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ABSTRACT 
 

In many applications two or more dependent variables are observed at several values of the independent 
variables, such as at time points. The statistical problems are to estimate functions that model their dependences 
on the independent variables, and to investigate relationships between these functions. Nonparametric regression 
model, especially smoothing splines provides powerful tools to model the functions which draw association of 
these variables. Penalized weighted least-squares is used to jointly estimate nonparametric functions from 
contemporaneously correlated data. In this paper we formulate the multi-response nonparametric regression 
model and give a theoretical method for both obtaining distribution of the response and estimating the 
nonparametric function in the model. We also estimate the smoothing parameters, the weighting parameters and 
the correlation parameter simultaneously by applying three methods: generalized maximum likelihood (GML), 
generalized cross validation (GCV) and leaving-out-one-pair cross validation (CV). 
 
Keywords : Multi-response Nonparametric Regression Model, Penalized Weighted Least-Squares, Generalized 

Maximum Likelihood, Generalized Cross Validation, leaving-out-one-pair cross validation 
 

INTRODUCTION 
 
There are many writers who have studied 
spline estimators for estimating regression 
curve of nonparametric regression models. 
Kimeldorf & Wahba (1971), Craven & Wahba 
(1979) and Wahba (1990) proposed original 
spline estimator to estimates regression curve 
of smooth data. Cox (1983) and Cox & 
O’Sullivan (1996) used M-type spline to 
overcome outliers in nonparametric regression. 
Wahba (1983) proposed polynomial spline to 
obtain confidence interval based on posterior 
covariance function.  
 Oehlert (1992) and Koenker & Portnoy 
(1994) introduced relaxed spline and quantile 
spline, respectively. Budiantara et al. (1997) 
studied weighted spline estimator in   
nonparametric regression model with different 
variance. Wahba (2000) introduced some 
techniques for spline statistical model building 
by using reproducing kernel Hilbert spaces. 
Aydin (2007) showed goodness of spline 
estimator rather than kernel estimator in 
estimating nonparametric regression model for 
gross national product data. All these writers 
studied spline estimators in case of single 
response nonparametric models only.     
 In the real cases, we are frequently faced to 
the problem in which two or more dependent 

variables are observed at several values of the 
independent variables, such as at time points. 
Multi-response nonparametric regression 
model provide powerful tools to model the 
functions which draw association of these 
variables. 
 Many authors have considered 
nonparametric models for multiresponse data. 
Wegman (1981), Miller & Wegman (1987) and 
Flessler (1991) proposed algorithms for spline 
smoothing. Wahba (1992) developed the theory 
of general smoothing splines using reproducing 
kernel Hilbert spaces. Gooijer et al. (1991) and 
Fernez & Opsomer (2005) proposed methods 
of estimating nonparametric regression models 
with serially and spatially correlated errors, 
respectively. Wang et al. (2000) proposed 
spline smoothing for estimating nonparametric 
functions from bivariate data. Lestari (2007) 
studied spline smoothing for estimating three 
responses nonparametric regression models 
with the same variances of errors for the same 
response. Lestari (2008a) developed spline 
estimator in biresponse nonparametric 
regression model with unequal variances of 
errors and Lestari (2008b) developed penalized 
weighted least-squares estimator for bivariate 
nonparametric regression model with 
correlated errors.  All, except Wang et al. 
(2000) and Lestari (2007, 2008a, & 2008b), 
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assumed that the covariance matrix is known, 
which is usually not the case in practice. When 
the covariance matrix is unknown, it has to be 
estimated from the data and this can affect the 
estimates of the smoothing parameters (Wang 
1998). 
 In this paper, we study mathematical 
statistics methods for obtaining distribution of 
responses, and estimating the nonparametric 
functions and the parameters in the multi-
response nonparametric regression model. 
Here, we assume that the covariance 
parameters are unknown, and errors of the 
same responses have the same variances. Based 
on the multi-response nonparametric regression 
model given, we estimate multi-response 
nonparametric regression function by using 
penalized weighted least-squares. Next, we 
describe three methods: generalized maximum 
likelihood (GML), generalized cross validation 
(GCV) and leaving-out-one-pair cross 
validation (CV) to estimate the smoothing 
parameters, the weighting parameters and the 
correlation parameter simultaneously. 
 

RESULTS AND DISCUSSION 
 
Multi-response nonparametric regression 
models 
Assume that data { },ki kiy t  follows multi-
response nonparametric regression model: 

( )ki k ki kiy f t ε= +                              
(1) 
where ; . It means 

that the response of the variable  is 

generated by the k

1, 2, ...,k p= 1, 2, ..., ki = n
thi thk kiy

th function kf  evaluated at 

the design point  plus a random errorkit kiε . 

Assume (
. . .

2~ 0,
i i d

ki kN )ε σ  for fixed 

; and 1, 2, ...,k p= ( , )ki liCorr ε ε ρ=  for 

 and zero otherwise. It is a special case 

of our other paper, i.e., 

k l≠
( , )ki li iCorr ε ε ρ= , 

which has been submitted for an international 
journal 

Here, for simplicity of notation, we 
assume that the domain of the functions are 
[0,1] and kf  is element of Sobolev space , 

i.e., 

2W

2 { : ,kf W f f f ′∈ =  absolutely 

continuous, . Our 

methods can be easily extended to the general 
smoothing spline models where the p domains 
are arbitrary (thus could be different) and the 
observations are linear functionals instead of 
evaluations (Wahba 1990, 1992). 

1 2

0
( ( )) }f t dt′′ < ∞∫

 
Distribution of the responses 

Suppose that we denote 1( , ..., )
k

T

k k knt t t= ;  

1( , ..., )
k

T

k knk
y y y= ; 1( , ..., )

k

T

k k knε ε ε= ; 

1 2( ( ), ( ), ..., ( ))
k

T

k k k k k knk
f f t f t f t= ;

1
( , ..., )T T T

p
f f f=  and 

1
( , ..., )T T T

p
y y y= , where 

the superscript T refers to transpose. For for 

1, 2, ...,k p= , let 
k

kr m

σ
= , 

1

p

j
j
j k

m σ
=
≠

=∏ ; 

1

p

k
k

θ σ
=

= Π ; 

( ), 1, 2, ..., ;ij

k

i j p k i j
ρ

γ
σ

= = ≠ ≠ ; and 

 be a qsJ
qn ns×  matrix with  element 

equal to 1 if the element of 

( , )thi j
thi

q
y  and the 

thj  

element of 
s

y  is a pair, and zero otherwise. 

Note that J I= , the identity matrix, when all 
observations come in pairs. By taking ( )E y  

and ( )Var y , we obtain the distribution of 

responses, i.e., ~ (y N f , θ 1 )W − , where 
 

 

1

2

1 12 12 1 1

12 12 2 2 2

1

1 1 2 2

...

...

. . ... .

. . ... .

. . ... .

...
p

n p

T

n p

T T

p p p p p n

r I J J

J r I J

W

J J r I

γ γ

γ γ

γ γ

− =

p

p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

      (2) 
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Spline estimator of multi-response 
nonparametric model 
The nonparametric functions  are estimated 
by carrying out the following penalized 
weighted least-squares :  

kf

  
1 2 2, ,...,

{( ) ( )
p

T

f f f W
Min y f W y f

∈
− − +   

   
1 12 2

1 1 2 20 0
( ( )) ( ( ))f t dt f t dtλ λ′′ ′′+ +∫ ∫ …+  

           
1 2

0
( ( ))p pf t dtλ ′′∫ }                                 (3) 

The parameters kλ  ( ) control the 
trade-off between goodness-of-fit and the 
smoothness of the estimates and are referred to 
as smoothing parameters. 

1, 2, ...,k = p

We extend method as in Wang (1998) 
(i.e., in case of single-response nonparametric 
regression model) to multi-response 
nonparametric regression model. Let 
( ) ( )1 1t tννφ ν−= − !, 1, 2, ..., pν = ; 

, where 1

2 2 4( , ) ( ) ( ) ( )R s t k s k t k s t= − −

(.) (.) !k Bν ν ν=  and  is the (.)Bν

thν Bernoulli 

polynomial. Let { }
1, 1

( ) kn

k ki i
T tν ν

φ
= =

= ; 

; ( )1 , ..., pT diag T T= { } ,1

1, 1
( , ) k kn n

k ki kj i j
R t t

= =
Σ =  

and . By extending 
method as in both Wang (1998) and Wahba 
(1990) to multi-response case, we can show 
that for fixed 

( 1 2, )pdiagΣ = Σ Σ Σ, ...,

kλ ,  kγ  for ; and1, 2, ...,k = p ρ , 
the solution to (3) is 

     1

1 1

ˆ ( ) ( ) ( , )
knp

k k ki
i

kif t d t c R t tν ν
ν

φ
= =

= +∑ ∑      (4) 

 where  ;  and                                                        1, 2, ...,k = p

1 211 1 21 2 1( , ..., , , ..., , ..., , ..., )
p

T

n n p pnc c c c c c c= ; 

11 1 21 2 1( , ..., , , ..., , ..., , ..., )T

p p pd d d d d d d= pp  are 
solutions to 

1 1( , ..., )

T T

p p

dT WT T W

cWT W diag λ λ

Σ

Σ Σ Σ + Σ Σ

⎛ ⎛ ⎞
⎜ ⎜ ⎟

⎝ ⎠⎝

⎞
⎟
⎠

 

           = 
TT W y

W yΣ

⎛ ⎞
⎜
⎝ ⎠

⎟                                           (5) 

Note that  
11 11 1 1 2 21

ˆ ˆ ˆ ˆ( ( ), ..., ( ) ( )nf f t f t f t=  ,…, 

2
 is always 

unique when T is of full column rank, which 

are assumed to be true in this paper. It can be 
verified that a solution to  

2 2 1
ˆ ˆ ˆ( ), ..., ( ), ..., ( ))

p

T

n p p p pnf t f t f t

 

( )( )
1

1

1 , ...,

0
pn p n

T

W diag I I c T d y

T c

λ λ−Σ + + =

=

⎫⎪
⎬
⎪⎭

(6)                                   

 
is also a solution to (5). Thus we need to solve 
simultaneous equation (6) for c  and d . In 

fact, ( )
1

1

1 , ...,
pn p nW diag I Iλ λ−  is asymmetric if 

1 2 ... pλ λ λ≠ ≠ ≠  and 0ρ ≠ . To calculate the 

coefficients c  and d , we use the following 
transformations: 

( )
1 21 2, , ...,

pn n ndiag I I I pλ λΣ = Σ% λ  and 

( )
11 , ...,

pn p nc diag I I cλ λ=% . Then (6) is 

equivalent to 

( )1

0T

W c T d y

T c

−Σ + + =

=

⎫
⎬
⎭

% %

%
                   (7) 

Let ,  be 

the QR decompositions. Let  

( )1 2 0
k

k k k

R
T Q Q=

⎛ ⎞
⎜ ⎟
⎝ ⎠

1, 2, ...,k p=

1 11 21 31( , , , ..., )pQ diag Q Q Q Q= 1

2

; 

; 2 12 22 32( , , , ..., )pQ diag Q Q Q Q=

1 2( , , ..., )pR diag R R R= ; and . It 
can be shown that the solutions to (7) are  

1B W −= Σ +%

1

2 2 2 2( )T Tc Q Q BQ Q y−=% , 

1 ( )TRd Q y Bc= − %                              (8) 

Note that f̂ Ay=  where  
1

2 2 2 2( )T 1 TA I W Q Q BQ Q−= − −                         (9) 
is the “hat matrix”. Here, A is not symmetric, 
which is different from the usual independent 
case. 
 
Estimations of parameters 
We have assumed that the parameters ,k ijλ γ  

(for , , 1, 2, ..., ;i j k p k i j= ≠ ≠ )  and ρ  are 
fixed. In practice it is very important to 
estimate these parameters from the data. Since 
observations are correlated, popular methods 
such as the usual generalized maximum 
likelihood (GML) method and the generalized 
cross validation (GCV) method may 
underestimate the smoothing parameters 
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(Wang 1998). In this section we propose the 
following three methods to estimate the 
smoothing parameters kλ , the weighting 

parameters , andkr ijγ ; and the correlation 
parameter ρ  simultaneously, i.e. an extension 
of the GML method based on a Bayesian 
model; an extension of the GCV method; and 
leaving-out-one-pair cross validation. 

Wang (1998) proposed the GML and GCV 
methods for correlated observations with one 
smoothing parameter. Wang et al. (2000) 
proposed the GML and GCV methods for 
correlated observations with two smoothing 
parameters. In multi-response (with p 
responses) nonparametric regression model, 
there are p smoothing parameters which need 
to be estimated simultaneously together with 
the covariance parameters. Following an 
extension of derivation, we extend the GML 
and GCV in both Wang (1998) and Wang et al. 
(2000) as follows. 

The GML estimates of kλ , ijγ ,  and kr ρ  
are minimizers of the following GML function: 

( , , , )k ij kM rλ γ ρ =   
1

4

( )

det ( ( ))

T

n

y W I A y

W I A+ −

−

−⎡ ⎤⎣ ⎦

 

                      
1

2 2

1
1 4

2 2

( )

det( )

T T

T n

z Q BQ z

Q BQ

−

− −

=

⎡ ⎤⎣ ⎦

           (10) 

where 1 2 ... pn n n n= + + + ;  is the product 

of the nonzero eigen values and 

det+

2

Tz Q y= . The 

minimizers of ( , , , )k ij kM rλ γ ρ  are called GML 
estimates. 

The GCV estimates of kλ , ijγ ,  and kr ρ  
are minimizers of the following GCV function : 

[ ]

2

2

( )
( , , , )

( ( ))
k ij k

W I A y
V r

Tr W I A
λ γ ρ

−
=

−
 

                     
2

2 2

21

2 2

( )

( )

T T

T

z Q BQ z

Tr Q BQ

−

−
=
⎡ ⎤⎣ ⎦

                (11) 

In the following we propose a cross 
validation method based on leaving-out-one-
pair procedure. Suppose there are a total of N 
( 1 2max{ , , ..., }pN n n≥ n ) distinct time points 
and thus N pairs of observations. Any one 
observation in a pair may be missing. These 

pairs are numbered from 1 to N. We use the 
following notation: superscripts (i) to denote 
the collection of elements corresponding to the 

 pair; superscripts [i] to denote the collection 
of elements after deleting the  pair; 
superscripts {i} to denote solution of 

thi
thi

kf  

without the  pair. When one observation in a 
pair is missing, superscripts indicate a single 
observation instead of a pair. The solutions to : 

thi

1 2

[ ] [ ] [ ] [ ][ ]

,...,
{( ) ( )

p

i i i iT i

f f W
Min y f W y f

∈
− − +   

       
1 12 2

1 1 2 20 0
( ( )) ( ( )) ...f t dt f t dtλ λ′′ ′′+ + +∫ ∫                                             

       
1 2

0
( ( ))p pf t dtλ ′′∫ }                                   (12) 

are { }

1̂

if , { }

2̂

if , …, { }ˆ i

pf . Assume that there are 

p elements in the  pair (it is simple if there is 
only one). Denote  , , …,  as the row 

numbers of this pair in 

thi

1i 2i pi

1
y , 

2
y , …,

p
y , 

respectively. Define: 

*
{ }

,
ˆ ( ), , 1, 2, ...,

k

kj k

ikj
k ki k

y j i
y

f t j i k

≠
=

= =

⎧
⎨
⎩ p

   

Suppose that we denote 
* * *

1( , ..., )
k

T

k knk
y y y= , * * *

1
( , ..., )T T T

p
y y y= , and  

( )
1

{ } { } { } { }

1 11 1 1 2 21
ˆ ˆ ˆ ˆ( ( ), ..., ( ), ( ), ...,i i i i

nf t f t f t f t=

2

{ } { } { }

2 2 1
ˆ ˆ ˆ( ), ..., ( ), ..., ( )

p

i i i

n p p p pnf t f t f t ). Then we 

have the following leaving-out-one-pair 
lemma. 
 
Lemma.  For fixed , , ,k ij krλ γ ρ , and i , we 

have { } ( )ˆ *if t Ay=  
Proof :   
Let   ( )

11 11 1 1 2 21{ ( ), ..., ( ), ( ), ...,nf t f t f t f t=  

22 2 1( ), ..., ( ), ..., ( )}
pn p p p pnf t f t f t and  

( )
1

{ } { } { } { }

1 11 1 1 2 21
ˆ ˆ ˆ ˆ( ( ), ..., ( ), ( ), ...,i i i i

nf t f t f t f t=

2

{ } { } { }

2 2 1
ˆ ˆ ˆ( ), ..., ( ), ..., ( ))

p

i i i

n p p p pnf t f t f t . Similarly 

define [ ]( )if t   and { } [ ]( )ˆ iif t  as ( )f t  and 
{ } ( )ˆ if t  respectively without the elements 

corresponding to the pair. For any function thi

1 2, , ..., pf f f  in , we have : 2W
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( )( ) ( )( ) ( )( )1 2

1 10
* *

T

y f t W y f t f t dtλ ′′− − + ∫ +                  

( )( ) ( )( )1 1 22

2 20 0
... p pf t dt f t dλ λ′′ ′′+ +∫ ∫ t  

[ ] [ ]( )( ) [ ] [ ] [ ]( )(Ti i i iiy f t W y f t≥ − − ) +                   

( )( ) ( )( )1 1 22

1 10 0
... p pf t dt f t dλ λ′′ ′′+ +∫ ∫ t  

[ ] { } [ ]( )( ) [ ] [ ] { } [ ]( )( )ˆ ˆTi i i ii i iy f t W y f t≥ − − +     

{ } ( )( )( ) { } ( )( )( )2 2
1 1

1 10 0

ˆ ˆ...i i

p pf t dt f t dtλ λ
″ ″

+ +∫ ∫
 { } [ ]( )( ) [ ] { } [ ]( )( )ˆ ˆ* *

Ti ii i iy f t W y f t= − − +      

{ } ( )( )( ) { } ( )( )( )2 2
1 1

1 10 0

ˆ ˆ...i i

p pf t dt f t dtλ λ
″ ″

+ +∫ ∫
                                                                     (13) 
where the first inequality holds because after 
switching rows and columns, we have  

( )( ) ( )( )* *
T

y f t W y f t− − =  

[ ] [ ]( )
( ) ( )( )

[ ]

( )

[ ] [ ]( )
( ) ( )( )

* *0

0*

Ti ii i
i

ii ii i

y f t y f tW

Wy f t y f t

− −

−

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ * − ⎠
     

[ ] [ ]( )( ) [ ] [ ] [ ]( )(Ti i i iiy f t W y f t≥ − − )
i

. 

The second inequality holds because 
{ } { }

1̂
ˆ, ...,i

pf f  are solutions to (12). The last 

equality holds because of the definition of *y . 
The inequality at (13) indicates that 

{ } { }
1̂

ˆ, ...,i

p

if f  are solutions to (3) with y  

replaced by *y . Therefore  { } ( )ˆ *if t Ay= . 
As a consequence of this lemma, we do 

not need to solve separate minimization 
problems (12) for each deleting-one-pair set. 
All we need to do is to solve the following 
equations  

               

(14) 

11 12 1 1 1

21 22 2 2 2

1 2

...

...

. . ... . . .

. . ... . . .

. . ... . . .

...

p

p

p p pp p p

m m m s u

m m m s u

m m m s u

=

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤ ⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥⎦ ⎣ ⎦

          

for { } ( )ˆ
k k

i

k ki kif t y− , where ; 

; 

( )11 1 11 ,m a i= − i

( )
12 1 1 2 1 1 1

, ; ...; ( , )
p p

m a i n i m a i n i= − + = − +

( )21 1 2 1,m a n i i= − + ; 

( )22 1 2 1 21 ,m a n i n= − + + i ; …; 

( )2 2 2,p pm a i n i= − + 1;…; ( )1 1 ,p pm a n i i= − +

( )2 2 2,p pm a n i i= − + ;…; 

( )1 11 ,pp p p p pm a n i n i
− −

= − + +  
{ } ( )

1 11 1 1 1
ˆ i

i is f t y= − ; { } ( )
2 22 2 2 1

ˆ i

i is f t y= − ;…; 
{ } ( )ˆ

p p

i

p p pi pis f t y= − ; ; { } ( )
1 11 1 1 1

i

i iu f t y= −

{} ( )
22 2 2 1

i

iu f t y=
2i

− ; … ; 
{ } ( )

p

i

pp p pi pu f t y= − i ); and  are 

elements of the matrix A. If there is only one 
observation in the  pair, for example 

( ,a i j

thi
11iy , we 

then have the following equation 
( )( ) { } ( )( ) ( )

1 1 1 11 1 1 1 1 1 1 1
ˆ ˆ1 , i

i i ia i i f t y f t y− − = i−

                (15) 
Note that (15) is exactly the same as the 
”leaving-out-one” lemma in the independent 
case. 

Let 
{ } { } ( )

{ } ( )( )1

1

ˆ ˆ ˆ, ...,
T

t
i kn
k k

k k k knk k

f f t f t
−

=
 and  

{ } { }( ) { }( )( )1

ˆ ˆ ˆ, ...,
T T

p
f f f

− − −
= , where denotes 

the index of the pair for observation . Define 
the cross validation score as  

kji

kj
y

      ( ) { }( ) 21 ˆ, , ,k ij kC r W y f
n

λ γ ρ
−

= −       (16) 

Here, C estimates the weighted mean-square 
errors (WMSE) (Wang 1998). The minimizers 
of ( ), , ,k ij kC rλ γ ρ  are called cross validation 

estimates of the parameters. 
 

CONCLUSION 
 
The distribution of vector responses y  is 

Multivariate Normal with mean f  and 
variance 1Wθ − . General smoothing spline 
models provide flexibility for estimating 
nonparametric functions and are widely used in 
many areas. With multiple correlated responses 
it is better to estimate these functions jointly 
using the penalized weighted least-squares. 
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