MM-estimate’s norms, but this does not mean that the former gives
a better fit, since here the residuals are normalized by the respective estimated residual dispersion matrices 60. Fig. 6
compares the sorted absolute values of the (univariate) residuals of the MLE with those of the MM-estimate for each
response. We can see that the majority of the residuals corresponding to the MM-estimate are smaller than those of the
MLE.

To understandwhy theMLE’s norms are in general smaller than theMM-estimate’s norms, while the respective residuals
are in general smaller, we show in Table 4 the estimates given by the MLE and MM-estimate of the dispersion matrix of the
errors. It is seen that the former is ‘‘much larger’’ than the latter, in that its two diagonal elements are respectively six and
four times those of the latter.

To complete the description of the estimates’ fit, Fig. 7 shows the absolute values of the coordinates of the bidimensional
residual vectors; the right panel (corresponding to residuals of the MM-estimate) is truncated to the size of the left panel
(corresponding to residuals of the MLE), and consequently 10% of the absolute residuals of the MM-estimate are not shown.
It is seen that, while the residuals fromMM-estimate have a larger range than those from the MLE, they are in general more
concentrated near the origin. In general, we may conclude that the MM-estimate gives a good fit to the bulk of the data,
at the expense of misfitting a reduced proportion of atypical points, while the MLE tries to fit all data points, including the
atypical ones, with the cost of a poor fit to the bulk of the data.

We compared the predictive behaviors of the MLEs and the MM-estimates through five-fold cross-validation. We also
included the univariate MM-estimates corresponding to each component of the response and the τ -estimate proposed by
García Ben et al. [7]. As initial estimate for the univariate MM-estimates we use S-estimates. The τ -estimate, the S-estimate,
and the univariateMM-estimate employ bisquare ρ-functionswith constants such that the univariateMM-estimate and the
τ -estimate have Gaussian AREs equal to 0.95 and the S-estimate has breakdown point 0.5. We considered two evaluation
criteria: themean squared error (MSE) and a robust criterion, namely a τ -scale (8.2) of the predictive errors, both computed
separately for each component of the response. In the τ -scale, s is an M-scale with breakdown point 0.5 and ρ2 is a bisquare
ρ-function with constant such that the τ -scale has Gaussian asymptotic efficiency equal to 0.85.

Table 5 shows the results. According to theMSE, theMLE ismuch better than the robust estimates. However, the τ -scales
yield the opposite conclusion. The reason of this fact is the MSE’s sensitivity to outliers. This result shows how misleading
a nonrobust criterion may be. According to the τ -scale, the predictive performance of our MM-estimate for the second
component is slightly better than that of the τ -estimate, while the opposite occurs for the first component. The results
obtained with the univariate MM-estimates are similar to those of the multivariate MM-estimate.
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Fig. 7. Absolute values of the coordinates of the bidimensional residual vectors corresponding to the MLE (left) and to the MM-estimate (right).

Fig. 8. QQ-plots of sorted absolute prediction errors of MM-estimates versus sorted absolute prediction errors of MLE for each component of the response,
computed by cross-validation. The left plot corresponds to P2O5 (the first component) and the right plot to PbO (the second component).

Table 5
Mean square error (MSE) and τ -scale of the prediction errors of the MLE, multivariate MM-estimate, τ -estimate, and univariate MM-estimate for each
component of the response, computed by cross-validation.

Criterion MLE τ -estimate MM-estimate MM-univariate
Component 1 2 1 2 1 2 1 2

MSE 0.081 0.051 0.351 0.806 0.340 0.682 0.354 0.762
τ -scale 0.044 0.022 0.005 0.007 0.008 0.006 0.005 0.006

The QQ-plots in Fig. 8 compare for each response component the absolute values of the sorted cross-validation prediction
errors of our MM-estimate with those of the MLE. For reasons of scale, in each QQ-plot the observations with the 12 largest
absolute prediction errors were omitted. We can see that most points lie below the identity line representing the identity
function, showing that the MM-estimate provides a better prediction for the bulk of the data.

10. Conclusions

In this paper, we have presented MM-estimates for the multivariate linear model and showed that they maintain the
same good theoretical properties as in the univariate case, such as a high breakdown point and high Gaussian efficiency.
The simulation study indicates that it has the desired high efficiency, and that its behavior is in general similar to, and in
several situations superior to, that of the τ -estimate; it is also more efficient, and in most situations more robust, than the
S-estimate. In the examplewith real data, ourMM-estimate gives a good fit to the bulk of the data, pointing out the existence
of atypical points, and shows a good predictive behavior.
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