
Static Taint Analysis Applied to Detecting Bad
Programming Practices in Android

Gonzalo Winniczuk
Universidad de Buenos Aires

Departamento de Computación
Buenos Aires, Argentina

Sergio Yovine
CONICET-Universidad de Buenos Aires

Instituto de Investigación en Ciencias de la Computación
Buenos Aires, Argentina

syovine@dc.uba.ar

Abstract—Frameworks and Application Programming Inter-
faces (API) usually come along with a set of guidelines that
establish good programming practices in order to avoid pitfalls
which could lead, at least, to bad user experiences, and at most,
to program crashes. Most often than not, such guidelines are
not at all enforced by IDEs. This work investigates whether
static taint analysis could be effectively used for automatically
detecting bad programming patterns in Android applications. It
presents the implemented tool, called CheckDroid, together with
the preliminary experimental evaluation carried out.

Index Terms—Android; programming recommendations; static
analysis; taint analysis.

I. INTRODUCTION

Today, Android runs on more than 80% of smart-phones and
tablets in the market. The documentation of the Android API
exhibits a number of recommended practices which should
be respected by the software developer in order to avoid
bad user experiences, such as frozen screens and Application
Not Responing (ANR) messages, poor performance caused by
memory leaks, or even unexpected faults causing application
crashes, lost data, etc.. Despite the existence of such recom-
mendations, current IDEs do not enforced them. Besides, they
are sometimes difficult to reproduce during testing.

There is a significant amount of research effort devoted
to analyzing Android applications. Nevertheless, most of this
work is addressed to providing tools for seeking specific
defects, such as security vulnerabilities [1], resource (memory,
energy, ...) leaks [2], and poor responsiveness [3], [4]. In
fact, many of these issues turn up to be consequences of bad
programming practices in the first place. Therefore, it makes
sense to automatically scrutinize application code early in the
development cycle to clean it up of bad patterns susceptible
of causing runtime defects, while more specific analyses could
be used afterwards for in-depth verification.

The question of investigating the correct application of
programming guidelines is related to the problem of appro-
priately using APIs. However, works on the latter direction
are not concentrated in analyzing program compliance with
documentation guidelines, like ours. On the contrary, they seek
improving API documentation in order to helping program-
mers. For instance, [5] studies obstacles derived from badly
documented APIs, [6] discovers usage patterns by mining
client code, and [7] does the same by analyzing posts in
developer forums.

To the best of our knowledge, only [8] attacks the same
research question. That work requires the Java source code
of the application and relies on Android Lint [9], which is an
Android Studio utility that scans project sources checking for a
number of common mistakes, such as layout problems, unused
resources, hard-coded strings, icon issues (e.g., duplications,
wrong sizes), usability problems (e.g., untyped text fields),
manifest errors, etc. The approach developed in [8] is restricted
to searching for some specific bad practices related to memory
leakage and performance slowdowns due to inappropriate
management of thread priorities and system objects.

In contrast, we devised a customizable approach based
on formal program analysis. The cornerstone idea of our
technique consists in relating bad practices with paths in
the code which can be found by static taint analysis. To
validate the idea, we developed the tool CheckDroid which
steps on FlowDroid [10], a state-of-the-art static taint-analysis
framework which (a) analyzes the .apk, instead of the appli-
cation source code, and (b) takes into account the application
life-cycle, providing higher precision than Android Lint. Our
approach does not rely on the source code, but on the .apk.
Nevertheless, having the source code available, may be useful
for eliminating false positives, that is, situations which are not
actual violations of the guidelines, but reported by CheckDroid
as potential ones, as a consequence of the abstractions made by
the underlying static analysis tool. Preliminary experimental
evaluation shows that CheckDroid is able to find common bad
practices incurred in a number of applications.

The rest of the paper is organized as follows. Section II
discusses the research problem in more detail. Section III
describes the approach, in particular, how bad practices are
mapped into paths in the code. Section IV presents Check-
Droid. Section V discusses the experimental evaluation. Fi-
nally, Section VI presents conclusions and future work.

II. PROBLEM STATEMENT

An Android app which takes more than 200 ms to respond to
a user event is considered to be unresponsive [11]. The worst-
case situation results in an “Application Not Responding”
(ANR) dialog, displayed by the runtime when the application
does not respond to a key press within 5 secs [12], offering
the user an option to close it. Poor responsiveness and ANR
messages are likely to motivate users to give low ratings and

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 25

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296399589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


negative comments, and eventually to end up uninstalling the
application. Thus, how to avoid ANRs is an important issue
thoroughly addressed by the documentation which provides
guidelines for developing responsive applications. However,
ANRs are not the only cause of a bad user experience. There-
fore, we started up by analyzing the available documentation
with the aim of identifying programming recommendations
intended to circumvent application slowdowns or unexpected
crashes. In this paper we focus on three main categories of
guidelines, namely performance and memory usage.

a) Performance: The execution of Android applications
follow a single-threaded pattern in which the main or
UI thread of the application handles all UI events. As
a consequence, this thread should not perform heavy
long-running computations, such as, networking, database
operations, file I/O, bitmap processing, etc., since it would
most likely result in an ANR. Android provides an execution
policy, called StrictMode, which is meant to be used during
the development cycle to detect accidental deviations of this
expected usage. However, StrictMode is not guaranteed to
find all misbehaviors, and it should never be left enabled
in applications distributed on Google Play. Therefore, the
documentation contains a number of performance-related
guidelines which seek avoiding application slowdowns.
Examples of such recommendations are the following:

P1 Verbose logging level and StrictMode should never
be left enabled in released applications.

P2 Long running tasks should execute in worker
threads, such as Service threads, AsyncTasks, etc.

P3 Worker threads should have lower priority than UI
thread, to enable the runtime to schedule the UI
thread upon the reception of an UI event.

b) Memory usage: Memory is a scarce resource in
mobile devices, specially the low-end ones. App performance
is significantly better if it uses memory efficiently, which
entails releasing it when it is no longer needed. Memory leaks
typically grow over time and are difficult to identify and to
correct. Indeed, careless memory handling is an important
cause of application crashes. The documentation provides
several guidelines in this respect. Some important ones are
the following:

M1 References to objects associated with a Context,
such as Adapters, should not be stored in static
variables since they will leak all resources bound to
the instance.

M2 Worker threads should be explicitly closed,
otherwise, their associated memory space will be
leaked.

c) User interface: Inappropriate manipulation of system-
managed objects are subject to provoke application crashes,
mainly due to the fact that the UI toolkit is not thread-safe.
Thus, some good practices are defined in order to prevent
against such misbehaviors. A critical example is the following:

U1 UI objects must not be manipulated by a worker
thread.

In this paper, we address the problem of automatically
assessing by static analysis whether the code of an application
conforms to instances of these categories of good practices.
In order to do it, we propose an approach based on binding
guidelines with paths in the code.

III. APPROACH

Taint analysis searches for information-flow between two
specific points in the program, called source and sink, by
applying data-flow analysis through its control-flow and call
graphs. The idea consists in tainting all assignments and
method calls along the path [13]. A typical usage is in looking
for security vulnerabilities [14], such as finding whether some
valuable asset, e.g., a password, leaks to a dangerous destina-
tion, e.g., is written decrypted in a file, from a secure origin,
e.g., a login dialog box.

FlowDroid [10] implements a static taint analysis algorithm
for Android applications. It achieves high precision and recall
by a) relying on a context-, flow-, field-, and object-sensitive
inter-procedural taint analysis, and b) creating a complete
model of the application life-cycle, including callbacks. Since
user interaction cannot be predicted statically, the model
contains all possible combinations of callbacks to make sure
no taint is lost.

Our idea to solve the stated problem consists in encoding a
recommendation as a path between a source and a sink. This
approach enables using FlowDroid as the underlying tool to
actually perform the checking.

To illustrate the idea, let us consider the example in
Figure 1. The schematic control-flow graph (CFG) built by
FlowDroid is depicted in Figure 2.

A. Strategy 1

Let us begin with P1. We can think of the call to method
Log.v() in line 21 as an origin o and the call to onStop()
as a target t. Notice that this call is not explicit in the code, but
it appears in the CFG. A path from o to t, denoted o → t, is
a violation of P1, since it means that method Log.v() may
actually be executed. Of course, this is a very simple case, but
only looking for occurrences of Log.v() in the code, though
useful, could lead to a larger number of false positives.

StrictMode checking could be done exactly in the same
way, except for the fact that there could be more than one
source, such as StrictMode.ThreadPolicy.Builder
or StrictMode.VmPolicy.Builder.

A similar approach could be applied for M1. This case is
illustrated as a path from the call in line 16, which is the source

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 26



1 /* class MyActivity */
2
3
4 private TextView tv;
5 private ImageView iv;
6 private static
7 EmailAddressAdapter instance;
8
9 protected void onCreate(Bundle b) {

10 super.onCreate(b);
11 tv = (TextView)
12 findViewById(R.id.tv);
13 iv = getView()
14 .getImageView();
15 EmailAddressAdapter
16 .getInstance(this);
17 }
18
19 /* callback method */
20 public void updTextView(String s) {
21 Log.v("MyActivity",
22 "updTextView "+s);
23 Thread t = new Thread(new Runnable()
24 {public void run(){tv.setText(s);}}
25 ).start();
26 }
27
28 /* callback method */
29 public void updImgView(String s) {
30 HttpURLConnection h = null;
31 try {
32 h = (new URL(s))
33 .openConnection();
34 Bitmap bmp = BitmapFactory
35 .decodeStream(h
36 .getInputStream());
37 iv.setImageBitmap(bmp);
38 } catch (Exception e) {
39 e.printStackTrace();
40 }
41 finally {
42 if (h != null) h.disconnect();
43 }
44 }
45
46 public static EmailAddressAdapter
47 getInstance(Context cx) {
48 if (instance == null)
49 instance = new
50 EmailAddressAdapter(cx);
51 return instance;
52 }

Fig. 1. Motivating example.

onCreate

onStart

onResume

updTextViewupdImgView

onPause

onStop

onRestart

onDestroy

Fig. 2. Control Flow Graph.

o, to method onStop, which is the target t. Here, a reference
to the activity instance making the call, e.g., this, ends up
being passed to the constructor of EmailAddressAdapter
while a reference to the created instance is stored at the class
(static) variable instance of MyActivity, thus violating
recommendation M1.

This gives us a first strategy (S1):

Find a path o → t where o and t belong to appropriately
identified sets of sources and sinks.

Remark: Notice that o → t is not a path in the call graph,
but a path in the data-flow graph. This means that information
gathered in the origin o can reach the target t.

B. Strategy 2

S1 is not enough for detecting all bad programming prac-
tices. For instance, a violation of M2 requires two conditions
to hold:

• a worker thread is created, and
• it is not explicitly closed.

Closing a thread in Android consists in interrupting it by
invoking interrupt(), or waiting for it to terminate by
calling join().

We could therefore map it into two requirements, yielding
the two-path strategy S2:

1) Find a path from a thread creation (origin o) to
onStop() (target t), and

2) Check there is no path from interrupt() or
join() (origin o0) to onStop() (target t0).

This case is illustrated with the thread created in line 23
which is not closed afterwards.

It is not difficult to figure out that the same strategy could
be used for P3.

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 27



C. Strategy 3

Now, consider recommendation P2. A typical example is
downloading an image from an URL whenever a button is
clicked. This long running task should be done in a worker
thread or an instance of AsyncTask, which allows per-
forming background operations and publish results on the UI
thread without having to explicitly manipulate threads and/or
handlers.

This situation is illustrated with callback method
updImgView() in line 29. The guideline requires
that method doInBackground() of AsyncTask should
be a caller of openConnection() because the latter
starts a network connection. That is, the long running
operation should be executed by an AsynTask object. Let
openConnection() be the origin o, onStop be the target
t, and doInBackground() be the intermediate method i.
To detect a violation of P2, the strategy S3 is as follows:

Find a path from a source o to a target t, which does
not go through i.

Remark: The recommendation is violated because
information flows from o to t without passing through i. In
other words, the guideline requires method i should be a
caller of o, but it is not.

D. Strategy 4

Checking U1 is more involved. Take for instance the
prototypical case where a text field is changed in a view.
Here, the origin o is setText() and, again, the target t
is onStop(). The bad situation occurs whenever method
setText() is executed in a run() method of a thread,
giving a first intermediate point i in the path, which is not
the UI thread, that is, it is not executed inside a method
runOnUIThread(), giving a second point i0 not in the path.

This idea yields strategy S4:

1) Find a path from a thread creation (origin o) to
onStop() (target t), and

2) Check it passes through some intermediate point
i which is not followed by some other point i0.

Remark: U1 is violated because information flows from
o to t through i (a caller of o) but without passing through i0.
That is, method i0 should be a caller of i but it is not.

This case is illustrated with the callback method
updTextView() in line 20.

Table I summarizes strategies and recommendation types.

IV. TOOL

Figure 3 depicts the schematic architecture of CheckDroid.
Overall, CheckDroid comprises 20 classes and 1500 LOCS. It
takes as inputs the application apk and an XML file containing

one-path two-path
S1 S3 S4 S2

o → t o → ¬i → t o → i → ¬i0 → t o → t
∧ ¬(o0 → t0)

P1, M1 P2 U1 P3, M2

TABLE I
STRATEGIES AND COVERED RECOMMENDATIONS

.apk .xml

InstrumentationSoot aapt

instrumented .apk sources/sinks

AnalysisFlowDroid

result

Fig. 3. CheckDroid architecture.

the bad practices to be checked (Figure 4). This allows
extending the tool with further strategies and source/sink pairs.

The instrumentation phase is needed because taint analysis
tracks information flowing through object links. So, the mere
existence of a path in the CFG of the application from the call
to Log.v() in line 21 to method onStop() is not enough to
constitute a tainted path. For this, we need to have some data
value stored at the source and read at the sink. CheckDroid
uses Soot to instrument the application .apk in order to recreate
that data flow.

The instrumentation occurs at two places: a) at the applica-
tion main activity class, and b) at every source. The Android
Asset Packaging Tool (aapt) is used to avoid instrumenting
sources which are not part of the application code in order to
reduce false positives.

Figure 5 shows an example of instrumented main activity
class. Our tool provides a class called CheckDroidBinder
whose role is to store references to objects which will be
used to reconstruct the data-flow path during the analy-
sis. The onStart() method is modified so as to create
an instance of CheckDroidBinder. The static method
addBindingObjs() is added to have a hook to the in-
ternal CheckDroid method. Method onStop() is instru-
mented to call getBindingObjs() to simulate a data read.
getBindingObjs() becomes the only sink to be searched
by FlowDroid.

Figure 6 shows an example of instrumented sources. At each
source point, a call to addBindingObjs() is added with
appropriate arguments. For instance, the call at line 12 makes
the activity object to point to the HttpURLConnection
object created in updImgView() through the added field
binder. The added call to getBindingObjs() in
onStop() creates the actual data path which is found by

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 28



<bad-practice>
<name>

Thread Priority Not Set
</name>
<path presence="true">

<sources>
<source>

<method>
void start()

</method>
<class>

java.lang.Thread
</class>

</source>
</sources>

</path>
<path presence="false">

<sources>
<source>

<method>
void setPriority(int)

</method>
<class>

java.lang.Thread
</class>

</source>
</sources>

</path>
</bad-practice>

Fig. 4. Extract of bad practice declaration.

1 private
2 static CheckDroidBinder binder;
3
4 protected void onStart() {
5 super.onStart();
6 //.... (application code)
7 binder = new CheckDroidBinder();
8 }
9

10 protected void onStop() {
11 super.onStop();
12 //.... (application code)
13 List<Object[]> l =
14 binder.getBindingObjs();
15 }
16
17 public static void
18 addBindingObjs(Object[] objs) {
19 binder.addBindingObjs(objs);
20 }

Fig. 5. Example of instrumented sink.

1 public void updImgView(String s) {
2 Log.v("MyActivity",
3 "updImgView " + s);

4 MyActivity.addBindingObjs(

5 new Object[]{"MyActivity",
6 "updImgView " + s});
7 HttpURLConnection h = null;
8 try {
9 h = (new URL(s))

10 .openConnection();

11 MyActivity.addBindingObjs(

12 new Object[]{new URL(s), h});
13 Bitmap bmp = BitmapFactory
14 .decodeStream(
15 h.getInputStream());
16 iv.setImageBitmap(bmp);
17 } catch (Exception e) {
18 e.printStackTrace();
19 }
20 finally {
21 if (h != null) h.disconnect();
22 }
23 }

Fig. 6. Example of instrumented source.

the taint analysis implemented by FlowDroid.
The instrumented code is fed into the analysis phase,

together with a representation of the set of source/sinks to be
searched by FlowDroid. The analysis implements the strategies
summarized in Table I. The first one consists in calling
FlowDroid once, resulting in a yes/no answer depending on
whether FlowDroid finds or not a path. The second strategy
requires calling FlowDroid a second time in case a path is
found during the first pass. The third and fourth strategies
require a post-processing of FlowDroid output whenever a path
is found. This post-processing consists in traversing the paths
generated by FlowDroid to check whether the intermediate
conditions are met.

To illustrate the analysis, let us consider the example in
Figure 6. The violation of recommendation P1, is verified
with a single run of FlowDroid. The violation of P2 needs
analyzing the path produced by FlowDroid during the first pass
from line 12 in the instrumented method updImgView() to
line 14 in the instrumented class MyActivity. A traversal of
this path finds no occurrence of doInBackground() (nor
any call to a run method of a worker thread), thus confirming
that P2 is not respected.

Remark: CheckDroid relies on static taint analysis which
is a kind of may static analysis. This means that, if no violation
is found, then the application conforms to the guidelines.
Otherwise, the application may not. Thus, even if FlowDroid
has proven to be quite accurate, it may result in false positives.

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 29



P1 P2 P3 M1 M2 U1

15

10

1

9

0

Recommendation

V
io

la
tio

ns
Occurrences
Apks

Fig. 7. Distribution of reported bad practices in student applications.

Therefore, whenever a path is found, a deeper analysis (veri-
fication, testing, debugging, etc.) must be performed to verify
whether the path is indeed executable, that is, to determine it
it is a false positive or not. For this, it may be useful or even
required to have the source code of the application, although
CheckDroid does not need it.

V. EXPERIMENTAL EVALUATION

We first experimented CheckDroid on the apks of 18 ap-
plications developed by undergraduate students as their final
project for a mobile computing course at the Department of
Computer Science of University of Buenos Aires.

The mean size of the apk was 1MB. In average, the
execution time of the instrumentation phase was 17 secs,
yielding an average rate of 61.5KB/sec. The mean analysis
time was 24 secs for one-path strategies, doubling for two-path
ones. Overall, the mean total analysis time for the complete
set of bad practices was 190 secs.

• CheckDroid reported a total of 32 occurrences of bad
practices distributed in 9 of the applications. That is, 50%
of them was not conforming with at least one guideline.

• The most common violated recommendation was P1,
with 15 occurrences, spanning 67% (6/9) of the non-
conforming applications.

• The second in importance was P2 with 10 occurrences,
spanned over 44% (4/9) of the applications with bad
practices.

• The third in importance was M1, with 9 violations
occurring in a single application, a network intensive one.

• The 9 bad applications violated at least one of these three,
with P1 and P2 representing 78% (25/32) of the bad
practices and 89% (8/9) of the violating applications.

• The 67% of those 9 case studies (6/9) had only 1 bad
practice (with eventually more than one occurrence).

• A connection-intensive application implementing an
Android-based client for an Enterprise Resource Planning
(ERP) system incurred in 3 different bad practices.

• Two applications were reported having more than 10 de-
viations with respect to the guidelines. A social network-
centric application had a total of 14 violations, spanning
P1 and P2, while a network intensive totaled 11, 9 of
which correspond to M1.

• Taking out these outliers, the average was 2 reports per
application.

• No violations of U1 were reported.
Figure 7 shows the distribution of reported bad practices.

Furthermore, we investigated whether the reported bad
practices were false positives by inspecting 5 of the 18
applications for which we had the source code. This subset
includes the network-centric application with 11 reported
violations. We verified that all reported deviations with
respect to the guidelines were actual violations. That is, there
were no false positives in this subset of applications.

After this preliminary experimental evaluation, we run Check-
Droid on apks from Google Play.

To start up with, CheckDroid reported 3 guidelines violated
by BA Subte, an application to query the status of the Subway
of Buenos Aires City. This is a free app which registers
between 100K to 500K installs, and a review score of 3.8 (4 of
5 stars). The reported bad practices reported by CheckDroid
were the following:

• An occurrence of M1 (thread leak)
• An occurrence of P3 (thread priority not set)
• An occurrence of P2 (long running task inside UIThread)

Of course, as remarked before, they could actually be false
positives because we do not have the source code to perform
a deeper analysis.

Besides BA Subte, we applied CheckDroid to two sets of
applications from Google Play with apk sizes between 300KB
and 3MB:

• A consists in 20 applications with more than 50K down-
loads and a review score less than or equal to 2, that is,
a poor evaluation of 1 or 2 stars;

• B consists in 5 applications with more than 500K down-
loads and a review score greater than or equal to 4.7, that
is, a very good evaluation of 4 or 5 stars.

The analysis of set A, gave the following results:
• No violations were reported on 10 of the 20 applications.
• Every guideline was violated at least once, with the

exception of U1.
• Two applications were reported to incur respectively in

21 and 266 violations, with M1 being the most violated
one (10 and 242 occurrences, respectively).

• The most violated guideline was M1, with a median of
3.5, but a very large standard deviation due to the two
possible outliers.

• The overall median for the subset of A having been
reported to violate at least 1 recommendation was 4.5.

The analysis of set B, gave the following results:
• No violations were reported on 1 of the 5 applications.
• Only deviations with respect to P1 and P2 were reported,

with almost equal numbers of occurrences: 13 and 15,
respectively.

• One application was found to incur in 16 violations, with
7 of P1 and 9 of P2.

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 30



• The overall median for the subset of B having been
reported to violate at least 1 recommendation was 7.

We draw the following conclusions:
• The rationale behind separating the applications in two

sets with low and high review scores was to try estab-
lishing a relationship between violating guidelines and
bad user experiences manifested as low scores. However,
we found high score applications with large numbers of
reported violations and low score ones with no deviations
with respect to the guidelines.

• Recommendations regarding thread manipulation, namely
P3 and M2, were the ones with the least reported viola-
tions overall.

• By far, the guidelines with the highest numbers of re-
ported violations were P1, P2 and M1. Besides they
were very frequently reported to happen together. On one
hand, it follows that strategies S1 and S3 revealed to
be the most productive ones. On the other, even though
we have found no false positives so far, it may be an
indication that these strategies are too loose. Therefor,
further investigation is needed to evaluate the actual
occurrence of the reported deviations, even in the absence
of source code.

• No violation was observed for U1. Clearly, this fact
suggests that it is necessary to revisit the definition of this
class of recommendations and the associated strategy.

VI. CONCLUSIONS

This paper briefly presents the preliminary results obtained
in the context of the ongoing final project of the first author
towards obtaining the degree in Computer Science at Univer-
sidad de Buenos Aires.

The main originality of the approach resides in applying
taint analysis to a different problem, namely, checking bad
programming practices instead of information leaks.

For this purpose, a bad practice is modeled as a path of
information flow through an appropriate instrumentation of the
code.

We have successfully applied the tool to a number of
Android applications developed by newbie programmers and
others freely available in the Play store.

The low execution time rates of both instrumentation and
analysis phases let us envisage that CheckDroid could be
profitable integrated in an IDE for helping detecting such bad
practices early in the development cycle.

Further investigation is required to extend the tool so as
(a) to detect a larger set of bad practices, (b) to fine tune the
definition of the strategies to avoid false positives, (c) to revise
the approach for recommendations related to user interface,
and (d) to perform a broader experimental evaluation.

REFERENCES

[1] A. Sadeghi, H. Bagheri, J. Garcia et al., “A taxonomy and qualitative
comparison of program analysis techniques for security assessment of
Android software,” IEEE TSE, 2016.

[2] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang, “Characterizing and
detecting resource leaks in android applications,” in Proc. IEEE/ACM
28th Int. Conf. ASE, 2013, pp. 389–398.

[3] S. Yang, D. Yan, and A. Rountev, “Testing for poor responsiveness
in android applications,” in Engineering of Mobile-Enabled Systems
(MOBS), 2013 1st International Workshop on the. IEEE, 2013, pp.
1–6.

[4] T. Ongkosit and S. Takada, “Responsiveness analysis tool for android
application,” in Proceedings of the 2nd International Workshop on
Software Development Lifecycle for Mobile. ACM, 2014, pp. 1–4.

[5] G. Uddin and M. P. Robillard, “How api documentation fails,” IEEE
Software, vol. 32, no. 4, pp. 68–75, 2015.

[6] J. Wang et al., “Mining succinct and high-coverage api usage patterns
from source code,” in Proc. 10th Work. Conf. Mining Software Reposi-
tories. IEEE Press, 2013, pp. 319–328.

[7] W. Wang and M. Godfrey, “Detecting API usage obstacles: A study
of iOS and Android developer questions,” in Proc. 10th Work. Conf.
Mining Soft. Rep. IEEE Press, 2013, pp. 61–64.

[8] I. A. Saglam, “Measuring and assesment of well known bad practices in
Android application developments,” Master’s thesis, Middle East Tech.
Univ., Turkey, 2014.

[9] Google, “Android lint,” http://tools.android.com/tips/lint.
[10] S. Arzt et al., “Flowdroid: Precise context, flow, field, object-sensitive

and lifecycle-aware taint analysis for android apps,” SIGPLAN Not.,
vol. 49, no. 6, pp. 259–269, Jun. 2014.

[11] B. Fitzpatrick, “Writing zippy android apps,” in Google I/O Developers
Conference, 2010.

[12] Google, “Keeping your app responsive,”
https://developer.android.com/training/articles/perf-anr.html.

[13] T. Terauchi and A. Aiken, “Secure information flow as a safety problem,”
in Proc. 12th Int. Conf. SAS, 2005, pp. 352–367.

[14] B. Chess and G. McGraw, “Static analysis for security,” IEEE Security
& Privacy, vol. 2, no. 6, pp. 76–79, 2004.

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 31


