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Abstract. This article focuses on the problem of dealing with low accuracy of 
job runtime estimates provided by users of high performance computing 
systems. The main goal of the study is to evaluate the benefits on the system 
utilization of providing accurate estimations, in order to motivate users to make 
an effort to provide better estimates. We propose the Penalty Scheduling Policy 
for including information about user estimates. The experimental evaluation is 
performed over realistic workload and scenarios, and validated by the use of a 
job scheduler simulator. We simulated different static and dynamic scenarios, 
which emulate diverse user behavior regarding the estimation of jobs runtime. 
Results demonstrate that the accuracy of users runtime estimates influences the 
waiting time of jobs. Under our proposed policy, in a scenario where users 
improve their estimates, waiting time of users with high accuracy can be up to 
2.43 times lower than users with the lowest accuracy.  

Keywords: high performance computing, scheduling, execution time 
estimation, quality of service. 

 1  Introduction 

Parallel supercomputers are high-end machines designed to support the execution 

of parallel jobs [1]. Nowadays, supercomputers have become a common commodity 

in scientific oriented companies and research institutions, especially those working on 

High Performance Computing (HPC). Along with the development of HPC 

infrastructures, the main trend has been using commercial cluster management 

software suites.  These software suites offer a wide variety of features, which include 

queue management, process prioritization, and scheduling algorithms [2]. 
 
Due to the increasing usage of supercomputers, job scheduling has become a 

critical task, where small differences in policies can result in great changes in 

resource utilization, and in performance [3]. The most popular scheduling policy used 

in batch schedulers is first-come, first-served (FCFS) [2]. This scheduling policy often 

comes in combination with a backfilling method called EASY-Backfilling. The idea 

of this method is to select small jobs (i.e., jobs with low number of requested cores or 

walltime) for execution before the time they were supposed to, whenever holes of idle 
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resources appear [4]. Backfill systems relay on users job runtime estimates to 

accomplish their task. 

Execution time estimation has a significant impact on how a scheduler treats 

different jobs, and on general performance [4]. The inaccuracy of user estimates 
worsens the overall performance of the parallel system [5]. For this reason, many 
studies have been performed in order to improve runtime estimates, to make a 

positive impact on both system-related and user-related performance metrics. 

This article focuses on the problem of dealing with low accuracy of job runtime 

estimates provided by users. The main goal of the study is to evaluate the benefits of 

providing accurate estimation, in order to motivate users to make an effort to better 

estimate the system utilization.  

The main contributions of this article are: i) the study of the impact of user 
runtime estimations in the system utilization for current HPC infrastructures; ii) the 
design and implementation of a novel scheduling strategy, named Penalty Scheduling 
Policy (PSP), which prioritizes jobs from users that provide good estimates on jobs 
runtime; and iii) the experimental evaluation of PSP using realistic workloads, on  
both static and dynamic scenarios, which emulate diverse user behavior regarding the 
estimation of jobs runtime. 

We present an empirical evaluation of PSP under five scenarios that represent 
different user behaviors regarding the estimated runtime of jobs. For each scenario, 
four simulations are performed considering different workload patterns that models 
the real situation of our HPC infrastructure, Cluster FING. Then, we analyze the 
impact of their accuracy on the queuing time of their jobs. 

The paper is organized as follows. Section 2 introduces some general concepts 
about scheduling. A review of related work is presented in Section 3. Section 4 
describes the proposed PSP algorithm. Section 5 presents the workload analysis and 
the problem instances characteristics. Then, the experimental evaluation of PSP is 
presented in section 6. Finally, section 7 presents the conclusions and formulates the 
main lines for future work. 

 2  Background 

This section presents a brief description of Cluster FING at Facultad de Ingeniería and 
the SLURM simulator [6], the tool used to perform the scheduling evaluation.  

 2.1  Cluster FING 

Cluster description. Cluster FING [7] is the HPC infrastructure at Facultad de 
Ingeniería, Universidad de la República, Uruguay. It is an heterogeneous cluster of 
computing resources with 1672 cores, which has been operational since 2008, with a 
steady growth in components. It is used mostly for the batch execution of scientific 
and engineering computing jobs. 

Job scheduling. Cluster FING uses Maui [8] for job administration. Maui is a 
policy engine to manage resources (such as processors, memory, and disk) that are 
assigned to jobs. It also provides other features like mechanisms for resource usage 



optimization, monitor system performance, help diagnose problems, and general 
system manage. The default behavior of Maui is defined by a first-come, first-served 
(FCFS) batch scheduler, plus EASY Backfilling [8].  

FCFS is a queue policy where the jobs are attended in the same order that they 
arrive: the first job to arrive is the first to get access to the requested resources. 
Backfilling is a policy that requires users to estimate the runtime of their jobs. 
Provided this information of runtime, short (runtime) jobs are allowed to execute 
before a larger job at front of the queue [9]. The EASY Backfilling algorithm only 
moves ahead jobs that do not delay the job at the head of the queue.        

 2.2  The SLURM workload manger 

SLURM (Simple Linux Utility for Resource Management) [10] is an open-source 
workload manager designed for clusters running Linux. SLURM provides the basic 
workload manager tasks for allocating resources to users for a requested amount of 
time. It also provides tools for starting, executing, and monitoring jobs on a set of 
allocated nodes. Besides that, it manages a queue of pending work that is configured 
by the administrators of the application/infrastructure.  

SLURM design is modular, including many optional built-in plugins. Two 
relevant plugins that are used in this work are SLURM Priority Plugin API and 
SLURM Accounting Storage Plugin API. SLURM Priority Plugin API allows 
computing the priority of the queued jobs in every iteration. The default configuration 
of this plugin is the basic implementation, which provides a basic FIFO job priority. It 
also comes with a multifactor job priority plugin that can be configured easily. 
SLURM Accounting Storage Plugin API allows the storage of accounting data 
collected during the execution of the scheduler, it can be configured to use a MySQL 
database in order to store accounting data for future processing. We use SLURM 
Accounting Storage Plugin API to store the accounting data in the simulations 
performed to evaluate the priority scheduler considering user runtime estimates 
proposed in this work. 

In this work, we have adapted SLURM Priority Plugin API to implement our 
proposed priority policy. It is important to state that, in SLURM, the larger the 
priority number, the higher the job will be positioned in the queue, and the sooner the 
job will be executed.  

 2.3  The SLURM simulator 

The SLURM simulator [6] is a job trace simulator that uses the SLURM scheduler 
as the simulation tool with minor SLURM code changes. The implementation of the 
simulator was left outside the SLURM source code; this way the simulation mode can 
be used with future releases of the scheduler. The simulator contains two programs, 
external to SLURM: sim_mgr, the simulation manager, which keeps control of the 
simulation time and sim_lib, the simulation library, which captures time-related calls 
and synchronizes with sim_mgr for sleep calls or getting simulation time. 



A workload generator for SLURM is provided with the simulator. This workload 
generator, with slight changes in its source code, is used in this article to create the 
synthetic workloads used in the experimental evaluation of the proposed scheduler. 
The workload generated is based on real workload registered on Cluster FING. The 
hardware infrastructure used on the simulations is also based on Cluster FING (see 
details about the problem instances on Section 5). 

 3  Related work 

This section describes the related work about analyzing user runtime estimates, its 
impact on job scheduling, and proposed techniques to improve the accuracy of the 
estimations.   

Several relevant related works reported that user runtime estimates of jobs are 
usually inaccurate. For example, Cirne and Berman [1] showed that in four traces of 
different supercomputers, 50% to 60% of jobs made use of less than 20% of their 
requested time. Other features were also reported, for example the relation between 
failed jobs and accuracy, and between  job length and accuracy. 

The impact of user runtime estimates has been a matter of study in many articles.  
As stated by Tsafrir [5], some of the studies performed gave surprising, 
counterintuitive results. While some researchers found that inaccurate estimates are 
usually preferable over accurate ones, other studies show that performance is 
insensitive to accuracy of users runtime estimates [3,11 14]. Tsafrir reported results 
showing that performance is affected by the quality of users runtime estimates. 

The empirical study by Tang et al. [3] showed that FCFS is not sensitive to user 
runtime estimates. However, using accurate runtime estimates improve performance 
on scheduling policies that give precedence to short jobs, like Shortest Job First. It is 
also presented a scheme that uses historical information about the quality of estimates 
of both user and project scopes, to redefine the runtime estimate of a given job. The 
proposed adjusting scheme is transparent to users and easy to deploy. 

In Iturriaga et al. [15], we studied the problem of energy consumption in 
heterogeneous computing scenarios proposing novel scheduling algorithms and 
reporting their experimental evaluation performed over realistic workloads and 
scenarios. We analyzed three real-world task workloads and proposed a workload 
generation model considering uncertainties. We computed improvements of up to 
32% in computing performance and up to 18% in energy consumption. 

In this line of work, this article focuses on analyzing the impact of users 
improving their runtime estimates when using the proposed PSP in HPC clusters. PSP 
is based on lowering the priority of jobs submitted by users whose runtime estimates 
have been inaccurate in the past, as it is described in the following section.  

 4  The proposed Penalty Scheduling Policy 

The penalty policy applied in PSP consists in affecting the priority of jobs according 
to the historical precision of runtime estimates of the users.  



We define the accuracy of a users job runtime estimate as A =
trun

treq
, where trunis 

the real runtime of the job, and treq is the requested time. Accuracy can take values 
between 0.0 and 1.0, thus the average accuracy is also between that interval. The 
bigger the average accuracy, the better the user is when estimating runtime, and the 
PSP method will assign higher priority to the users newly submitted jobs. 

To affect the priority in the PSP scheduler, the accuracy of users estimates is used. 
We used a dynamic update scheme for estimating the accuracy of users, by computing 
the average deviations (i.e., ratio) between estimated time and real execution time for 
the last ten completed jobs for each user.  

Table 1 shows the intervals used to assign priority to jobs. The priority is a 
number between 1 and 5, a higher number means that the jobs is closer to the head of 
the queue. For example, a job whose user has an accuracy of 0.35 will have a priority 
of 2. This priority is first calculated when the job is submitted, and it is updated every 
time a new job is submitted or when releasing resources (i.e., a job ends). 

Table 1. Intervals for accuracy of estimates and priorities for each tag names. 

tag name accuracy interval priority 
a1 [0.0,0.2) 1 
a2 [0.2,0.4) 2 
a3 [0.4,0.6) 3 
a4 [0.6,0.8) 4 
a5 [0.8,1.0] 5 

We consider that a job runtime estimate is "good" when its accuracy is over 0.6, 
under that it is considered a poor quality estimate. That consideration is based on the 
study of workload trace at Cluster FING, in which the users with coefficient of 
accuracy of estimates higher than 0.6 is just 4% of the total platform users. 

Algorithm 1 presents a pseudocode for the implementation of the proposed 
scheduler into SLURM. 

Algorithm 1. PSP implementation in SLURM 
priority_thread_tasks() 
   while (true) 
      waitEvent(job_completion, job_submission, time_lap, ...); 

              jobs_list.computeNewPriority(); 
           end; 
        end; 
        scheduling_thread_tasks() 
           while(true) 
           //scheduling thread tasks 
           end; 
        end; 
        main() 

… 
scheduling_thread.create(); 
priority_thread.create(); 
… 

     end; 



We included our code in the Multifactor implementation of SLURM Scheduler 
Priority Plugin API. This priority API is used by the Job Manager, which is the 
component that accepts jobs requests and includes pending jobs in a priority ordered 
queue. The function computeNewPriority() called by the priority_thread 
communicates with that API and updates the priority of all jobs in pending state based 
on data retrieved from the database in which job accounting information is stored. 
This function is called periodically and when there is a change in a job state that may 
permit another job to begin execution. 

 5  Workload analysis and problem instances 

The design of realistic problem instances is a very relevant issue when dealing with 
the evaluation the new approaches for scheduling and managing HPC infrastructures. 
We analyzed the workload of Cluster FING in order to gather real information for 
creating realistic instances of the scheduling problem (including workloads and user 
behavior when estimating jobs runtime). This section summarizes the main findings 
about workload analysis and users job runtime estimates and describes the problem 
instances generated. 

 5.1  Workload analysis 

We analyzed the complete trace of jobs submitted to Cluster FING between April 
2010 and March 2015, containing a total of 276803 jobs. As the main results of the 
statistical analysis of jobs, we found that almost half (49.3%) were small jobs, with 
less than a minute of execution time, sequential jobs were 44.2%, and parallel jobs 
were 6.5%. We found a predominance of power of two number of cores requested in 
parallel jobs (85.1%). 

We computed the average accuracy of users runtime estimates by applying the 
model described in the previous section. Regarding this average, we divided the users 
in six groups (a bigger group number means a higher accuracy of estimates): g10 to 
0.05, g20.05 to 0.15, g30.15 to 0.25, g40.25 to 0.35, g50.35 to 0.60, and g60.60 
to 1.0. These groups have 21%, 21%, 18%, 17%, 19%, and 4% of the 117 regular 
users of the cluster respectively. 

 5.2  Problem instances 

Using the information gathered in the workload analysis, we created problem 
instances to evaluate the PSP scheduling algorithm under different scenarios. 

The simulated infrastructure consists of 37 machines with 12 cores each (a total 
number of 444 cores). We also configured an execution queue that accepts serial, and 
parallel jobs requesting up to 16 cores, and up to ten days of execution time. 
Regarding the task workload generation, we used the software included with the 
SLURM simulator, and customized its source code to generate specific instances for 
the problem to study. The changes include adding constraints on the number of cores 



requested and maximum requested job runtime, so the jobs generated fulfill the 
constraints of the execution queue configured. 
Each generated workload has 1000 jobs, from 20 users. Each job demands a number 
of cores that is a power of two between 1 to 16, and up to 10 days of runtime 
execution. The distribution of the number of cores and runtime execution is 
representative of the workload at Cluster FING.  

In order to test different accuracy of estimates situations, six scenarios simulating 
different user behavior were generated, the main characteristics of those scenarios are 
shown on Table 2. Four scenarios are static regarding the accuracy on runtime 
estimates, while the other two emulate users that learn and improve the accuracy of 
their execution time estimation. 

Table 2. Scenarios generated to simulate different user behavior. 

scenario type accuracy learning schema 
BE static group a1 (0.00.2) none  
GE static group a6 (0.81.0) none 
CF static groups g1 to g6 none 
CFG static groups g1 to g6 none 
DI dynamic incremental improving all users 
HDI dynamic incremental improving half of the users 

The first scenario is BE (Bad Estimates), in which all users have the worst level of 
job runtime estimate accuracy (group a1, defined in Section 4), with accuracy 
between 0.0 and 0.2. In the second scenario, GE (Good Estimates), every user has the 
highest level of  accuracy of job runtime estimates (group a6), with an accuracy 
between 0.8 and 1.0. The third scenario is CF (Cluster FING), where the users 
accuracy was generated so it is representative of the one accounted at Cluster FING. 
We divided the accuracy in the six groups, g1 to g6, defined in the previous 
subsection. 

The fourth scenario is CFG (Cluster FING with good estimates), introducing 
changes in CF scenario to model a situation where almost half the user estimations are 
in group a6. In order to keep coherence we changed the weight of the groups as 
follows: a1: 12%, a2: 12%, a3: 9%, a4: 8%, a5: 10%, and a6: 49%.  

The last two are dynamic scenarios, which emulate a rational behavior of users 
that gradually learn how to estimate job execution times. The improvement of 
estimations is calculated with a frequency of 5 jobs (i.e. every 5 jobs submitted by the 
user) as follows: if accuracy ≤ 0.5, then it is increased by (1accuracy)×0.1; else 
accuracy is increased by accuracy×0.1. In the fifth scenario, DI (Dynamic 
Improvement), all users improve their estimations as described. On the other hand, in 
the last scenario HDI (Half Dynamic Improvement), only half of the users were 
modeled to correctly learn how to improvement on their estimates. 

The source code of the SLURM synthetic workload generator was modified in 
order to emulate this six different scenarios of user behavior, and generate them at 
once, using the exact same workload trace.  



 6  Experimental analysis 

This section reports the experimental analysis of the proposed PSP algorithm over 24 
scenarios defined from the combinations of infrastructure, workload, and estimations. 
All simulations were performed in a virtual machine running Ubuntu v14.04. The 
results of each simulation were stored in a MySQL database, a functionality provided 
by SLURM scheduler.  

In order to get information about each class of accuracy of users job runtime 
estimates, we studied the average waiting time per user for the five classes. Table 3 
reports, for each of the six scenarios evaluated, the average waiting time (in minutes) 
of each of the accuracy classes defined. We identify the empty classes with a "".  

Table 3. Average waiting time for each scenario divided by accuracy class. 

scenario average waiting time (minutes) 
a1 a2 a3 a4 a5 

BE 820.05     
GE     796.18 
CF 1093.12 637.53 519.30 450.30  
CFG 1488.60 986.33 759.15 706.35 517.35 
DI  1030.25 804.93 534.15 424.43 
HDI 1091.58 837.51 781.38 509.70 484.20 

We compared the waiting time for users that did not increase their accuracy, and 
the users that did. First we discuss the results of static scenarios (CF and CFG), then 
we continue with dynamic scenarios (DI and HDI).  

CF is a static scenario in which the highest accuracy class with users is a4 (0.6 to 
0.8). This class has an average waiting time of 450.3 minutes, which is 2.43, 1.82, and 
1.77 times lower than the average waiting time of class a1, BE, and GE respectively. 
Only one user was on class a4, and his jobs were of the highest priority on the 
simulation. 

Scenario CFG is quite different from CF: there are 6 users on the higher class (a5). 
The average waiting time per user in a5 is 517.35 minutes, which is 2.88, 1.59, and 
1.54 times lower than the average waiting time of class a1, BE, and GE respectively. 
The waiting time in CFG is also higher than the one in CF; the reason is that more 
users are on class a5, and they compete with each other for computing resources. 

DI and HDI are dynamic scenarios, with improvements on the accuracy of users 
runtime estimates. Due to the dynamism, we decided to include the average waiting 
time of each user in the class where he belongs at the end of the simulation. In DI, the 
highest accuracy class is a5, having an average waiting time of 424.23 minutes, which 
is 2.43, 1.93, and 1.88 times lower than the average waiting time of class a2, BE, and 
GE respectively. The highest accuracy class in scenario HDI is a5, in which the 
average waiting time is 484.2 minutes, this value is 2.25, 1.69, and 1.64 times lower 
than the average waiting time of class a1, BE, and GE respectively. 

Scenario DI has the lower waiting time of all 6 scenarios for its highest populated 
class, which is a5. DI also has an overall average waiting time of 698.44 minutes, 
lower than the overall average waiting time for HDI (740.87 minutes). In a scenario 



where all users improve their estimates, the waiting time improves for all users, even 
for the ones belonging to the higher class. 

Fig. 1 summarizes the average waiting time (in minutes) for jobs submitted for the 
scenarios CF, CFG, DI, and HDI. The average waiting times are grouped by class, 
from a1 to a5. For a particular scenario, results show that the waiting time for a job 
significantly reduces when moving to a higher accuracy class. In a scenario where all 
users improve their accuracy of runtime estimates, every class experience a drop in 
their average waiting time, which means a general improvement in the quality of 
service of the HPC infrastructure. For example, class a2 in DI (the lowest class of the 
scenario) has lower waiting time than class a1 in all other scenarios in the figure.                                                                                                                                                                                                                                                   

Fig. 1. Average waiting time of each accuracy group, grouped by scenario. 

 7  Conclusions and future work 

This article presented a scheduling policy called Penalty Scheduling Policy (PSP), 
which focuses on the problem of dealing with low accuracy of job runtime estimates 
provided by users. The goals of the study are twofold. First, promoting users to 
accurately estimate the execution time of their jobs. Second, to evaluate the benefits 
of including a policy for a wise planning of computing resources by prioritizing 
requests from those users that provide accurate estimate for job execution times.  

An experimental evaluation of the use of Penalty Scheduling Policy in a simulated 
computer system environment, developed using the SLURM simulator, was 
presented. The empirical study analyzed the PSP performance on six different 
scenarios regarding the user behavior when estimating job time execution. The main 
results of the experimental analysis show that in an environment where all users 
improve their estimates, every users experience a improvement on their quality of 
service. The proposed strategy was included in SLURM, but it can be easily included 
in other popular resource management systems such as Maui. 

The main lines for future work are related to extend the experimental evaluation of 
the proposed scheduler using different workloads and statistics. The performance of 
PSP could be studied over synthetic workloads, created with the generator 
implemented by Tsafrir [5] using realistic (modal) job runtime estimates. This study 



will help to evaluate the real difference between the impact of bad user job runtime 
estimates, and good ones. We also plan to test the PSP method in a real environment, 
for example on Cluster FING, in order to test users acceptance of this policy. 

 8  References 

1. Cirne, W., Berman, F.: A comprehensive model of the supercomputer workload. IEEE 

International Workshop on Workload Characterization, pp. 140–148 (2001). 

2. Etsion, Y., Tsafrir, D.: A short survey of commercial cluster batch schedulers. Technical 

Report 2005-13. School of Computer Science and Engineering, The Hebrew University of 

Jerusalem (2005). 

3. Tang, W., Desai, N., Buettner, D., Lan, Z.: Analyzing and adjusting user runtime estimates 

to improve job scheduling on the Blue Gene/P. IEEE International Symposium on Parallel 

& Distributed Processing, pp. 1–11 (2010). 

4. Tsafrir, D., Etsion, Y., Feitelson, D.: Modeling user runtime estimates. In: 11th 

international conference on Job Scheduling Strategies for Parallel Processing, pp. 1–35 

(2005). 

5. Tsafrir, D.: Using inaccurate estimates accurately. In: 15th international conference on Job 

Scheduling Strategies for Parallel Processing, pp. 208-221 (2010).  

6. Lucero, A.: Simulation of batch scheduling using real production-ready software tools. In: 
5th Iberian Grid Infrastructure Conference, pp. 345–356 (2011). 

7. Nesmachnow, S. Computación científica de alto desempeño en la Facultad de Ingeniería, 
Universidad de la República, Revista de la Asociación de Ingenieros del Uruguay 61:12–

15, 2010 (text in Spanish).  
8. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the Maui scheduler. In: 7th 

international conference on Job Scheduling Strategies for Parallel Processing, pp. 87–102 
(2001). 

9. Mu'alem, A. W., Feitelson, D. G.: Utilization, predictability, workloads, and user runtime 
estimates in scheduling the IBM SP2 with backfilling. IEEE Transactions on Parallel and 
Distributed Systems 12(6):529–543, 2001. 

10. Yoo, A. B., Morris, A. J., Grondona, M.: Slurm: Simple linux utility for resource 
management. In: 9th international conference on Job Scheduling Strategies for Parallel 
Processing, pp 44–60 (2003). 

11. Zotkin, D., Keleher, P. J.: Job-length estimation and performance in backfilling schedulers. 
In: 8th International Symposium on High Performance Distributed Computing, pp. 236–

243 (1999). 
12. Zhang, Y., Franke, H., Moreira, J., Sivasubramaniam, A.: Improving parallel job 

scheduling by combining gang scheduling and backfilling techniques. In: 14th IEEE 
International Parallel and Distributed Processing Symposium, pp. 133–142 (2000). 

13. England, D., Weissman, J., Sadago-pan, J. : A new metric for robustness with application to 
job scheduling. In: 14th IEEE International Symposium on High Performance Distributed 
Computing, pp. 135–143 (2005). 
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