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Understanding the importance of environmental dimensions behind the 
morphological variation among populations has long been a central goal of 
evolutionary biology. The main objective of this study was to review the 
spatial regression techniques employed to test the association between 
morphological and environmental variables. In addition, we show empirically 
how spatial regression techniques can be used to test the association of cranial 
form variation among worldwide human populations with a set of ecological 
variables, taking into account the spatial autocorrelation in data. We suggest 
that spatial autocorrelation must be studied to explore the spatial structure 
underlying morphological variation and incorporated in regression models to 
provide more accurate statistical estimates of the relationships between 
morphological and ecological variables. Finally, we discuss the statistical 
properties of these techniques and the underlying reasons for using the spatial 
approach in population studies.

Introduction
Phenotypic diversification in the intra-specific level 
results from random and nonrandom factors (Reznick 
et al., 1997; Hendry & Kinnison, 1999; Carrollet al., 2007). 
Environmental variation can profoundly affect the 
phenotypic variation within and among populations - 
yet the developmental and evolutionary mechanisms 
behind this correlation are poorly understood (Badyaev, 
2005)-, and therefore nonrandom factors such as selection 
and phenotypic plasticity can be of great importance to 
account for phenotypic diversity at this taxonomic level 
(Hendry & Kinnison, 1999; Carroll et al., 2007; Ezardet al., 
2009; Perez & Monteiro, 2009). Moreover, it is now widely 
documented that evolutionary change can occur on 
ecological timescales. Organisms can undergo adaptive 
phenotypic evolution over a few generations, leading to a
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rapid diversification of populations that are under 
different environmental conditions (Carroll et al., 2007). 
Therefore, it is important to consider the importance of the 
environmental dimensions behind the morphological 
variation in evolutionary studies of phenotypic diversifi
cation among populations (Schluter, 2000; Roseman, 
2004; Carroll et al., 2007; Perez & Monteiro, 2009).

A common approach to evaluate the importance of 
environmental dimensions behind morphological varia
tion is based on testing statistically the association 
between morphological (e.g. cranial length and body 
size) and environmental (e.g. climate) variables using a 
set of natural populations (e.g. Katzmarzyk & Leonard, 
1998; Felsenstein, 2002). The main problem with this 
approach is that geographically mediated gene flow 
among populations, divergence from a shared population 
history and/or local environmental conditions can cause 
close populations to become autocorrelated, i.e. popula
tions that are closer together in geographical space and/or 
close in phylogeny tend to be more similar to each other 
than expected by chance alone, for a given phenotypic 
variable (Barbujani, 1987; Legendre, 1993; Cavalli-Sforza 
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et al., 1994; Felsenstein, 2002; Relethford, 2004a; Ives & 
Zhu, 2006). When the response or dependent variable 
(e.g. phenotypic data) is modelled as a function of 
explanatory or independent variables (e.g. environmental 
data), the existence of autocorrelation perturbs signifi
cance tests as well as parameter estimates of the standard 
statistical techniques, which can led to a misunderstand
ing of the relationship between these variables. For 
example, if a population attained a large body size by 
climatic factors (e.g. low temperature), the neighbouring 
populations may have a similar size due to gene flow with 
the former, even though they are not directly affected by 
the climate with exactly the same intensity. Therefore, 
similar size among these populations should not be taken 
as proof of a response to a local climatic influence 
(Felsenstein, 2002). In this case, more complex models 
incorporating the autocorrelation structures based on 
geography (i.e. spatial regression techniques) and/or 
phylogenetic relationships (i.e. phylogenetic comparative 
methods) must be used instead of the standard, well- 
known regression or correlation techniques (Rohlf, 2001; 
Garland et al., 2005; Ives & Zhu, 2006; Bini et al., 2009; 
Freckleton & Jetz, 2009).

The statistical problems generated by autocorrelation in 
a data set are widely recognized and taken into account in 
ecological and evolutionary inter-specific studies (Rohlf, 
2001; Ives & Zhu, 2006). Moreover, several recent papers 
review the spatial and phylogenetic statistical techniques 
used to solve this problem at the inter-specific level 
(Garland et al., 2005; Dormann et al., 2007; Bini et al., 
2009). Conversely, at the intra-specific level the influence 
of autocorrelation is generally underestimated and the 
associations between traits and environmental variables 
are evaluated using standard correlation or regression 
(Sokal, 1984; Felsenstein, 2002). As a consequence, the 
main objective of this paper was to review the available 
spatial regression techniques - which incorporate the 
autocorrelation structures of data sets based on geography - 
used to test the association between morphological and 
environmental variables at the intra-specific level. We 
argue that any study aimed at evaluating the environ
mental influence on phenotypic evolution within a 
species ought to apply an adequate methodology that 
account for spatial autocorrelation in data. In addition, we 
empirically illustrate the use of such spatial regression 
techniques to test the association between cranial form 
variation among worldwide human populations and a set 
of environmental variables (i.e. mean annual tempera
ture, average annual rainfall and elevation), using a 
cranial data set of recent human populations widely 
employed in biological anthropology (Howells, 1973, 
1989). Finally, we discuss the performance of generalized 
least squares, trend surface, autoregression and spatial 
eigenvector mapping (SEVM) techniques as well as the 
conceptual and methodological reasons underlying the 
use of a spatial approach in population studies.

Spatial and comparative analyses 
in population biology
Spatial variation among populations is a central research 
issue in evolutionary biology, particularly within the 
framework of studies interested in neutral variation 
(Sokal et al., 1989a; Barbujani, 2000; Relethford, 2008). 
This is due to the fact that most neutral evolutionary 
processes occur in a spatial context (Epperson, 2003), 
where the genetic variation originated by random 
mutations within local populations will disperse through 
geographically mediated gene flow. Several approaches 
can be used to analyse the resulting patterns of spatial 
variation, that usually involve the estimation of param
eters such as the geographical distance at which genetic 
or phenotypic data can be considered independent (Sokal 
& Oden, 1978; Barbujani, 2000; Manel et al., 2003).

The magnitude of spatial autocorrelation can be eval
uated using autocorrelation coefficients, such as the 
Moran's I coefficient, which is commonly applied in 
population studies (Sokal & Oden, 1978; Barbujani, 
2000; Diniz-Filho et al., 2009), and given by

_ -Mb-vM
E^Cw-J)2

where« is the number of local populations, yt and y, are 
the values of the biological trait measured in populations 
i and /, y is the average of y, and Wy is an element of a W 
or weighting matrix. In this W matrix, the elements are 
equal to 1 if the pair i, j of local populations is within a 
given distance class interval (indicating samples that are 
'connected' in this class); otherwise Wy = 0. S indicates 
the number of entries (connections) in the W matrix. 
The value expected under the null hypothesis of the 
absence of autocorrelation is -1/(m - 1). Moran I is 
usually calculated by using several distance classes, and 
in this case multiple W matrices are built by connecting 
pairs of local populations situated at increasing geo
graphical distances. This sequence of coefficients is 
plotted against geographical distances, generating a 
correlogram that describes the complexity of spatial 
patterns, in the original variable as well as in the 
residuals (see below; Sokal & Oden, 1978; Legendre & 
Legendre, 2003). These parameters can be linked to 
evolutionary processes, such as dispersion (Sokal et al., 
1989a). More complex micro-evolutionary inferences 
can be performed by comparing patterns of geographical 
variation for different alleles and loci using multiple 
correlograms (Sokal & Oden, 1978; Sokal & Wartenberg, 
1983; Sokal et al., 1989a).

Graphic representations and randomization tests of 
biological and geographical distances among a set of 
populations are also employed (Snrouse et al., 1986; 
Hutchison & Templeton, 1999; Relethford, 2004b; 
Ramachandran et al., 2005). Mantel (1967) introduced 
a method for deciding whether the matrix of biological 
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distances correlated with the matrix of geographical 
distances (see Snrouse et al., 1986). The basic Mantel 
Z-statistic is the sum of cross-products of the values in 
two matrices:

where X and Y are unfolded distance matrices (i.e. the 
distance matrices are unfolded column by column to 
form a long vector, excluding the diagonal term) 
(Snrouse et al., 1986; Legendre & Legendre, 2003). The 
ordinary product-moment correlation coefficient, r, is 
monotonically related to Z (Snrouse et al., 1986). Several 
other approaches are also available (see Sokal & Oden, 
1978; Peres-Neto & Jackson, 2001; Manel et al., 2003; 
Relethford, 2008).

Although these approaches are slightly different, their 
ultimate goal is to describe and explore the spatial 
structure underlying neutral genetic or phenotypic var
iation. In population studies of several species, the spatial 
statistics have shown that many genetic and phenotypic 
variables are spatially correlated, such that geographically 
close populations tend to be biologically similar 
(Barbujani, 1987; Cavalli-Sforza et al., 1994; Hutchison 
& Templeton, 1999; Relethford, 2004a; Manica et al., 
2005). Particularly, two endogenous processes have been 
used to explain the spatial pattern of variation among 
populations: it could emerge as the result of gene flow 
restricted by the geographical distance (i.e. model 
of isolation by distance) or because of the serial 
founder effect (Cavalli-Sforza et al., 1994; Relethford, 
2004a; Ramachandran et al., 2005; Templeton, 2007). As 
a result of the spatial structure of populations, gene flow 
will occur more frequently between nearby populations, 
leading to high genetic affinities between groups in close 
geographical proximity and the probable genetic differ
entiation of more distant groups due to the effect of 
genetic drift (i.e. the IBD model; Wright, 1943; Barbujani, 
1987; Cavalli-Sforza et al., 1994; Hutchison & Templeton, 
1999; Relethford, 2004a). On the other hand, the increase 
in the biological distance with geographical distance could 
be the result of the colonization of an area through 
multiple and successive dispersion events of groups that 
have a small number of individuals, a process known as 
expansion of range (Slatkin, 1993). This expansion of 
range leads to several events of random sampling - serial 
founder events, resulting in a gradient of reduction in 
biological diversity within populations in the direction 
that the groups are moving away from the centre of 
expansion, unless rates of migration are extremely high 
(Ramachandran et al., 2005; Ray et al., 2005; but see 
Templeton, 2007).

However, when we study the effects of environmental 
variables over morphology, we should use other 
approaches that incorporate the spatial autocorrelation 
of morphological and/or environmental variables directly 
into the statistical model (Sokal, 1984; Legendre, 1993; 

Diniz-Filho et al., 2003, 2009; Dormann et al., 2007). 
Generally, population studies use the partial Mantel's 
matrix correlation statistic (Snrouse et al., 1986) to 
remove the effects of spatial and/or phylogenetic varia
tion in the relationship between two sets of data (e.g. 
Relethford, 2004b; Roseman, 2004). However, partial 
Mantel's matrix correlation is just a linear correction that 
removes all morphological variation correlated with 
space (Oden & Sokal, 1992). Therefore, it does not 
correspond to what spatial regression techniques (e.g. 
generalized least squares) do because they correct for the 
effect of spatial similarity among neighbour populations, 
i.e. they model local-scale autocorrelations in residuals of 
the regression model (Dormann et al., 2007; Perez et al., 
2009; see below).

Other techniques that directly emerge from the overall 
linear modelling framework - i.e. linear regression 
techniques - could be used to test whether a morphological 
variable is associated with environmental variation, in 
order to account for spatial structures in data (Dormann 
et al., 2007; Biniet al., 2009; Diniz-Filho et al., 2009). In the 
following section we describe generalized least squares, 
trend surface, autoregression and SEVM techniques.

Spatial regression models
Conventional statistical analysis assumes the indepen
dence of all observations (independence entails that no 
observation in a sample can be predicted by another 
observation in the same sample and that the best predictor 
of any observation is the mean; Sokal & Rohlf, 1986; Zar, 
1999), frequently overestimating the number of indepen
dent observations in spatial studies (Legendre, 1993; 
Peres-Neto, 2006). Overestimating the number of inde
pendent observations could lead to incorrectly refute the 
null hypothesis of nonassociation between morphological 
and environmental variables (Ho), i.e. inflating type I error 
rates. Consequently, in this section we illustrate a set of 
available techniques that can be used to take into account 
the problem of nonindependence, or autocorrelation, in 
the study of morphological variation among populations.

The problem of estimating the level of relationship 
between morphological and environmental variables has 
the general structure of a regression model (the ordi
nary least squares model, OLS; Table 1), where the 
dependent - or morphological - variable is modelled as a 
function of the independent - or environmental - variable 
(Sokal & Rohlf, 1986; Zar, 1999). In this model the error 
term, or residuals, must be normally distributed, with 
constant variance and independently distributed among 
observations, i.e. the covariance matrix among residuals is 
the identity matrix. In biological studies the residuals are 
generally independent when the populations are not 
correlated by geography and/or phylogeny.

When autocorrelation in residuals is detected (e.g. 
by using autocorrelation analysis such as Moran's I
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Table 1 Regression models most frequently used in spatial ecological analysis.

Model General approach Formula

Ordinary least squares (OLS) y = Xb + e, where y is the vector that describes trait variation, X is the matrix of 
independent variables, b is the vector of regression coefficients, e is the error term, 
and the covariance matrix C among residuals is C = cr2l, where a2 is the variance 
of the residuals, and I is an identity matrix

Simultaneous spatial autoregressive (SAR) Model residuals y = Xb + e and CSAR = o-2[(I - pW)T]_1 [I - pW]_1, where W is the weighting matrix 
and p is an autoregressive coefficient for response variable

Conditional spatial autoregressive (CAR) Model residuals y = Xb + e and Csar = Kff2Wi+)I][I - pW]~1
Moving average (MA) Model residuals y = Xb + e and CMA = ff2|(l + />W)(I + pW)|
Trend surface analysis (TSA) Model structure y = Xb + G + e, where G = LB/., where L is a matrix with the spatial coordinates of 

local populations and BL are the slopes of these coordinates
Lagged-response
autoregressive (ARM-response)

Model structure y = Xb + G + s where G = pWy

Lagged-predictor or mixed Model structure y = Xb + G + £ where G = pWy + yWX, where y is the autoregressive coefficients for
autoregressive (ARM-mixed) each explanatory variable

Spatial eigenvector mapping (SEVM) Model structure y = Xb + G + £ where G = PC, where PC are the principal coordinates

The problem of estimating the level of relationship between morphological and ecological variables has the general structure of a regression 
model. Here, we show the different regression models most frequently used in spatial ecological analysis: ordinary least squares, regression 
techniques that incorporate autocorrelation into residuals (model residuals) and regression techniques that incorporate autocorrelation into 
the structure of the regression model (model structure). All spatial analyses described in this paper can be performed using the sam software 
(spatial analysis in macroecology) version 3.1 (Rangel et al., 2006), which is freely available at http://www.ecoevol.ufg.br/sam. In addition, 
the spatial and phylogenetic regression analyses can be made using several R packages (e.g. APE), which are freely available at http://www. 
r-project.org/. Finally, ntsys 2.2, available at http://www.exetersoftware.com, perform many regression techniques that consider the 
autocorrelation of data.

coefficient), there is a clear violation of the assumptions 
for the standard regression model. Therefore, the residual 
variation must be modified in order to improve our 
understanding of morphological variation, as well as to 
achieve a better parameter's estimation and to test the 
statistical model. In this scenario, spatial regression models 
have been proposed to solve this problem. These models 
can be grouped into two classes (Table 1) based on the 
idea of incorporating autocorrelation either into the 
residuals of the regression model (model residual 
approach) correcting their covariance matrix, or into 
the structure of the model (model structure approach) 
including a new term (Diniz-Filho et al., 2003, 2007, 
2009; Legendre & Legendre, 2003; Dormann et al., 2007; 
Kissling & Carl, 2008; Bini et al., 2009).

In the model residual approach, known as generalized 
least squares model, the error structure in covariance 
matrix among residuals is designed to incorporate the 
expected lack of independence of the observations due to 
the spatial distribution of the populations. In this model 
the covariance matrix among residuals is based on the W 
matrix, 'expected relationship matrix' or weighting 
matrix, which contains the correlation structure among 
the populations. The elements of W can be estimated by 
different and complex inverse functions of geographical 
distance (¡7,-,) between populations, given by inverse 
distance-powered functions of the form Wg — 1/dy, 
where a is the parameter that regulates the model. With 
a = 1 this formula generates a large decline in distance, 
with a geographical distance between 0 and a given 

distance, and shows a plateau with little change in 
distance after this value (Fig. 1), such as it was shown for 
biological distance among populations (Relethford, 
2004a). Several techniques, such as SEVM (see below), 
truncate the W matrix in a specific distance, being equal 
to 0 the distances greater than such specific distance. This 
procedure gives greater importance to small geographical 
distances. There are several generalized least squares 
techniques that can be found in the literature related to 
spatial analyses (Wall, 2004; Rangel et al., 2006; Dor
mann et al., 2007; Diniz-Filho et al., 2009) and they are 
named after the different ways of defining the covariance 
matrix among residuals (simultaneous spatial autore
gressive, conditional spatial autoregressive and moving 
average; Table 1).

Instead of modifying the error term, the model struc
ture approach introduces new explanatory variables in

Fig. 1 Plot of geographical distance (J) vs. distance/weight (w,j). 
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the model that 'capture' the spatial variation, thereby 
minimizing the autocorrelation in the residuals. There 
are several ways of incorporating spatial variables into 
the model structure to eliminate or minimize residual 
autocorrelation (Table 1). The simplest way of defining 
space is by using the spatial coordinates of local popu
lations (i.e. latitude and longitude), which can be added 
as spatial independent variables in the model. This 
technique is known as trend surface analysis (TSAI; 
Legendre & Legendre, 2003), and is better suited to 
model broad-scale trends and not local autocorrelation in 
residuals. The simplest equation expresses part of the 
morphological variation as a plane in geographical space. 
The spatial component in this equation can be changed 
by adding polynomial expansions, thereby adjusting to 
quadratic (TSA2) or cubic functions of spatial coordi
nates. Another way to take into account spatial patterns 
into the model structure is by using an autoregressive 
model.

There are several forms used to express autoregressive 
models, but the main idea is the pure autoregression 
model (Diniz-Filho et al., 2009), which estimates the 
variation in a trait that can be explained by space. In 
spatial analysis it is possible to incorporate autoregressive 
terms for the response variable (lagged-response autore
gressive model) and for both, response and explanatory 
variables (lagged-predictor or mixed autoregressive 
model) (Table 1).

Finally, another approach to incorporate space into 
models structure is to extract principal coordinates (i.e. 
eigenvectors) from the weighting matrix - i.e. the matrix 
expressing the spatial relationship among local popula
tions - and to use part of these vectors to establish the 
regression model (Table 1). This approach is called SEVM 
(Griffith, 2003; Griffith & Peres-Neto, 2006). The basic 
difference between the various applications of this 
approach lies on the principal coordinates that are 
extracted to represent geographical space. The principal 
coordinates of a spatial matrix express the relationships 
among local populations at decreasing spatial scales, so 
that first principal coordinates with large eigenvalues 
tend to express broad-scale structures, whereas principal 
coordinates with small eigenvalues tend to express local 
patterns. Thus, the advantage of eigenvector mapping is 
its flexibility in dealing with patterns at multiple scales, 
and the possibility of iteratively improving the modelling 
process by adding or removing these principal compo
nents (PCs) (Diniz-Filho & Bini, 2005; Griffith & Peres- 
Neto, 2006).

An example of spatial regression 
techniques in human population analyses
Understanding the importance of nonrandom factors and 
environmental dimensions in the origin of the worldwide 
pattern of morphological variation among human pop
ulations has long been a central goal of evolutionary 

anthropology (Roberts, 1953; Howells, 1973, 1989; Beals 
etal., 1984; Relethford, 1994, 2004a; Ruff, 1994; 
Katzmarzyk & Leonard, 1998; Roseman, 2004; Harvati 
& Weaver, 2006). Craniofacial form and shape variation 
has been widely investigated across modern human 
populations (Beals etal., 1984; Relethford, 1994, 2004a; 
Roseman, 2004; Harvati & Weaver, 2006). These studies 
point out that cranial shape variation is mainly influ
enced by neutral evolutionary processes, such as muta
tion, gene flow and genetic drift (Relethford, 1994, 
2004a). Conversely, variation in craniofacial size and 
form (i.e. shape plus size) has been related to nonrandom 
factors, like natural selection (Beals et al., 1984; 
Roseman, 2004; Harvati & Weaver, 2006). Specifically, 
several works pointed out that temperature could be the 
principal environmental dimension shaping the world
wide pattern of form and size variation among popula
tions. However, some investigators suggested the 
possibility that the observed association between cranio
facial form and temperature could be due to a spurious 
correlation of each with the neutral patterns of inter
regional difference generated by spatial structure of 
the populations (i.e. autocorrelation; Sokal, 1984; 
Relethford, 1994). Here, we employ spatial regression 
techniques in order to establish whether craniofacial form 
is significantly associated with climatic variables (i.e. mean 
annual temperature, average annual rainfall and eleva
tion), independent of the spatial structure. The existence 
of a significant correlation between these variables could 
be used to support the importance of nonrandom factors, 
such as natural selection, driving the morphological 
divergence among human populations (e.g. Roseman, 
2004; Harvati & Weaver, 2006; Perez & Monteiro, 2009).

We analysed 45 linear cranial measurements collected 
from a sample of 1367 male individuals from 30 popu
lations distributed worldwide (Fig. 2; Howells, 1973, 
1989). All the samples belong to recent modern human 
populations that inhabited different geographical and 
ecological regions around the world (Howells, 1989); 
distributed from 70°N latitude to 45°S latitude, and from 
30 to -8 °C of mean annual temperature (Fig. 2). The 
geographical locations of the samples (local populations) 
were reported by Howells (1989). The geographical 
coordinates of each local population were transformed 
to a geodesic system and used to compute a matrix of 
great circle geographical distances between them. The 
mean annual temperature, average annual rainfall and 
elevation at each local population were obtained and 
used as estimators of climate variation across the globe 
(Beals et al., 1984; Katzmarzyk & Leonard, 1998; Harvati 
& Weaver, 2006). These variables were obtained for each 
of the 30 populations (i.e. geographical localization or 
close to) using Internet climatic databases (i.e. http:// 
www.worldclimate.com; Relethford, 2004b) and geo
graphical maps.

Rather than performing a separate analysis on each of 
the 45 craniometric variables, we used the original
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Fig. 2 Geographical location of the 30 samples used in this study.

variables to perform a PC analysis of a covariance matrix 
using mean values; and the resulting first PC score was 
used as the general form vector. The calculation of PC 
score generates a data reduction and avoids redundancy 
(Marcus, 1990; Thalib et al., 1999). This first PC score, 
accounting for 45% of the total among mean samples 
variation, has strong correlations with the size measure
ment, the arithmetic mean of all variables (r = 0.982). In 
addition, this procedure is essentially the same as the one 
used in others works of spatial techniques applied to 
population morphometries (e.g. Sokal & Uytterschaut, 
1987; Relethford, 2008). Although the other PC scores 
represent important shape variation among human 
populations, and because the main objective of this 
paper was to review the statistics of spatial regression 
techniques, in the following analyses we restrict the tests 
to the first PC score to simplify the explanation. Although 
we used a univariate approach to study variation among 
human populations, the spatial regression techniques can 
be generalized to use multivariate multiple regression 
models (Rohlf, 2001; Perez et al., 2009).

We first generated a spatial correlogram (Sokal & 
Oden, 1978; Barbujani, 2000) to explore the spatial 
autocorrelation of form variation. Although there are 
alternative approaches to describe spatial patterns (e.g. 
semi-variograms; Relethford, 2008), correlograms have 
been repeatedly used in previous exploratory autocorre
lation analyses of inter-population variation, mainly 
based on genetic data (e.g. Sokal & Oden, 1978; Sokal 
et al., 1989b; Barbujani, 2000). Here, Moran's I coeffi
cients were calculated for five geographical distance 
classes, whose intervals were defined such that each class 

contains approximately the same number of connections 
among local populations. The statistical significance of 
the autocorrelation coefficients, Moran's I, was calcu
lated with 4999 randomizations (for details, see Legendre 
& Legendre, 2003).

The spatial correlograms of form variation (i.e. PCI 
score) are shown in the Figure 3. These correlograms 
show a cline in the PCI score affecting the entire 
worldwide distribution, starting from about 6000- 
7000 km (Fig. 3a). Perhaps because of the relatively 
large and irregular distances among close populations, 
Moran's I in the first distance class is not very high, as is 
usually observed for clinal patterns. The cline observed in 
the PC 1 score can be explained by several processes, such 
as migration from a single direction or one side, gene 
flow among populations or environmental influence 
acting in geographically close and similar environments 
(see Sokal et al., 1989a,b; Legendre & Legendre, 2003). 
Anyway, the most important issue is that a similar cline is 
also observed in the residuals of morphometric against 
climate variation obtained with the OLS techniques 
(Fig. 3b). Therefore, the residuals of neighbour popula
tions are similar, and that suggests the importance of 
spatial endogenous processes such as gene flow to 
explain the PCI variation. Consequently, evolutionary 
spatial factors, local environmental conditions or histor
ical factors are important in accounting for craniofacial 
variation among worldwide populations (Cavalli-Sforza 
et al., 1994; Eller, 1999; Relethford, 2004a; Manica et al., 
2005).

We then regressed the PCI score against climate (i.e. 
mean annual temperature, average annual rainfall and
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Fig. 3 Autocorrelogram of (a) principal component 1 (PCI; form 
cranial variation) and (b) OLS residuals.

elevation) using three forms of generalized least squares 
models based on autoregressive processes (SAR, CAR and 
MA), first- and second-order trend surface (TSAI and 
TSA2), lagged-response and lagged-predictor autoregres
sive models (ARM-response and ARM-mixed), and 
SEVM techniques. To define the spatial structures to be 
used in these spatial regression models, we employed one 
weighting matrix (W) estimated assuming an inverse 
relationship between craniofacial variation and geo
graphical distances among populations (e.g. isolation- 
by-distance model; Relethford, 2004a). This W matrix 
was calculated as the inverse function of great circle 
geographical distances between populations, Wy = 1/^, 
generating a large decline in distance with a geographical 
distance between 0 and 6000 km, and showing a plateau 
with little change in distance after ca. 8000-10 000 km 
(see Relethford, 2004a). We estimated the r2 and the 
standardized regression slopes of the spatial models and 
assessed their significance by using the t-statistic (Akaike 
information criterion could be an alternative measure to 
/2 for comparing model fit; Freckleton, 2009).

The success of these techniques for eliminating residual 
autocorrelation is not always guaranteed, because of 

model-fit problems and variation in the robustness of 
each technique against violations in some of their 
assumptions. For example, if the W matrix (i.e. the 
expected spatial structure) does not capture the true 
spatial processes underlying genetic variation, then the 
residual can still possess spatial autocorrelation (Diniz- 
Filho et al., 2003). Therefore, it is important to use some 
exploratory autocorrelation coefficient, such as Moran's 
I, to test whether the assumption of the spatial indepen
dence of the residuals of each spatial regression is still 
being violated or not (see Gittleman & Kot, 1990). For 
SEVM, the matrix was truncated based on the W matrix - 
i.e. the distances greater than 6092 km were equal to 0 - 
and the selection of the principal coordinates to be used 
in the model was based on minimizing residual Moran's I 
(see Griffith & Peres-Neto, 2006). We tested Moran's I in 
regression residuals at the five geographical distance 
classes and also computed the Euclidian distances 
between each residual correlogram and the null expec
tation, as a measure of the amount of autocorrelation still 
present in model residuals (so that a better technique will 
have a relatively small distance between the residual 
and null correlograms, indicating minimization of the 
autocorrelation).

The OLS analysis suggests that climate has a significant 
effect on patterns of form variation calculated with the 
first PC for cranial measurements (Table 2). The slope 
value of temperature is the largest one, followed by 
elevation and rainfall (although these last two are not 
statistically significant). The temperature shows a clear 
negative association with the PCI, with larger crania 
found in cooler regions, although some populations from 
Oceania are outliers in this relationship (Fig. 4). This is 
shown by the correlogram, which detected autocorrela
tion in residuals, showing a clear violation in the 
assumptions of a standard OLS (Fig. 3b; Table 2).

Results from spatial regression techniques are reported 
in Table 2. In general, all techniques show qualitatively 
the same result, in which the most important variable 
driving cranial variation is temperature; with partial 
standardized slopes ranging from -0.549 to -0.642. In all 
cases, these coefficients were highly statistically signifi
cant (P < 0.001, but see below). The regression slopes of 
model residual approaches (SAR, CAR and MA) are very 
similar to the OLS results, and the correlograms revealed 
similar levels of (high) autocorrelation in residuals. 
Conversely, the model structure approaches, i.e. TSAI, 
TSA2, ARM-response, ARM-mixed and SEVM, were 
more effective, on average, in minimizing residual spatial 
autocorrelation (Table 2). Unlike OLS, these techniques 
generate residuals with normal distribution.

Our results pointed out that although random factors 
are important to explain spatial inter-population differen
tiation in craniofacial characteristics in modern humans 
(supporting recent studies, e.g. Relethford, 1994, 2004a; 
Roseman, 2004), there is a significant correlation between 
craniofacial form and climate independent of spatial
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Table 2 Results of the regression analyses performed between PCI score and the environmental variables.

Regression models Technique

Slopes

Elevation Temperature Rainfall Moran / < 0.05 Distance from Ho

OLS 0.398 -0.231 -0.612* 0.058 3 0.288
Model residuals SAR 0.434 -0.220 -0.613* 0.060 3 0.258

CAR 0.468 -0.264 -0.635^ 0.061 3 0.251
MA 0.432 -0.222 -0.614* 0.060 3 0.263

Model structure TSA1 0.467 -0.265 -0.784* 0.225 1 0.096
TSA2 0.663 -0.104 -0.613 0.023 0 0.031
ARM-response 0.313 -0.173 -0.549* 0.033 1 0.089
ARM-mixed 0.350 -0.241 -0.594* 0.038 1 0.081
SEVM 0.474 -0.203 -0.642* 0.104 0 0.065

*P < 0.001.

Temperature

Fig. 4 Plot of PCI vs. mean annual temperature among male 
samples.

structure. These results also refuted the possibility that the 
observed correlation between craniofacial form and tem
perature could be due to a spurious correlation of each 
with the patterns of inter-regional difference generated by 
spatial structure. The large-scale pattern of Howells (1989) 
data set is mainly related to climate (Fig. 4), suggesting the 
importance of nonrandom factors to explain cranial 
diversification among human populations.

Performance of spatial regression models
Ordinary least squares technique, which does not incor
porate spatial information, makes the tacit assumption 
that all the populations studied are equally related to 
each other. In human population analyses there is a large 
amount of information that suggests the importance of 
geography in morphological variation, particularly in a 
worldwide scale (e.g. Relethford, 2004a; Roseman, 
2004), and independently of other climate and ecological 
variation. Therefore, the assumptions of OLS are not 
achieved by our data set. Nevertheless, under different 

circumstances these assumptions might not be com
pletely rejected. For example, if morphological traits 
evolve very rapidly in response to environmental fluc
tuations, we would never know the relationships among 
populations just by looking at the traits under study 
because spatial autocorrelation is absent. This could be 
true for some geographical regions with broad ecological 
variation and recent peopling (see Perez & Monteiro, 
2009). Some authors have suggested that spatial statis
tical techniques, as well as the phylogenetic comparative 
analysis, should only be used when there is spatial or 
phylogenetic autocorrelation in the morphological vari
able (see Garland et al., 2005); however, Rohlf (2006) 
pointed out that this introduces a conditional test, 
affecting the type I error.

Our example suggests that model residual approaches 
cannot adequately incorporate the spatial autocorrelation 
structure present in data set, using the weighting matrix. 
This is probably not due to problems with techniques 
per se, but to the difficulty in expressing complex spatial 
patterns in residuals in the weighting matrix employed 
by GLS techniques. In addition, these results stress the 
necessity to assume a more realistic model of spatial 
structuring (e.g. migration patterns and/or shared evo
lutionary history) for a better understanding of the 
relationship between morphological and ecological var
iation among human populations.

TSA2 and SEVM are the spatial regression techniques 
that were better capable of incorporating the spatial 
autocorrelation structures in our example, minimizing 
residual autocorrelation. However, TSA2 incorporates 
the geographical coordinates in the model structure and 
adjusts the quadratic function, with a total of five 
predictors (latitude and longitude and their quadratic 
expansions), thereby greatly affecting the statistical 
power of the regression model (inflating the type II 
error; Table 2). This technique can be useful to incorpo
rate broad-scale effects, but it is not usually very 
successful in incorporating local autocorrelation in resid
uals. In our example, the simultaneous incorporation of 
geography as a broad-scale quadratic trend, plus the 
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temperature (another broad-scale effect), generates a loss 
of statistical power and, consequently, the partial slope 
for temperature is not statistically significant (the oppo
site of what was found using every other techniques).

On the other hand, SEVM is the most flexible 
technique for dealing with patterns at multiple scales, 
and can add principal coordinates to minimize the spatial 
autocorrelation using explicitly the minimum Moran's I 
coefficient (Griffith & Peres-Neto, 2006; Peres-Neto, 
2006). The SEVM does not present the same problems 
as its phylogenetic version (phylogenetic eigenvector 
method; Diniz-Filho et al., 1998) where the fit of mor
phological and phylogenetic variation will always be 
perfect (r2 = 1) and there will be no residual variation left 
to investigate association with ecological variables when 
we incorporate more principal coordinates to the regres
sion model (Diniz-Filho et al., 1998; Rohlf, 2001). This is 
because the phylogenetic eigenvector method uses path 
length distances (patristic distances) on the tree to define 
the W matrix, which have properties very different from 
that of the Euclidean distance matrices usually used in 
spatial analyses (Rohlf, 2001). Conversely, in the spatial 
version of SEVM the distance between points in space 
has a Euclidean metric and is truncated to account for 
short distance effects only (Griffith, 2003; Griffith & 
Peres-Neto, 2006); therefore, the fit of morphological and 
spatial variation will not always be perfect.

The result of our example agrees with the recent 
comparative evaluation by Bini et al. (2009) and Diniz- 
Filho et al. (2009), in the sense that the performance of 
spatial regression models is quite idiosyncratic and data 
dependent. From our analyses, it is evident that model 
structure approaches (especially SEVM) seem to work 
better for our data set than those incorporating autocor
relation in model residuals (see also Diniz-Filho et al., 
2009), a result which is opposed to those found by Bini 
et al. (2009) when analysing 99 macroecological data 
sets. This may be due to the strong endogeneous 
component in our data set (also found in the simulated 
data set used by Diniz-Filho et al., 2009), whereas, in 
macroecological data, exogenous components are usually 
dominant (Hawkins et al., 2007; Bini et al., 2009).

Thus, in general, the results showed here are in 
agreement with previous studies in suggesting that 
although model structure regression techniques are 
useful in our evolutionary and ecological scenario, model 
residuals could be useful in different ecological scenarios 
where exogenous components are dominant.

Intra-specific spatial regression models 
and inter-specific comparative 
phylogenetic methods
Autocorrelation is common in nature and it mainly 
occurs along three dimensions: spatial, temporal and 
phylogenetic variation (Ives & Zhu, 2006; Peres-Neto, 
2006). Therefore, the regression techniques have been 

generalized to incorporate these different sources of 
autocorrelation into the residuals or the structure of the 
regression model, such as in the comparative phyloge
netic methods (Cheverud et al., 1985; Grafen, 1989; 
Martins & Hansen, 1997; Diniz-Filho et al., 1998; Rohlf, 
2001; Garland et al., 2005). In comparative phylogenetic 
methods, the generalized least squares technique was 
proposed by Grafen (1989) and Martins & Hansen (1997) 
and is now the current standard comparative tool 
(Garland et al., 2005; Ives & Zhu, 2006; Rohlf, 2006; 
Freckleton, 2009). On the other hand, applications of 
autoregressive methods in phylogenetic comparative 
analyses, starting with studies by Cheverud et al. (1985) 
and Gittleman & Kot (1990), are based on the pure 
autoregression model (i.e. y = pWy + e). Finally, SEVM 
method is called eigenvector method (PVR; Diniz-Filho 
et al., 1998) in phylogenetic comparative analysis, and it 
employs principal coordinates or eigenvectors from a 
phylogenetic distance matrix or from the weighting 
matrix in the regression model.

Martins & Hansen (1997) and Rohlf (2001) showed 
how a phylogenetic tree can be used to construct the 
expected covariance matrix or weighting matrix for taxa, 
when different models of evolutionary divergence are 
assumed, by means of an algorithm similar to the one 
used to compute a matrix of cophenetic values (Sokal & 
Rohlf, 1986; Rohlf, 2001). Assuming the Brownian 
motion model, the W matrix for the tree in Fig 5 is

/ uq + uq+2 uq+2 ° \lVl+2 uq + IV1+2 ° •
\ o 0 Uq/

Although we stress the use of spatial regression
techniques, these phylogenetic approaches could be used 
to incorporate phylogenetic autocorrelation in inter
populations studies.

Concluding remarks
Eco-evolutionary studies at the intra-specific level 
have been recently revitalized (Carroll et al., 2007; Ezard 
et al., 2009; Pelletier et al., 2009) as a consequence of

2

1 w2
Wl I---- —

w1+2

Fig. 5 Phylogenetic tree with three terminal populations. The 
quantities wlf w2, w3 and w1+2 are the lengths of the branches 
supporting the populations indicated by their subscripts (modified 
after Rohlf, 2001). 
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recognizing that environment-related morphological 
changes accompany most evolutionary changes 
(Badyaev, 2005). Here, we show that morphological 
diversification of Homo sapiens could be explained as the 
result of nonrandom factors acting closely related to 
climatic variation (also see Beals et al., 1984; Roseman, 
2004; Harvati & Weaver, 2006; Perez & Monteiro, 2009). 
In population studies, Sokal (1984) stressed that 
conventional association analyses of morphometric and 
environmental data sets must be corroborated by 
incorporating spatial autocorrelation in regression mod
els. However, to date no systematic approaches have 
been used to solve this problem at the intra-specific level. 
In this paper, we illustrate several regression techniques 
which take into account spatial autocorrelation.

Several works have pointed out that although auto
correlation can introduce bias in regression models, the 
processes that generate spatial autocorrelation can also be 
interesting on their own (Legendre, 1993; Peres-Neto, 
2006). For instance, gene flow restricted by the geo
graphical distance, which may cause spatial autocorrela
tion in form variation among populations, is interesting 
as an evolutionary process (Sokal & Oden, 1978; Sokal & 
Wartenberg, 1983; Sokal et al., 1989b; Relethford, 2004a, 
2008); although it causes bias in a model that tests for 
relationships between morphological and environmental 
variables. Therefore, spatial autocorrelation must be 
studied to explore the spatial structure underlying 
human genetic or phenotypic variation (Sokal & Oden, 
1978; Barbujani, 2000; Relethford, 2008) and incorpo
rated in regression models to provide more accurate 
statistical estimates of the relationships between mor
phological and environmental variables (Rohlf, 2006; 
Dormann et al., 2007).

The regression techniques used in our example pro
vided qualitatively similar results, but this does not 
necessarily indicate that all techniques are absolutely 
equivalent in any situation (Legendre, 1993; Legendre & 
Legendre, 2003). Under certain circumstances, the slopes 
can be qualitatively affected and the relative order of 
importance of the explanatory variables may shift 
between methods (see Lennon, 2000; Kiilin, 2007), 
although it is still difficult to predict the situation in 
which this occurs (Bini et al., 2009).

This revision highlights some methodological and 
conceptual topics in regression statistical techniques that 
need more study. Particularly, we need more realistic 
computer simulations to determine the performance of 
these statistical techniques in relation to type I and II 
errors (Rohlf, 2001; Diniz-Filho et al., 2009). In addition, 
as all techniques assume spatial stationarity (i.e. spatial 
autocorrelation and effects of ecological correlates are 
constant across regions; Dormann et al., 2007), it is 
necessary to develop techniques that consider the spatial 
variation in autocorrelation. Finally, we require expand
ing the discussion regarding alternative approaches to 
explore the underlying environmental variables and 

nonrandom factors that generate morphological varia
tion (e.g. Desdevises et al., 2003; Peres-Neto, 2006).

The spatial regression techniques described and applied 
here are uncommon in population morphometric studies 
(but see Cheverud & Dow, 1985) and promise a new 
avenue for understanding the origin of morphological 
variation among populations. However, we remark that 
the change in statistical methodology should be followed 
by several conceptual advances. It must be clear that 
spatial regression techniques are correlational, and the 
cause of the relationship between morphology and 
ecology from comparative data can only be suggested 
(Pucciarelli, 1974; Garland et al., 2005). Although non
random factors could be the probable cause of morpho
logical divergence among populations, it is difficult to 
know the specific ecological factor shaping inter-popula
tion morphological variation. This is mainly because of 
the conceptual problems underlying correlation and 
causation (Shipley, 2000), and not necessarily due to 
problems of statistical techniques. Spatial regressions are 
mainly designed to deal with inflated type I errors due to 
spatial autocorrelation, and cannot solve the problem of 
broad-scale and direct-indirect associations. For this 
reason, understanding the causes of the relationship 
between morphology and environment requires the use 
of both comparative and experimental approaches.
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