
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP
Physics Letters B 575 (2003) 208–220
www.elsevier.com/locate/physletb

Search for charged Higgs bosons at LEP

L3 Collaboration

P. Achard t, O. Adriani q, M. Aguilar-Benitez x, J. Alcaraz x, G. Alemanni v, J. Allaby r,
A. Aloisio ab, M.G. Alviggi ab, H. Anderhub at, V.P. Andreev f,ag, F. Anselmo h,

A. Arefiev aa, T. Azemoon c, T. Aziz i, P. Bagnaia al, A. Bajo x, G. Baksay y, L. Baksay y,
S.V. Baldew b, S. Banerjee i, Sw. Banerjee d, A. Barczyk at,ar, R. Barillère r, P. Bartalini v,

M. Basile h, N. Batalova aq, R. Battiston af, A. Bay v, F. Becattini q, U. Becker m,
F. Behner at, L. Bellucci q, R. Berbeco c, J. Berdugo x, P. Berges m, B. Bertucci af,

B.L. Betev at, M. Biasini af, M. Biglietti ab, A. Biland at, J.J. Blaising d, S.C. Blyth ah,
G.J. Bobbink b, A. Böhm a, L. Boldizsar l, B. Borgia al, S. Bottai q, D. Bourilkov at,

M. Bourquin t, S. Braccini t, J.G. Branson an, F. Brochu d, J.D. Burger m, W.J. Burger af,
X.D. Cai m, M. Capell m, G. Cara Romeo h, G. Carlino ab, A. Cartacci q, J. Casaus x,

F. Cavallari al, N. Cavallo ai, C. Cecchi af, M. Cerrada x, M. Chamizo t, Y.H. Chang av,
M. Chemarin w, A. Chen av, G. Chen g, G.M. Chen g, H.F. Chen u, H.S. Chen g,
G. Chiefari ab, L. Cifarelli am, F. Cindolo h, I. Clare m, R. Clare ak, G. Coignet d,
N. Colino x, S. Costantini al, B. de la Cruz x, S. Cucciarelli af, J.A. van Dalen ad,

R. de Asmundis ab, P. Déglon t, J. Debreczeni l, A. Degré d, K. Dehmelt y, K. Deiters ar,
D. della Volpe ab, E. Delmeire t, P. Denes aj, F. DeNotaristefani al, A. De Salvo at,

M. Diemoz al, M. Dierckxsens b, C. Dionisi al, M. Dittmar at, A. Doria ab, M.T. Dova j,5,
D. Duchesneau d, M. Duda a, B. Echenard t, A. Eline r, A. El Hage a, H. El Mamouni w,
A. Engler ah, F.J. Eppling m, P. Extermann t, M.A. Falagan x, S. Falciano al, A. Favara ae,

J. Fay w, O. Fedin ag, M. Felcini at, T. Ferguson ah, H. Fesefeldt a, E. Fiandrini af,
J.H. Field t, F. Filthaut ad, P.H. Fisher m, W. Fisher aj, I. Fisk an, G. Forconi m,

K. Freudenreich at, C. Furetta z, Yu. Galaktionov aa,m, S.N. Ganguli i, P. Garcia-Abia x,
M. Gataullin ae, S. Gentile al, S. Giagu al, Z.F. Gong u, G. Grenier w, O. Grimm at,

M.W. Gruenewald p, M. Guida am, R. van Gulik b, V.K. Gupta aj, A. Gurtu i, L.J. Gutay aq,
D. Haas e, D. Hatzifotiadou h, T. Hebbeker a, A. Hervé r, J. Hirschfelder ah, H. Hofer at,

M. Hohlmann y, G. Holzner at, S.R. Hou av, Y. Hu ad, B.N. Jin g, L.W. Jones c,
P. de Jong b, I. Josa-Mutuberría x, D. Käfer a, M. Kaur n, M.N. Kienzle-Focacci t,

J.K. Kim ap, J. Kirkby r, W. Kittel ad, A. Klimentov m,aa, A.C. König ad, M. Kopal aq,

0370-2693  2003 Published by Elsevier B.V.
doi:10.1016/j.physletb.2003.09.057

Open access under CC BY 
license.

https://core.ac.uk/display/296409889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/


L3 Collaboration / Physics Letters B 575 (2003) 208–220 209
V. Koutsenko m,aa, M. Kräber at, R.W. Kraemer ah, A. Krüger as, A. Kunin m,
P. Ladron de Guevara x, I. Laktineh w, G. Landi q, M. Lebeau r, A. Lebedev m,

P. Lebrun w, P. Lecomte at, P. Lecoq r, P. Le Coultre at, J.M. Le Goff r, R. Leiste as,
M. Levtchenko z, P. Levtchenko ag, C. Li u, S. Likhoded as, C.H. Lin av, W.T. Lin av,

F.L. Linde b, L. Lista ab, Z.A. Liu g, W. Lohmann as, E. Longo al, Y.S. Lu g, C. Luci al,
L. Luminari al, W. Lustermann at, W.G. Ma u, L. Malgeri t, A. Malinin aa, C. Maña x,
J. Mans aj, J.P. Martin w, F. Marzano al, K. Mazumdar i, R.R. McNeil f, S. Mele r,ab,

L. Merola ab, M. Meschini q, W.J. Metzger ad, A. Mihul k, H. Milcent r, G. Mirabelli al,
J. Mnich a, G.B. Mohanty i, G.S. Muanza w, A.J.M. Muijs b, B. Musicar an, M. Musy al,
S. Nagy o, S. Natale t, M. Napolitano ab, F. Nessi-Tedaldi at, H. Newman ae, A. Nisati al,

T. Novak ad, H. Nowak as, R. Ofierzynski at, G. Organtini al, I. Pal aq C. Palomares x,
P. Paolucci ab, R. Paramatti al, G. Passaleva q, S. Patricelli ab, T. Paul j, M. Pauluzzi af,
C. Paus m, F. Pauss at, M. Pedace al, S. Pensotti z, D. Perret-Gallix d, B. Petersen ad,
D. Piccolo ab, F. Pierella h, M. Pioppi af, P.A. Piroué aj, E. Pistolesi z, V. Plyaskin aa,

M. Pohl t, V. Pojidaev q, J. Pothier r, D. Prokofiev ag, J. Quartieri am, G. Rahal-Callot at,
M.A. Rahaman i, P. Raics o, N. Raja i, R. Ramelli at, P.G. Rancoita z, R. Ranieri q,
A. Raspereza as, P. Razis ac, D. Ren at, M. Rescigno al, S. Reucroft j, S. Riemann as,
K. Riles c, B.P. Roe c, L. Romero x, A. Rosca as, C. Rosenbleck a, S. Rosier-Lees d,

S. Roth a, J.A. Rubio r, G. Ruggiero q, H. Rykaczewski at, A. Sakharov at, S. Saremi f,
S. Sarkar al, J. Salicio r, E. Sanchez x, C. Schäfer r, V. Schegelsky ag, H. Schopper au,

D.J. Schotanus ad, C. Sciacca ab, L. Servoli af, S. Shevchenko ae, N. Shivarov ao,
V. Shoutko m, E. Shumilov aa, A. Shvorob ae, D. Son ap, C. Souga w, P. Spillantini q,

M. Steuer m, D.P. Stickland aj, B. Stoyanov ao, A. Straessner t, K. Sudhakar i,
G. Sultanov ao, L.Z. Sun u, S. Sushkov a, H. Suter at, J.D. Swain j, Z. Szillasi y,3,
X.W. Tang g, P. Tarjan o, L. Tauscher e, L. Taylor j, B. Tellili w, D. Teyssier w,

C. Timmermans ad, Samuel C.C. Ting m, S.M. Ting m, S.C. Tonwar i, J. Tóth l, C. Tully aj,
K.L. Tung g J. Ulbricht at, E. Valente al, R.T. Van de Walle ad, R. Vasquez aq,

V. Veszpremi y, G. Vesztergombi l, I. Vetlitsky aa, D. Vicinanza am, G. Viertel at,
S. Villa ak, M. Vivargent d, S. Vlachos e, I. Vodopianov y, H. Vogel ah, H. Vogt as,

I. Vorobiev ah,aa, A.A. Vorobyov ag, M. Wadhwa e, Q. Wang ad X.L. Wang u, Z.M. Wang u,
M. Weber a, P. Wienemann a, H. Wilkens ad, S. Wynhoff aj, L. Xia ae, Z.Z. Xu u,
J. Yamamoto c, B.Z. Yang u, C.G. Yang g, H.J. Yang c, M. Yang g, S.C. Yeh aw,

An. Zalite ag, Yu. Zalite ag, Z.P. Zhang u, J. Zhao u, G.Y. Zhu g, R.Y. Zhu ae,
H.L. Zhuang g, A. Zichichi h,r,s, B. Zimmermann at, M. Zöller a

a III. Physikalisches Institut, RWTH, D-52056 Aachen, Germany 1
b National Institute for High Energy Physics, NIKHEF, and University of Amsterdam, NL-1009 DB Amsterdam, The Netherlands

c University of Michigan, Ann Arbor, MI 48109, USA
d Laboratoire d’Annecy-le-Vieux de Physique des Particules, LAPP, IN2P3-CNRS, BP 110, F-74941 Annecy-le-Vieux cedex, France

e Institute of Physics, University of Basel, CH-4056 Basel, Switzerland



210 L3 Collaboration / Physics Letters B 575 (2003) 208–220
f Louisiana State University, Baton Rouge, LA 70803, USA
g Institute of High Energy Physics, IHEP, 100039 Beijing, China 6

h University of Bologna and INFN-Sezione di Bologna, I-40126 Bologna, Italy
i Tata Institute of Fundamental Research, Mumbai (Bombay) 400 005, India

j Northeastern University, Boston, MA 02115, USA
k Institute of Atomic Physics and University of Bucharest, R-76900 Bucharest, Romania

l Central Research Institute for Physics of the Hungarian Academy of Sciences, H-1525 Budapest 114, Hungary 2
m Massachusetts Institute of Technology, Cambridge, MA 02139, USA

n Panjab University, Chandigarh 160 014, India
o KLTE-ATOMKI, H-4010 Debrecen, Hungary 3

p Department of Experimental Physics, University College Dublin, Belfield, Dublin 4, Ireland
q INFN-Sezione di Firenze and University of Florence, I-50125 Florence, Italy

r European Laboratory for Particle Physics, CERN, CH-1211 Geneva 23, Switzerland
s World Laboratory, FBLJA Project, CH-1211 Geneva 23, Switzerland

t University of Geneva, CH-1211 Geneva 4, Switzerland
u Chinese University of Science and Technology, USTC, Hefei, Anhui 230 029, China 6

v University of Lausanne, CH-1015 Lausanne, Switzerland
w Institut de Physique Nucléaire de Lyon, IN2P3-CNRS, Université Claude Bernard, F-69622 Villeurbanne, France

x Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, E-28040 Madrid, Spain 4
y Florida Institute of Technology, Melbourne, FL 32901, USA

z INFN-Sezione di Milano, I-20133 Milan, Italy
aa Institute of Theoretical and Experimental Physics, ITEP, Moscow, Russia
ab INFN-Sezione di Napoli and University of Naples, I-80125 Naples, Italy

ac Department of Physics, University of Cyprus, Nicosia, Cyprus
ad University of Nijmegen and NIKHEF, NL-6525 ED Nijmegen, The Netherlands

ae California Institute of Technology, Pasadena, CA 91125, USA
af INFN-Sezione di Perugia and Università Degli Studi di Perugia, I-06100 Perugia, Italy

ag Nuclear Physics Institute, St. Petersburg, Russia
ah Carnegie Mellon University, Pittsburgh, PA 15213, USA

ai INFN-Sezione di Napoli and University of Potenza, I-85100 Potenza, Italy
aj Princeton University, Princeton, NJ 08544, USA

ak University of Californa, Riverside, CA 92521, USA
al INFN-Sezione di Roma and University of Rome, “La Sapienza”, I-00185 Rome, Italy

am University and INFN, Salerno, I-84100 Salerno, Italy
an University of California, San Diego, CA 92093, USA

ao Bulgarian Academy of Sciences, Central Lab. of Mechatronics and Instrumentation, BU-1113 Sofia, Bulgaria
ap The Center for High Energy Physics, Kyungpook National University, 702-701 Taegu, Republic of Korea

aq Purdue University, West Lafayette, IN 47907, USA
ar Paul Scherrer Institut, PSI, CH-5232 Villigen, Switzerland

as DESY, D-15738 Zeuthen, Germany
at Eidgenössische Technische Hochschule, ETH Zürich, CH-8093 Zürich, Switzerland

au University of Hamburg, D-22761 Hamburg, Germany
av National Central University, Chung-Li, Taiwan, ROC

aw Department of Physics, National Tsing Hua University, Taiwan, ROC

Received 27 August 2003; received in revised form 8 September 2003; accepted 19 September 2003

Editor: L. Rolandi

Abstract

A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at centre-of-
mass energies between 189 and 209 GeV, corresponding to an integrated luminosity of 629.4 pb−1. Decays into a charm and
a strange quark or into a tau lepton and its neutrino are considered. No significant excess is observed and lower limits on the
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mass of the charged Higgs boson are derived at the 95% confidence level. They vary from 76.5 to 82.7 GeV, as a function of the
H± → τν branching ratio.
 2003 Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

In the Standard Model of the electroweak interac-
tions [1] the masses of bosons and fermions are ex-
plained by the Higgs mechanism [2]. This implies
the existence of one doublet of complex scalar fields
which, in turn, leads to a single neutral scalar Higgs
boson. To date, this Higgs boson has not been di-
rectly observed [3,4]. Some extensions to the Stan-
dard Model contain more than one Higgs doublet [5],
and predict Higgs bosons which can be lighter than
the Standard Model one and accessible at LEP. In par-
ticular, models with two complex Higgs doublets pre-
dict two charged Higgs bosons, H±, which can be pair-
produced in e+e− collisions.

The charged Higgs boson is expected to decay
through H+ → cs̄ or H+ → τ+ντ ,7 with a branching
ratio which is a free parameter of the models. The
process e+e− → H+H− gives then rise to three
different signatures: cs̄c̄s, cs̄τ−ν̄τ and τ+ντ τ−ν̄τ .
These experimental signatures have to be disentangled
from the large background of the e+e− → W+W−
process, characterised by similar final states.

Data collected at centre-of-mass energies
√

s =
189–209 GeV are analysed here, superseding previous
results [6]. Data from

√
s = 130–183 GeV [7] are

included to obtain the final results. Results from other
LEP experiments are given in Ref. [8].

1 Supported by the German Bundesministerium für Bildung,
Wissenschaft, Forschung und Technologie.

2 Supported by the Hungarian OTKA fund under contract
numbers T019181, F023259 and T037350.

3 Also supported by the Hungarian OTKA fund under contract
number T026178.

4 Supported also by the Comisión Interministerial de Ciencia y
Tecnología.

5 Also supported by CONICET and Universidad Nacional de La
Plata, CC 67, 1900 La Plata, Argentina.

6 Supported by the National Natural Science Foundation of
China.

7 The inclusion of the charge conjugate reactions is implied
throughout this Letter.
The analyses do not depend of flavour tagging
variables and are separately optimised for each of the
three possible signatures.

2. Data and Monte Carlo samples

The search for pair-produced charged Higgs bosons
is performed using 629.4 pb−1 of data collected in
the years from 1998 to 2000 with the L3 detector
[9] at LEP, at several average centre-of-mass energies,
detailed in Table 1.

The charged Higgs cross section is calculated using
the HZHA Monte Carlo program [10]. As an example,
at

√
s = 206 GeV it varies from 0.28 pb for a Higgs

mass, mH± , of 70 GeV to 0.17 pb for mH± = 80 GeV.
To optimise selections and calculate efficiencies, sam-
ples of e+e− → H+H− events are generated with the
PYTHIA Monte Carlo program [11] for mH± between
50 and 100 GeV, in steps of 5 GeV, and between 75
and 80 GeV, in steps of 1 GeV. About 1000 events
for each final state are generated at each Higgs mass.
For background studies, the following Monte Carlo
generators are used: KK2f [12] for e+e− → qq̄(γ ),
e+e− → µ+µ−(γ ) and e+e− → τ+τ−(γ ), BHWIDE
[13] for e+e− → e+e−, PYTHIA for e+e− → ZZ and
e+e− → Ze+e−, YFSWW [14] for e+e− → W+W−
and PHOJET [15] and DIAG36 [16] for hadron and
lepton production in two-photon interactions, respec-
tively. The L3 detector response is simulated using the
GEANT program [17] which takes into account the
effects of energy loss, multiple scattering and show-
ering in the detector. Time-dependent detector ineffi-
ciencies, as monitored during the data taking period,
are included in the simulations.

3. Data analysis

The analyses for all three final states are updated
since our previous publications at lower centre-of-
mass energies [6,7]: the searches in the H+H− → cs̄c̄s

http://creativecommons.org/licenses/by/3.0/
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Table 1
Average centre-of-mass energies and corresponding integrated luminosities

√
s (GeV) 188.6 191.6 195.5 199.5 201.7 204.9 206.4 208.0

Luminosity (pb−1) 176.8 29.8 84.2 83.3 37.2 79.0 130.8 8.3
and cs̄τ−ν̄τ channels are based on a mass depen-
dent likelihood interpretation of data samples selected
[18] for the studies of W pair-production, while a dis-
criminant variable is introduced for the search in the
τ+ντ τ

−ν̄τ channel. These analyses are described be-
low.

3.1. Search in the H+H− → cs̄c̄s channel

The search in the H+H− → cs̄c̄s channel proceeds
from a selection of high multiplicity events with bal-
anced transverse and longitudinal momenta and with a
visible energy which is a large fraction of

√
s. These

criteria reject events from low-multiplicity processes
like lepton pair-production, events from two-photon
interactions and pair-production of W bosons where
at least one boson decays into leptons. The events
are forced into four jets by means of the DURHAM
algorithm [19] and a neural network [18] discrimi-
nates between events which are compatible with a
four-jet topology and those from the large cross sec-
tion e+e− → qq̄(γ ) process in which four-jet events
originate from hard gluon radiation. The neural net-
work inputs are the event spherocity, the energies and
widths of the most and least energetic jets, the differ-
ence between the energies of the second and third most
energetic jets, the minimum multiplicity of calorimet-
ric clusters and charged tracks for any jet, the value
of the y34 parameter of the DURHAM algorithm and
the compatibility with energy–momentum conserva-
tion in e+e− collisions. After a cut on the output
of the neural network, two constrained fits are per-
formed. The first four-constraint fit enforces energy
and momentum conservation, modifying the jet ener-
gies and directions. The second five-constraint (5C)
fit imposes the additional constraint of the production
of two equal mass particles. Among the three pos-
sible jet pairings, the one is retained which is most
compatible with this equal mass hypothesis. Events
with a low probability for the fit hypotheses are re-
moved from the sample and a total of 5156 events
are observed in data while 5112 are expected from
Standard Model processes. The corresponding signal
efficiencies are between 70% and 80%, for mH± =
60–95 GeV.

Likelihood variables [20] are built to discriminate
four-jet events compatible with charged Higgs produc-
tion from the dominating background from W pair-
production. A different likelihood is prepared for each
simulated Monte Carlo sample corresponding to a dif-
ferent Higgs boson mass. Seven variables are included
in the likelihoods:

• the minimum opening angle between paired jets;
• the difference between the largest and smallest jet

energies;
• the difference between the di-jet masses;
• the output of the neural network for the selection

of four-jet events;
• the absolute value of the cosine of the polar angle

of the thrust vector;
• the cosine of the polar angle at which the positive

charged8 boson is produced;
• the value of the quantity 2 ln |M|, where M is

the matrix element for the e+e− → W+W− →
four fermions process from the EXCALIBUR [22]
Monte Carlo program, calculated using the four-
momenta of the reconstructed jets.

Fig. 1(a)–(c) shows the distributions of the last
three variables while Fig. 1(d) presents the distribution
of the likelihood variable for mH± = 70 GeV. A cut
at 0.7 on this variable, which maximizes the signal
sensitivity, is applied as a final selection criterion, for
all mass hypotheses. The numbers of observed and
expected events are given in Table 2 and the selection
efficiencies in Table 3. The main contributions to
the background come from hadronic W-pair decays
(70%) and from the e+e− → qq̄(γ ) process (26%).

8 Charge assignment is based on jet-charge techniques [21].
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Fig. 1. Distributions for the H+H− → cs̄c̄s channel of: (a) the absolute value of the cosine of the polar angle of the thrust axis, (b) the cosine of
the polar angle of the positively charged boson, (c) the logarithm of the squared matrix element for the e+e− → W+W− process and (d) the
selection likelihood for mH± = 70 GeV. The points represent the data and the open histogram the expected background. The hatched histogram
indicates the expected distribution for a signal with mH± = 70 GeV and Br(H± → τν) = 0, multiplied by a factor of 10. The arrow in (d)
shows the position of the cut.
Fig. 2 shows the 5C mass of the pair-produced bosons
before and after the cut on the final likelihoods. Peaks
from pair-production of W as well as Z bosons are
visible.

3.2. Search in the H+H− → cs̄τ−ν̄τ channel

The search in the H+H− → cs̄τ−ν̄τ channel se-
lects events with high multiplicity, two hadronic jets
and a tau candidate. Tau candidates can be identi-
fied either as electrons or muons with momentum in-
compatible with that expected for leptons originat-
ing from direct semileptonic decay of W pairs, or
with narrow, low multiplicity jets with at least one
charged track, singled out from the hadronic back-
ground with a neural network [18]. The tau energy is
reconstructed by imposing four-momentum conserva-
tion and enforcing the hypothesis of the production
of two equal mass particles. The events must have
a transverse missing momentum of at least 20 GeV
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Fig. 2. Reconstructed mass spectra in the H+H− → cs̄c̄s channel,
for data and expected background, for events (a) before, and
(b) after, the cut on the likelihoods. The points represent the data
and the open histogram the expected background. The expected
distribution for mH± = 70 GeV and Br(H± → τν) = 0 is shown
as the hatched histogram.

and the absolute value of the cosine of the polar
angle of the missing momentum is required to be
less than 0.9. Finally, the di-jet invariant mass is re-
quired to be less than 100 GeV and the mass recoil-
ing against the di-jet system less than 130 GeV, thus
selecting 1026 events in data while 979 are expected
from Standard Model processes, mainly from W pair-
production where one of the W bosons decays into lep-
Table 2
Number of observed data events and background expectations in
the three analysis channels. The uncertainty on the background
expectations is estimated to be 5%. The numbers of expected
signal events for mH± = 70 GeV and Br(H± → τν) = 0, 0.5 and
1 are also given for the cs̄c̄s, cs̄τ−ν̄τ and τ+ντ τ−ν̄τ channels,
respectively

Channel
cs̄c̄s cs̄τ−ν̄τ τ+ντ τ−ν̄τ

Data 2296 442 141
Background 2228 464 141
Signal 100 76 50

Table 3
Selection efficiencies for various charged Higgs masses. The effi-
ciencies are largely independent of the centre-of-mass energy. The
uncertainty on each efficiency is estimated to be 2%

Channel Selection efficiency (%)
mH± = 60 GeV 70 GeV 80 GeV 90 GeV 95 GeV

cs̄c̄s 62 62 50 58 64
cs̄τ−ν̄τ 38 51 43 43 39
τ+ντ τ−ν̄τ 26 30 33 34 36

tons and the other into hadrons. The signal efficiency
is about 50%.

To discriminate the signal from the background,
mass dependent likelihoods [20] are built which con-
tain eight variables:

• the di-jet acoplanarity;
• the angle of the tau flight direction with respect

to that of its parent boson in the rest frame of the
latter;

• the di-jet mass;
• the quantity 2 ln |M| calculated using the four-

momenta of the reconstructed jets and tau as well
as the missing momentum and energy;

• the transverse momentum of the event, normalised
to

√
s;

• the polar angle of the hadronic system, multiplied
by the charge of the reconstructed tau;

• the sum
P

θ of the angles between the tau candi-
date and the nearest jet and between the missing
momentum and the nearest jet;

• the energy of the tau candidate, calculated in
the rest frame of its parent boson and scaled
by

√
s.
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Fig. 3. Distribution for the H+H− → cs̄τ−ν̄τ channel of: (a) the cosine of the polar angle of the hadron system multiplied by the charge
of the tau candidate, (b) the sum of the angles between the tau candidate and the nearest jet and between the missing momentum and the
nearest jet, (c) the scaled energy of the tau candidate in the rest frame of the parent boson and (d) the selection likelihood for mH± = 70 GeV.
The points represent the data and the open histogram the expected background. The hatched histogram indicates the expected distribution for
mH± = 70 GeV and Br(H± → τν) = 0.5, multiplied by a factor of 5. The arrow in (d) shows the position of the cut.
The distributions of the last three variables are
shown in Fig. 3(a)–(c). Fig. 3(d) presents an ex-
ample of the distributions of the likelihood variable
for mH± = 70 GeV for data, background and signal
Monte Carlo. A cut at 0.6 is applied for all likeli-
hoods. This cut corresponds to the largest sensitivity
to a charged Higgs signal. Table 2 gives the num-
bers of observed and expected events, while the se-
lection efficiencies are given in Table 3. Over 95% of
the background is due to W pair-production. Fig. 4
shows the reconstructed mass of the pair-produced
bosons before and after the cut on the final likeli-
hoods.

3.3. Search in the H+H− → τ+ντ τ
−ν̄τ channel

The signature for the leptonic decay channel is a
pair of tau leptons. These are identified either via their
decay into electrons or muons, or as narrow jets.
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Fig. 4. Reconstructed mass spectra in the H+H− → cs̄τ−ν̄τ

channel, for data and expected background, for events (a) before,
and (b) after, the cut on the likelihoods. The points represent the
data and the open histogram the expected background. The expected
distribution for mH± = 70 GeV and Br(H± → τν) = 0.5 is shown
as the hatched histogram.

The selection criteria are similar to those used at
lower

√
s [6,7]. Low multiplicity events with large

missing energy and momentum are retained. To re-
duce lepton-pair background, an upper cut is placed
on the value of the event collinearity angle, ξ , de-
fined as the maximum angle between any pair of
tracks. The distribution of this variable is shown
in Fig. 5(a). The contribution from cosmic muons
is reduced by making use of information from the
time-of-flight system. Fig. 5(b) presents the distri-
bution of the scaled visible energy, Evis/

√
s, for

events on which all other selection criteria are ap-
plied.

The analysis is modified with respect to those
previously published [6,7] in that the normalised
transverse missing momentum of the event, Pt/Evis,
whose distribution is shown in Fig. 5(c), is used as a
linear discriminant variable on which no cut is applied.

The efficiency of the H+H− → τ+ντ τ
−ν̄τ selec-

tion for several Higgs masses is listed in Table 3.
The numbers of observed and expected events are pre-
sented in Table 2. The background is mainly formed
by W-pair production (60%), two-photon interactions
(26%) and lepton pair-production (9%).

4. Results

The number of selected events in each decay chan-
nel is consistent with the number of events expected
from Standard Model processes. A technique based on
a log-likelihood ratio [4] is used to calculate a confi-
dence level (CL) that the observed events are consis-
tent with background expectations. For the cs̄c̄s and
cs̄τ−ν̄τ channels, the reconstructed mass distributions,
shown in Figs. 2(b) and 4(b), are used in the calcula-
tion, whereas for the τ+ντ τ

−ν̄τ channel, the distribu-
tion of the normalised transverse missing momentum,
shown in Fig. 5(c), is used.

The systematic uncertainties on the background
level and the signal efficiencies are included in the
confidence level calculation. These are due to finite
Monte Carlo statistics and to the uncertainty on the
background normalisation. The former uncertainty is
5% for the background and 2% for the signal Monte
Carlo samples. The uncertainty on the background
normalisation is 3% for the H+H− → cs̄c̄s chan-
nel and 2% for the cs̄τ−ν̄τ and τ+ντ τ

−ν̄τ chan-
nels. The systematic uncertainty on the signal effi-
ciency due to the selection procedure is estimated by
varying the selection criteria and is found to be less
than 1%. These systematic uncertainties decrease the
mH± sensitivity of the combined analysis by about
200 MeV.

Fig. 6 compares the resulting background confi-
dence level, 1 − CLb , for the data to the expectation in
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Fig. 5. Distribution for the H+H− → τ+ντ τ−ν̄τ channel of: (a) the event collinearity angle, ξ , (b) the scaled visible energy and (c) the
normalised transverse missing momentum of the event. In (a) and (b) all other selection criteria are applied and the arrows indicate the cut on
the displayed variable. The points represent the data and the open histogram the expected background. The hatched histograms indicate the
expected signal distributions for mH± = 70 GeV and Br(H± → τν) = 1.
the absence of a signal, for three values of the H± →
τν branching ratio: Br(H± → τν) = 0, 0.5 and 1. The
68.3% and 95.4% probability bands expected in the
absence of a signal are also displayed and denoted as
1σ and 2σ , respectively. A slight excess of data ap-
pears around mH± = 69 GeV for Br(H± → τν) = 0,
as previously observed [6]. It is compatible with a
2.5 σ upward fluctuation in the background. The ex-
cess is also compatible with a 2.9 σ downward fluctua-
tion of the signal.9 As observed in Fig. 6(b) and (c), no
excess is present in the cs̄τ−ν̄τ and τ+ντ τ−ν̄τ chan-
nels around mH± = 69 GeV. Therefore, the cs̄c̄s excess
is interpreted as a statistical fluctuation in the back-
ground and lower limits at the 95% CL on mH± are

9 As an example, for Br(H± → τν) = 0.1, these figures are 1.8σ

and 2.7σ , respectively.
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Fig. 6. The background confidence level, 1 − CLb , as a function of mH± for the data (solid line) and for the expectation in the absence of a
signal (dashed line), for three values of the H± → τν branching ratio. The shaded areas represent the symmetric 1σ and 2σ probability bands
expected in the absence of a signal.
derived [4] as a function of Br(H± → τν). Data at√
s = 130–183 GeV [7] are included to obtain the lim-

its. Fig. 7 shows the excluded mH± regions for each
of the final states and their combination, as a function
of Br(H± → τν). Table 4 gives the observed and the
median expected lower limits for several values of the
branching ratio.

In conclusion, refined analyses and larger centre-
of-mass energies improve the sensitivity of the search
for charged Higgs bosons produced in e+e− collisions
as compared to previous results [6,7]. No significant
Table 4
Observed and expected lower limits at 95% CL for different values
of the H± → τν branching ratio. The minimum observed limit is at
Br(H± → τν) = 0.26

Br(H± → τν) Lower limits (GeV) at 95% CL
observed expected

0.0 76.7 77.5
0.26 76.5 75.6
0.5 76.6 76.5
1.0 82.7 84.6
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Fig. 7. Excluded regions for the charged Higgs boson in the plane
of the H± → τν branching fraction versus mass, for the analyses
of each final state and their combination. The dashed line indicates
the median expected limit in the absence of a signal. Regions below
mH± = 50 GeV are excluded by data collected at the Z resonance
[23] and at

√
s = 130–183 GeV [7].

excess is observed in data and a lower limit at 95% CL
on the charged Higgs boson mass is obtained as

mH± > 76.5 GeV,

independent of its branching ratio.
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