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Abstract—Given mobile devices ubiquity and capabilities, some
researchers now consider them as resource providers of dis-
tributed environments called mobile Grids for running resource
intensive software. Therefore, job scheduling has to deal with
device singularities, such as energy constraints, mobility and
unstable connectivity. Many existing schedulers consider at least
one of these aspects, but their applicability strongly depends on
information that is unavailable or difficult to estimate accurately,
like job execution time. Other efforts do not assume knowing
job CPU requirements but ignore energy consumption due to
data transfer operations, which is not realistic for data-intensive
applications. This work, on the contrary, considers the last as non
negligible and known by the scheduler. Under these assumptions,
we conduct a performance study of several traditional scheduling
heuristics adapted to this environment, which are applied with
the known information of jobs but evaluated along with job in-
formation unknown to the scheduler. Experiments are performed
via a simulation software that employs hardware profiles derived
from real mobile devices. Our goal is to contribute to better
understand both the capabilities and limitations of this kind of
schedulers in the incipient area of mobile Grids.

Keywords— Mobile Grid, Mobile devices, resource intensive
applications, job scheduling

I. INTRODUCTION

Worldwide popularity and increasing capabilities of mobile

devices have led researchers to propose mobile device inclu-

sion as first-class resource providers in distributed computing

environments. Offloading for mobile devices [12], [22], which

originally promoted moving heavy computations from mobile

devices to fixed high-end infrastructures, now considers lo-

cal arrangements of nearby mobile devices to execute such

computations. This approach reduces network latency, reduces

the energy cost of remote data communication, and avoids the

monetary charges inherent to Cloud infrastructures usage [14],

[25], [16]. Other authors also propose to seamlessly integrate

mobile devices into existing Grid environments to increase

available resources [8], [13], [19].

Mobile devices have particular features that should be con-

sidered for integrating them in distributed computing environ-

ments [19]. These features include finite energy supply, ability

to change location, and (wireless) unstable communication.

Hence, to improve mobile device resource exploitation, prior

works [8], [21], [18], [9] have shown the benefits of schedulers

that consider such particular features. Another factor that these

schedulers consider is the topology representing the underlying

stack of communication technologies used to group/coordinate

resources. Ad-hoc and proxy-based networks are the most

targeted topologies. In the former, nodes reachability depends

exclusively on the mobile nodes that integrate the network:

nodes typically play a dual role, i.e., as end hosts and routers,

forwarding packets wirelessly towards other mobile nodes

that might not be within the direct transmission range of the

sender. In proxy-based networks, nodes maintain single-hop

wireless connections to fixed node called proxy. Offering local

resources behind a proxy to a Grid infrastructure is a strategy

commonly adopted by traditional Grid platforms like Ibis-

Satin [24], JCluster [27] and GridGain1. Due to its simplicity,

proxy-based networks have been the starting point for defining

different local scheduling policies in mobile Grids [7], [2], [5],

[18]. Figure 1 depicts a proxy-based mobile Grid which is the

targeted topology in this work. When jobs are submitted to

the system, a scheduler, which might operate either in online

or batch mode, assigns these jobs to reachable nodes.

The distinct special mobile devices feature subsets, together

with the universe of job and resources available information

assumed and objectives of the associated resource allocation

problem [7], result in a large number of challenging scheduling

scenarios for which new schedulers must be investigated.

As far as we know, most of these scenarios have not been

explored in the literature yet. This work targets one of these

broad scenarios by conducting a study of several traditional

heuristics for scheduling independent jobs whose CPU-time

requirements are unknown and data transferring requirements

are known by the scheduler. Then, this study presents an

overview of the effectiveness in energy utilization when

scheduling is performed based on user-provided data-transfer

job information. Energy utilization in a mobile Grid using the

different heuristics is measured via system throughput, using

an existing Java-based simulation software of our own [7], [8].

The organization of this paper is as follows. In the following

Section we discuss related efforts and list our contributions

compared to such efforts. Section III describes the energy-

aware, data-oriented scheduling heuristics studied and eval-

uated in this work. Particularly, Section IV describes the

experiments done and results obtained. Lastly, Section V

concludes the work and briefly delineates future research.

1http://www.gridgain.com978-1-5386-3057-0/17/$31.00 c©2017 IEEE
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Fig. 1. Overview of a proxy-based mobile Grid

II. BACKGROUND

Wireless infrastructures to which people connect with mo-

bile devices are present in an increasing number of daily life

public and private places. Coffee shops, restaurants, shop-

pings, university campuses, work offices, just to mention few

examples, are equipped with wireless access points to let

the people surf the Web, check emails, read a newspaper,

play online games, or simply stay connected for receiving

messages and notifications of their interest. Such contexts fit

the proxy-based topology mentioned, and therefore via proper

scheduling mechanisms, the joint computing capabilities of

mobile devices could be used to solve complex computational

problems.

Despite the incipient nature of the area, several works

address job scheduling using mobile devices as resource

providers [14], [5], [2], [16], [25]. They assume complete

knowledge, or accurate estimations, about all jobs require-

ments from the software to run and resources characteristics.

Then, it is common that these works propose different optimal

or near-optimal schedulers with constraints that are associated

to the mobile device special features and/or topologies intro-

duced above. For instance, [5], [2], [16], [25] treat the limited

energy of mobile devices as a formal resource constraint.

Moreover, [14] and [16] focus on optimizing energy utilization

in ad-hoc multi-hop networks.

Other schedulers [15], [8], [21], [18] do not assume

hard knowledge of job requirements as the previous set,

but are designed to deal with only one kind of job, i.e.,

CPU-intensive [15], [8], [18] or data-intensive [21]. For in-

stance, [7], [8] target CPU-intensive jobs and take into account

the limited energy of mobile devices as they consider the last

state of charge reported by devices and job energy consump-

tion indicators derived from device benchmarks to perform

the job assignments. In [21], a high-level job classification is

used to select the most appropriate group of nodes taking into

account their probability of staying connected and the energy-

related properties of their communication paths. While [15],

[21] target mobile ad-hoc networks, [7], [8] target proxy-based

networks.

This work differs from those mentioned above in that:

• We target a hybrid type of job requirements, meaning

that neither job data transfers nor job CPU times are

negligible in terms of energy consumption. Although

job CPU requirements are not negligible, the heuristics

studied operate mainly based on the sizes of job input

and output data to be transferred before and after the

job execution, respectively. From a user’s perspective,

this information is easier to specify in real-life settings

than CPU time because for the latter, numerous variables

should be taken into account, e.g., the compiler used to

build the job binary, the hardware where the job will

run, the system load at the time the job is executed, etc.

Besides, to predict the time an arbitrary code will take

to run requires knowing whether it will ever finish its

execution, i.e., solving the Halting problem [26].

• We introduce three data-energy aware heuristics, inspired

on traditional scheduling techniques, plus three genetic

algorithms, and evaluate them varying job data and CPU

time requirements. Then, we aim to study the throughput

achieved by the heuristics when only data-related job

information is available to the scheduler. We have chosen

genetic algorithms due to their versatility and perfor-

mance to solve combinatorial optimization problems in

many domains, including job scheduling.

• We compare the performance of these heuristics with

that of E-SEAS [8], an online scheduler for CPU-bound

jobs that shares the principles of the SEAS [18] and has

been regarded as an efficient scheduler by third-party



3

researchers [5]. Details on E-SEAS are provided in the

next Section.

• Rather than using synthetic mobile device energy con-

sumption data, we simulate energy consumption of mo-

bile Grid nodes via CPU usage profiles extracted from

real mobile devices, and data transferring information

arisen from exhaustive past studies [6], [17], [1] that

characterize energy consumption in mobile devices due

to network usage.

III. DATA-AWARE SCHEDULING HEURISTICS IN

PROXY-BASED MOBILE GRIDS

Traditional scheduling heuristics, e.g., Min-min, Max-Min

and MCT (Minimum Completion Time), have been exten-

sively studied in fixed computational Grids and also used as

baseline for comparison [23], [11]. The performance of these

heuristics is usually measured via time-oriented metrics like

makespan and flowtime. To apply these traditional heuristics,

it is necessary to know the completion time of every job

on every candidate computing node. For CPU-intensive jobs,

such time arises from the amount of CPU cycles that a node

should perform to finish the execution of a job, which at least

depends on the hardware characteristic and current load of

the node that executes the job. When nodes of the distributed

computing environment present heterogeneous hardware and

load, each job needs to be associated a running time for each

candidate node. This information is commonly represented

by an ETC matrix where rows represent jobs and columns

represent nodes [10].

The completion time of an hybrid job requirement –those

heavily using both CPU and network resources, i.e., like the

ones assumed in this work– is composed by an execution

time and a data transferring time –for job input and output

data–. However, it is not always possible to feed the scheduler

with information of jobs execution time because this requires,

in the best case, job historical runs information that is not

always consistent. Then, we assume the scenario where only

job data transfer time is known by the scheduler. In fact, since

we aim to measure efficiency in energy utilization –which is

critical considering that mobile devices are battery-powered

nodes–, we assume that the scheduler knows the energy cost

of transferring jobs data. This goal on the other hand hinders

the application of traditional heuristics in mobile Grids since,

as explained, their performance is measured via time-oriented

metrics. As a consequence, we adapt the way these traditional

heuristics operate to represent resource utilization in energy-

based instead of time-based units.

The adapted scheduling heuristics result in schedulers that

are provided with jobs data transfer energy consumption

cost derived from user provided job data-related information

expressed in bytes. Such conversion is possible thanks to

the characterization performed by several studies of mobile

devices energy consumption in transferring data [6], [17], [1].

Particularly, the studies of [6], [20], show a direct relation

between the Received Signal Strength Indicator (RSSI) and

the energy consumed while transferring data that reveals that

transfers with poor signal strength requires more energy than

transfers with good signal strength. Moreover, the RSSI value

is information that can be known by the scheduler through

modern mobile OS APIs23, which facilitates the practical

implementation of the scheduling logic. Then, energy con-

sumption of every job on every node of the mobile Grid can

be estimated. To our knowledge, there is no published work

utilizing such information to optimize energy utilization when

scheduling hybrid jobs in a mobile Grid.

With the proposed resource utilization unit change, the ETC

(expected time to compute) matrix employed by traditional

heuristics is now an EET (expected energy to transfer) matrix,

from which we derive the following adapted heuristics for

handling jobs arriving to the proxy:

• The Min-MinMobiComEnergy batch heuristic special-

izes Min-Min. From the list of unassigned jobs, it selects

those with the smallest aggregated input and output

data to be transferred. Then, it selects the node whose

remaining energy is the least affected by the transferring

of the selected job plus the transferring of all previous

job assignments to that node. Later, it adds the selected

job to the list of assigned jobs of the corresponding node,

removes it from the list of unassigned jobs and repeats

the steps for the remaining jobs in that list until all jobs

are processed or there is no node with enough remaining

energy to transfer the next selected job.

• The Max-MinMobiComEnergy batch heuristic is an

adaptation of the traditional Max-Min heuristic that

operates similarly to Min-MinMobiComEnergy but the

biggest aggregated input and output data size is used as

selection criterion of the next job to assign.

• The Remaining Transfer Capacity (RTC) heuristic, is

inspired in the online MCT heuristic. RTC immediately

assigns the next incoming job to the node whose remain-

ing transfer capacity is the least affected. At the time

the remaining transfer capacity of a node is estimated,

all future job output data transfers from previous job

assignments, are considered.

In this work we also assess the Enhanced Simple Energy-
aware Scheduler (E-SEAS) heuristic [7], which is not in-

spired in a traditional heuristic but it is an online scheduler

specially designed for scheduling CPU-bound jobs in mobile

Grids. To decide the most appropriate mobile node for execut-

ing a CPU-intensive job, the E-SEAS ranks all candidate nodes

using a formula that combines their computing capability,

current assigned jobs and battery State Of Charge (SOC).

Every new incoming job is assigned to the node with the

highest rank. The rank is recalculated upon every new job

arrival. The equation 1 shows the formula that E-SEAS uses

to rank nodes.

nodeRank =
SOC ∗ f lops

assignedJobs+1
(1)

In the equation, the SOC component is an integer value

in the range 1 and 100 that represents the last battery SOC

2https://developer.android.com/reference/android/net/wifi/WifiInfo.html#
getRssi()

3https://developer.apple.com/reference/corewlan/cwinterface/
1426414-rssivalue
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update sent from the mobile node to the proxy node. The

f lops component is a pre-computed and indexed positive float

value that represents the computing capability of the mobile

node. It is obtained by means of running a mobile application4

implementing the Linpack benchmark, which is designed to

measure the float-point operations per second used to solve

a system of linear equations. The assignedJobs component

represents the number of jobs being executed and queued by

the mobile node. To avoid getting a division by zero error, a

value of one is added to assignedJobs. It is worth noting that

Linpack is used to benchmark many supercomputers around

the world included in the well-known Top500 list.

Batch traditional heuristics have served as baseline for

other schedulers in traditional Grid environments [23], [11].

Therefore, we include in our performance study three Genetic

Algorithms (GA). GAs have been successfully applied to job

scheduling problems in fixed computational Grids [23], [11].

The GAs derived, combine parameter values and operators

from a preliminary study where we explored ninety six combi-

nations of different termination conditions, selection operators

and variation operators -including different recombination

probabilities pc and mutation probabilities pm-. Table I shows

TABLE I
GA PARAMETERS SET SELECTED

GA parameters Value

Termination condition
30 seconds for fitness improvement, or
maximum of 5 minutes of evolution

Parent selection
Tournaments of 10 individuals with
replacement

Recombination UniformCrossoverOperator with pc of 0.8

Mutation
RandomMutationOperator with pm of
0.15

Population
replacement

Deterministic crowding

the parameters combination which achieved the highest fitness

value within the shortest time. The maximum execution time

of all proposed GA versions was set to five minutes. Such

a short time window was chosen because during the GAs

execution time, mobile devices, which are connected to a

proxy and ready to receive jobs, consume energy from their

batteries related to the maintenance of an established WiFi

connection and the base consumption of the mobile OS.

The three GAs basically differ in their initial populations

of individuals. An individual is a solution to the schedul-

ing problem. The GA versions named GA Min-MinMobi-

ComEnergy and GA Max-MinMobiComEnergy include Min-

MinMobiComEnergy and Max-MinMobiComEnergy individ-

uals within their initial populations respectively. Besides, the

rest of individuals that complete the population size used

(100) are randomly generated by not exceeding the amount

of assigned jobs contained in the individual that represents

the Min-MinMobiComEnergy or Max-MinMobiComEnergy

heuristic depending on the GA version. The GA version named

GA random was created with all random individuals.

4https://play.google.com/store/apps/details?id=com.sqi.linpackbenchmark

Fig. 2. Adopted encoding: Example

We represent individuals as array of integers. Figure 2 shows

an example. The genes of an individual (array positions) are

job identifiers, while alleles (array values) are mobile device

identifiers. The value -1 indicates that the job is not assigned

to a device yet. Moreover, the scheduling problem that is

addressed by the GAs is formally defined as follows. Given:

• D = {d1,d2, ...,dn}, is the set of devices of the mobile

Grid,

• S = {sd1 ,sd2 , ...,sdn}, is the set of signal strength values

from d1,d2, ...,dn, respectively, at the time jobs schedul-

ing starts,

• E = {ed1 ,ed2 , ...,edn}, is the available Joules of devices at

the time jobs scheduling starts,

• J = { j1, j2, ..., jp}, is the set of job data requirements to

be scheduled, where jqid are the #bytes of input data of

job jq, and jqod are the #bytes of output data of job jq,

• f(b,s) is a function that returns the Joules consumed

for transferring b bytes with a received signal strength

value s.

The goal is to find device assignments A = {a1,a2, ...,an}
with each device assignment au represented by the pair

< du, Jdu > where du ∈ D, Jdu = { jdu
r , jdu

s , jdu
t , ...}/Jdu ⊆ J,

Jd1 ∩ Jd2 ∩ ... ∩ Jdn = /0 and Jd1 ∪ Jd2 ∪ ... ∪ Jdn ⊆ J, such that

Max( f itness) where the f itness of device assignments A used

by the GAs for measuring a solution quality is defined as:

f itness = (1−CPUBalance(A))+ TotalTrans f eredJobs(A)
p (2)

being

CPUBalance(A) =

√√√√√ n

∑
i=1

(
di,currAssign −di,expectedAssign

)2

√
∑n

i=1

(
di,WorstAssign −di,expectedAssign

)2

(3)

a value within [0,1] which assesses the CPU load balancing

of device assignments A. This value is the Euclidean n-space

distance between the vector that represents device assign-

ments A (currAssign) and the vector of device assignments

resulting from the application of a CPU-bound job criterion

(expectAssign). Due to its simplicity and effectiveness, the E-

SEAS [8] is employed as criterion to rate processing capa-

bility of nodes and balance the energy consumption due to

jobs CPU usage. The E-SEAS selects the most appropriate

device to execute a CPU-bound job based on device FLOPS,

remaining battery charge and currently assigned jobs. To

obtain expectedAssign vector, E-SEAS is iteratively applied

to the list of jobs assigned in A. To provide a normalized

CPUBalance(A), the resulting distance between currAssign
and expectedAssign vectors is divided by the maximum

distance value which is computed as the euclidean n-space
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distance between the vector that represent the worst possible

job-device combinations (worstAssign) and expectedAssign.

The worst device assignments arises from assigning all jobs

to the device that, according to the CPU-bound job criterion,

should receive the least amount of jobs.

Moreover, TotalTrans f eredJobs(A), the amount of fully

transferred jobs, is the sum of completed transferred jobs

of each device assignment, which, in turn, is defined by

Trans f eredJobs(au) = ∑# j∈Jdu

k=1 f it (k, Jdu ), where f it
(
k, Jdu

)
,

defined by Eq. 4, determines whether du has enough energy

to fully transfer the k-th job of the device assignment au.{
0 i f ∑k

x=1 enTran f jdu
x
> edu

1 i f ∑k
x=1 enTran f jdu

x
≤ edu

(4)

where enTran f jdu
k

= f
(

jdu
kid
,sdu

)
+ f

(
jdu
kod

,sdu
)

is the energy

consumed by the device du for receiving jkid job input from the

proxy node and for sending jkod job output to the proxy node.

The formulation aims at maximizing the energy utilization by

targeting the highest amount of jobs completed.

IV. EVALUATION

A. Methodology

The experimental methodology was simulation, which is

an accepted practice in distributed computing [3], [4]. It

facilitates, i.e., provides a repeatable and controllable manner

of evaluating scheduling techniques in distributed environ-

ments of high heterogeneous resources and dynamic resource

availability, e.g., Grids, Mobile Grids and Clouds. We employ

a Java-based event-driven simulator [7], [8] that models ev-

erything that might occur in a mobile Grid (e.g., jobs arrivals,

jobs completion, devices battery drop, network activity derived

from jobs data input/output transferring and devices status

notifications) via events.

The events that simulate how devices residual energy de-

creases in time are generated by combining energy consump-

tion information from CPU usage profiles and WiFi usage

measurements. Both, profiles and measurements, were ex-

tracted from real mobile devices (smartphones and tablets). A

CPU usage profile reflects the rate at which a device energy is

consumed under certain CPU usage. The CPU usage profiling

is a pre-simulation procedure performed with an application

installed in real mobile devices whose implementation details

can be found in [7]. In short, a profile starts with a full

charged device and ends when the device shuts down due to

battery depletion. During that time, the profiling application

logs time-stamp, battery SoC, and CPU usage information.

By means of another application, a profile is converted into

two lists of chronologically ordered events that serve as

input for the simulator. One list contains battery drop events

and the other CPU events. The former is used to simulate

the energy consumption and available energy of a device

while the latter is used to simulate the execution time of

job based on the node available CPU. Both the simulator

and the profiling application (for Android) are available at

https://github.com/cmateos/mobileGridSimulator.

To contemplate time and energy consumption derived from

networking activity, we re-utilized findings of exhaustive and

focused third-party studies [6], [17], [20], particularly those

related to mobile-to-fixed-node WiFi communication because

it is the form of communication adopted in the proxy-based

topology. From information and wireless networking theory,

it is known that energy consumption and time of wireless

data transferring is influenced by numerous variables such as

distance attenuation, shadowing by obstacles, channel interfer-

ence, transport protocol, among others. However, most of these

variables are not accessible nor controlled from the application

layer where the job scheduling logic operates in real mobile

Grids. Then, we contemplate such variations supported on

properties of receive signal strength indicator (RSSI) [6], [20]

that suggest that with poor RSSI the energy consumption and

time of transferring data increases exponentially. Then, we

simulate the energy consumption and time for transferring data

as functions of RSSI value which can be obtained through

devices OS API.

The technical details of how energy consumption informa-

tion from CPU profiles and network measurements are aggre-

gated to reflect devices residual energy during a simulation

are described as follows. The details are given for one device

but describe the behavior of all simulated devices. The battery

drop events from CPU usage profile define the baseline energy

consumption. This is because the CPU energy consumption

is always present while the device is operative. From the

scheduling point of view, the CPU of a device is considered

to be in two possible states, i.e., idle or in service, and there

are distinct CPU profiles to represent each state. An idle CPU

usage profile reflects the energy consumed by a device that

executes processes or tasks related to the operating system,

while an in service CPU usage profile reflects the energy

consumed by a device that is executing a job sent by the proxy

of the mobile Grid.

In every simulation step, a device has an “in current use”

CPU usage profile that changes on every CPU state change.

Notice that a CPU profile has a battery drop event list

associated that changes with every CPU state change. For

instance, when a device starts the execution of a job, its

“in current use” CPU usage profile switches from idle to in

service. By contrast, when a device finishes a job execution,

its “in current use” CPU usage profile switches from in service

to idle.

Irrespective of the in current use CPU usage profile, the

battery drop events of the profile only reflect the device

energy consumption caused by CPU usage. To incorporate

energy consumption derived from networking activity, the

information of battery drop events is adjusted with every event

that involves a data transferring, e.g., when jobs input/output is

transferred, battery updates are informed from the mobile node

to the proxy, etc. Figure 3 shows a graphical representation of

different adjustments applied to baseline battery drop events.

In both cases, the dash line shows how device residual energy

would decrease in absence of the networking event. In contrast,

the filled line that follows the networking event shows how

baseline battery drop events are brought forward in time as

consequence of the adjustment. In other words, the effect of
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Fig. 3. Adjustments during simulation of battery drop events as consequence of networking activity

any adjustment is reflected with a shortening of the device

lifetime. An adjustment involves the following steps:

1) Compute the energy spent by the networking event: the

amount of data to be sent or received by the device and

its RSSI value are used to compute the energy spent in

the networking event.

2) Reflect the networking event on the current residual

energy: the residual energy at the time the networking

event occurs, i.e., the current residual energy, is cal-

culated by evaluating the linear function that contains

the last reported residual energy and the next residual

energy. Then, such value is updated by subtracting the

energy consumption resulted from step 1.

3) Define the adjustment: to perform the translation of

future battery events in time, i.e., the adjustment, it

is necessary to determine the equation of the linear

function that joins the last reported residual energy with

the residual energy resulted from step 2.

4) Reflect the networking event on the device lifetime: this

means adjusting the time in which the next battery drop

events will occur by using the equation of step 3.

The difference between case A and case B is that the ad-

justment of case A does not involve a networking energy

consumption that exceeds the residual energy of the next

battery drop event while case B does. In case B, the battery

drop events whose residual energy is less than the new residual

energy, i.e., the one calculated in step 2, are discarded as future

events of the device simulated lifetime.

B. Experiments setup and results

The used topology had 100 mobile devices connected to a

fixed proxy with varied RSSI values and hardware characteris-

tics –i.e., FLOPS, battery capacity, CPU battery consumption

profiles– obtained from real mobile devices. We simulated a

mobile Grid with 20 tablets Acer A100, 30 tablets Samsumg

Galaxy Tab 2, and 50 smartphones LG L9, with RSSI values

from -90 dBm to -50 dBm. The smaller the dBm value, the

higher the energy cost per transferred byte.

Job data sets are composed by synthetic jobs whose input

and output data vary in [1 - 500] MB (uniform probability)

and CPU operations relates in n ∗ logn, n2 or n3 to the

input data size in KB. The three relations occur with the

same probability and coexist in the same job set, meaning

that jobs with almost equal input size can require different

amount of CPU time. The range selected for job data is

common nowadays in off-line navigation applications, games

updates, etc, while the above complexities are present in

real-life algorithms such as sorting, matrix multiplication, 3D

matrix processing, respectively. Three job sets were generated

using a continuous uniform distribution to ensure a controlled

heterogeneity [8]. The job sets named non-saturated, saturated
and super-saturated are composed of 2500, 3500 and 4500

jobs respectively. Job set saturation level is determined by the

relation between total amount of input and output data -job
set data- and the topology data transfer capacity. The latter, is

defined as the sum of maximum amount of data each node is

able to transfer with its initial energy -fully charged battery-

and its RSSI value -which is assumed not to vary while the

device is connected to the proxy-. When the job set data is

less than the maximum transfer capacity of the topology the

job set configuration is non-saturated. When it is greater, the

configuration is saturated. When only the total jobs input data

is greater, the configuration is super-saturated.

Figure 4 shows the percentage of completed jobs. Online

heuristics are competitive in all job configurations, including

the E-SEAS, which does not take into account data-related

job information. The GA random performed very poor in

all scenarios, which shows the importance of starting the

exploration of the solution space from a region with good

individuals as the other two GA versions do. Moreover, the

advantage of considering a dual component fitness function,
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i.e., transfer and computing capabilities of devices, allowed

GA Min-MinMobiComEnergy and GA MaxMinMobiCom-

Energy to complete a slightly higher amount of jobs than the

corresponding heuristics used to seed the initial population.

We complement these results with Figure 5, which shows the

percentage of output data transferred (job results).

Output data transferred is important to measure since

it is the last energy-consuming step a device performs

to complete a job. From Figure 5 it can be seen

that the heuristics which transfer the highest percentages

of data output (GA Max-minMobiComEnergy and Max-

minMobiComEnergy) are within the group of those that

achieved, according to Figure 4, the lowest percentages of

completed jobs. The inverse behavior is manifested by Min-

MinMobiComEnergy and its corresponding GA version. This

suggests that Min-MinMobiComEnergy strategy completes

more jobs than Max-MinMobiComEnergy because the first

schedules data transfers of the smallest jobs before the largest

jobs, which gives many smallest jobs the opportunity to be

completed before the greatest ones.

When comparing the performance of GA versions (exclud-

ing GA Random) against that of the corresponding seed heuris-

tic, the relationship between percentage of data output trans-

ferred and percentage of completed jobs does not hold. Pre-

cisely, this means that GA versions not only achieve slightly

better performance in completing jobs than their corresponding

seed heuristics, but also transfer more output data. Moreover,

online heuristics performance approximates, in this case, data

output percentages achieved by Min-MinMobiComEnergy and

the corresponding GA version.

Furthermore, online heuristics –even E-SEAS, which does

not take into account jobs data transfer information –achieve

a competitive balance of completed jobs and data output

transferred w.r.t. at least two batch heuristics. The potential

to further improve online heuristics is however limited since

jobs must be scheduled as soon as they are submitted to the

scheduler, which prevents such heuristics from having a global

picture of the total input/output data to be scheduled. Conse-

quently, batch heuristics might be more advantageous since

some time can be dedicated to optimize data transferring of a

batch of jobs. Particularly, in regard to the studied GAs, the

performance of GA Min-MinMobiComEnergy and GA Max-

MinMobiComEnergy was slightly better than the performance

of the heuristics used to seed the initial population, which

should drive the focus of future improvements.

Note that GA Min-MinMobiComEnergy and Min-Min-

MobiComEnergy far exceed the jobs completed of all the other

heuristics. This is due to scheduling small data transferring

jobs first, leaves bigger “holes” of energy in mobile nodes

which are eventually used by CPUs to produce jobs output.

V. CONCLUSIONS

We have studied seven heuristics for scheduling jobs on

proxy-based mobile Grids, where only input and output data

transfer job requirements are known to the scheduler. The

experimental job sets included jobs of quite varying size in

terms of CPU time ranging from few seconds to several hours

in the most powerful device, and data requirements ranging

from one to five hundred megabytes.

One finding is that when scheduling jobs with CPU and

data requirements, both non-negligible in terms of energy

consumption, the heuristics which take into account the

provided job data-related information improves the perfor-

mance over those who do not. Moreover, in practice, when

jobs should be assigned as soon as they are submitted to

the system, RTC is a viable option. However, if submitted

jobs can wait some time until they are assigned to a node

as in classical queued high-throughput environments, either

GA Min-MinMobiComEnergy and Min-MinMobiComEnergy

are choices with quite balanced performance, in the sense that

they achieve the highest percentage of completed jobs and

competitive data output transferred. Achieve high throughput,

in terms of completed jobs, is useful when the scheduler has

to deal with jobs from multiple users. Moreover, when high

throughput refers to prioritize job execution with high output

data generation then GA Max-MinMobiComEnergy and Max-

MinMobiComEnergy are preferred.
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A weak point of RTC, Min-MinMobiComEnergy and Max-

MinMobiComEnergy is that, due to their algorithmic nature,

they cannot be further improved. However, there are many

variants/configurations for the different elements of the studied

GAs that could be explored in the future. In this sense, we will

extend our GAs with new mutation operators to allow jobs

permutation and with this explore new areas of the solution

landscape. Besides, we plan to further investigate the synergy

between data and other CPU aware criteria [7]. We will also

combine the exploration capability of GA with the exploitation

capability of memetic algorithms. We also plan to assess

how GAs respond in even more realistic scenarios where,

e.g., where the RSSI values dynamically vary and/or mobile

owners actively use their devices. Lastly, we will backup future

experiments through statistical significance tests.
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