
Designing a Myro-Compatible Robot for
Education as Copyleft Hardware

Eduardo Grosclaude, Rafael Zurita, José Riquelme, Rodolfo del Castillo, and
Miriam Lechner

Facultad de Informática, Universidad Nacional del Comahue,
Buenos Aires 1400, Neuquén, Argentina

{oso,rafa,jose.riquelme,rdc,mtl}@fi.uncoma.edu.ar

http://www.fi.uncoma.edu.ar

Abstract. The application of less conventional teaching techniques shows
a growing trend. Studies have shown that the usage of educational robots
improves learning in informatics. This work presents the architecture of
a vision capable, low-cost robotic system designed and built to be used
as an educational platform.
We opted for open architecture and copyleft hardware to make our de-
velopment shareable with other institutions and agencies, while keeping
in mind the costs and complexity associated with the creation of such a
platform. By mixing in an embedded Linux system and a vision system,
the robotic platform became more powerful and apt for other uses.
The robotic system described is used within our Facultad de Informática
to teach Embedded Systems, to learn and test AI techniques, to teach
Programming in an enticing way, and for dissemination extension activ-
ities about Computing.

1 Introduction

Since 2006, when IPRE (Institute for Personal Robots in Education) and other
similar initiatives came to appear, educational robotic platforms have begun
to make their way into introductory Computer Science courses. Using high-
level programming languages to control these devices is highly motivating, since
robots expose some aspects of computing that freshman students usually find
difficult to grasp. The efforts initially have been directed to reduce the high drop-
out rates observed in undergraduate Computer Science courses [1][2]. Many
kinds of educational robots and programming tools were developed to this end. In
particular Myro (My Robot), jointly developed by several institutions through
IPRE, is among the most adopted frameworks. Myro implements a protocol of
messages to be sent to (and answered by) a robot. Its main goals are to allow
for an easy access to the whole robot’s capabilities, and to be usable via any
programming language. On this call, this framework has been ported to many
languages, such as Python, C, C++ and Java [3][4].

Myro has also been integrated into Calico, a modern development environ-
ment, which enables many beginners’ programming tasks within a simple-to-use

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296375382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Designing a Myro-Compatible Robot for Education as Copyleft Hardware

ambient. While Myro is a part of Calico, this tool’s main focus dwells in provid-
ing a development environment for beginner Computer Sciences students [5].

Besides, Calico-Myro supports several types of educational robots, which
allows for some variants to institutions adopting these learning tools [6].

In spite of these possibilities, the only easily reusable element is the control
software, released under an Open Source license. However, the robot platforms
supported are commercially licensed, and they must be purchased to be used
[7][8][9][10].

Because of this, efforts have been set forth to develop robotic devices under
free licenses supporting Myro-Calico, as few chances exist to purchase compat-
ible robotic platforms in our region. In Argentina, a few universities use the
commercial robot N6 from RobotGroup [11] which integrates Arduino free
hardware. Even so, the rest of the platform still cannot be easily reproduced, as
the remaining documentation needed to build these robots has not been released
[12].

With this scenario in mind, we designed at our Department a low-cost, Myro-
compatible robot, to be developed and released under hardware and software free
licenses. This licensing would allow to locally use the robot and to share it to
other institutions interested in building and improving such a platform.

The platform was designed not only to be used at first courses in Computer
Sciences, but also for research purposes. In fact, the integrated vision capa-
bility offers a very important resource for areas like Artificial Intelligence and
Computer Vision. This design does also overcome a usual shortcoming found
in educational robotic platforms, which usually employ basic sensors driven by
low-resources micro-controllers. To achieve vision capability, which depends on
an integrated camera, some computational resources had to be thrown in for
image processing, as well as a communications device to enable the transmission
of video sequences.

The purpose of this article is, on one hand, to describe the architecture of a
hardware-copylefted robot which supports Myro and provides a vision extension
of the system. We also describe the results obtained from real usage learning
experiences in first courses and as a research tool.

2 System description

2.1 Copyleft Hardware

The Copyleft Software concept has its roots in free software development,
and requires every modifications or extensions of a program to be free software
as well. Copyleft Hardware devices licensing shares the same philosophy and
draws from the FOSS (Free and Open Source Software) movement mindset.

This methodology’s main characteristics are [14]:

– Principles similar to those of Free Software’s are applied to hardware design
and production.

Designing a Myro-Compatible Robot for Education as Copyleft Hardware 3

– All related documentation must be released under open licenses: GPL,
GFDL, CC-BY and CC-BY-SA.

Usage and development of Copyleft Hardware allows to [14]:

– Learn from it without a need for reverse engineering. Be able to spot poor
functionality and devise enhancements.

– Adapt design to new uses and environments.
– Reuse part of the design in other projects.
– Achieve product longevity by actualization, improvement, repair or modifi-

cation.

The Copyleft Hardware development model has been followed in this project
since the design stages, as it allows for distribution and modification of design
and source code, with the only requirements that derivative work must be under
a compatible license and original authors must be credited. Other institutions
interested in using educational robots can freely take up building, modification
and usage of this platform. To achieve this goal, boards schematics and design
files have been released as Copyleft Hardware, and the source code to programs
and tools have been released as Open Source software. Documentation related to
robot design and construction, as well as tutorials for installation and utilization
of libraries and programs, have also been published1.

2.2 Hardware Architecture

Fig. 1 shows the robot’s hardware architecture basic scheme.
The system is built around a MIPS MR3020 [16] controller board (main

features shown in Fig. 2). This board works as an interface between the user
(the PC) and the robot; provides wireless communication over a 2.4GHz channel;
controls a UVC video camera, webcam type, and provides communication with
the EasyDuino [17] board.

During the selection process for the Linux embedded system hardware, sev-
eral similar boards were considered. Some of them went under some reverse en-
gineering study to allow experimentation with Linux, and to conduct laboratory
tests in order to analyze and compare characteristics [18].

The EasyDuino board is a Copyleft Hardware clone of Arduino UNO hav-
ing the same features as the original –except for programming, which is done
only through a serial connection (same as used for communicating with MIPS
MR3020). EasyDuino’s main characteristics are shown in Fig. 3.

For the power stage, i.e. DC engines control, a Shield for EasyDuino having
an LD293 (H bridge) chip has been designed and developed. On the Shield were
also installed three LEDs and a Buzzer mini-speaker to enable signaling to the
user in several ways. The same board supports the battery pack, catering energy
for the whole system. This interface’s features are shown in Fig. 4.

The finished robot and the aforementioned hardware components can be seen
in Fig. 5.

1 Downloadable from [15] and [21]

4 Designing a Myro-Compatible Robot for Education as Copyleft Hardware

Fig. 1. System’s hardware architecture schematics.

Fig. 2. Features of MIPS MR3020 controller board
.

2.3 Software Architecture

Software architecture, as depicted in Fig. 6, is structured over five clearly de-
fined layers, distributed into the two components necessary for utilization of the
educational robotic platform. Components shown in a red box were specifically

Designing a Myro-Compatible Robot for Education as Copyleft Hardware 5

Fig. 3. Features of EasyDuino board.

Fig. 4. Features of EasyDuino’s Shield.

developed for the project. Other components are open source software pieces
which were set up, and in some cases, modified, for the robotic platform objec-
tives.

In the remote component, i.e. PC, portable or mobile device, the following
software levels are found:

– User programs.
– Myro and Vision libraries.
– Operating System, with TCP/IP communication capability.

The following software levels are found in the robot:

– Embedded Linux operating system, with TCP/IP, wireless, USB, UVC and
serial drivers.

– Firmware for the Atmega8 chip located in the EasyDuino board, with serial,
engines, LEDs, and speaker drivers. To process the packets coming from the
remote computer’s Myro library, the software interpreter for Myro’s protocol
was also implemented into this firmware.

6 Designing a Myro-Compatible Robot for Education as Copyleft Hardware

Fig. 5. Educational robot’s hardware assembly.

Fig. 6. Systems’s software schematics.

User Software User programs using Myro’s run-time library finally execute
in a PC or remote portable computer to control the robots. As Myro library is

Designing a Myro-Compatible Robot for Education as Copyleft Hardware 7

implemented in several different programming languages, the user has an array
of choices when selecting a language for program development in this educational
platform.

In this second level, we only needed to adapt Myro to TCP/IP communi-
cations, as the original version was developed to use robots through Bluetooth
serial communications. In our implementation, we decided to use wireless com-
munication, which provides a broader bandwidth and a broader distance range.
These are required for vision streaming and for transmission of Myro’s proto-
col packets. Myro’s original communications modules were replaced to support
TCP/IP, enabling the embedded Linux systems carried by the robots to perform
wireless communications.

The vision component was implemented as a shared library, so as to be used
by user programs with any existing Myro implementations.

Robot Software The robot shows two software layers: the Linux system em-
bedded in the MIPS hardware, and the firmware developed for the EasyDuino
board. The Linux system was built up from Openwrt, compiled and configured
to be used as a communications interface and for vision control through a UVC
(USB Video Class) camera. Myro’s protocol packets received via wireless by the
robot are routed by the Linux system to EasyDuino firmware through a serial
link. In this way, several TCP/IP clients can make use of the robot indepen-
dently. The wireless link is also used to send images from the robot’s camera,
and for regular system management.

The software developed for the EasyDuino board (firmware for the AVR
Atmega8 micro-controller) has four principal modules: LEDs and speaker con-
troller, engine controller, serial controller, and the interpreter module for Myro’s
protocol.

Whenever a packet is received from the Linux embedded system by the se-
rial interface, it is routed to the module decodifying Myro packets. Once it is
decodified and interpreted, the actuators pertaining to the received command
(engines, LEDs, speaker, name management, etc.) are activated; and this same
module sends a response packet, as defined by the protocol, through the serial
interface.

Using an AVR Atmega micro-controller as an architectural component for the
EasyDuino board allowed all robot software to be developed with open source
tools, notably GNU GCC (GNU Compiler Collection).

2.4 Vision

Vision is controlled by the Linux system within the robot through the UVC driver
and the embedded mjpg-streamer [19] application. An additional, C-language
vision library was also developed to ask the camera for images and to process
them. This library was integrated into Myro, so that user programs may use the
robot’s vision for environment sensing.

8 Designing a Myro-Compatible Robot for Education as Copyleft Hardware

Whenever a user program uses the vision API, the vision library asks the
robot for images to be processed. The robot’s mjpg-streamer application then
sends a video stream of 4 FPS with a 160x120 pixels resolution for every image.

The vision library receives these images and detects, using the cvblob library
[20], objects by color or blobs, returning statistics about the elements identified.
Then, the user program may call query functions to know size and location of
the objects found. User programs can figure out, at pixel-level precision, how
many pixels left or right from the robot’s viewport center an interesting object
has been found.

Using these recognition primitives based upon the objects’ size (which tells
about the distance) and location (which tells about the horizontal orientation
regarding the robot’s viewport), simple ”object search” programs interacting
with the real world can be implemented.

2.5 Using Robots

Myro software is used from the students’ or teachers’ PCs or netbooks. The robot
is remotely controlled through programs written in Python, C, C++, Java or
CiaoProlog. A small program of a few Python sentences is shown in Fig. 7. In
this example, the robot will turn counterclockwise on its axis until a white object
is found by its vision system. As can be seen, the API is easy to use, allowing to
access the different capabilities in the platform (such as movement, vision, LED
and speaker output devices) in a simple manner.

Fig. 7. Color-searching algorithm example.

Designing a Myro-Compatible Robot for Education as Copyleft Hardware 9

3 Results

In the second half of 2012 a first prototype was used in two dissemination talks
about our courses, and in laboratory classes taught in “Introducción a la pro-
gramación” within technical courses. These first real-world tests suffered from
some expected inconveniences, especially regarding electronics, software and me-
chanical parts. Teachers in charge of those activities and projects, motivated by
classroom innovation, contributed several improvements to software robustness.
Some electronic problems got better software detection, and automatized actions
were set in place to recover from problems. These changes can be viewed in the
version history from the project repository [21].

Similar, substantial improvements were made during 2013, with contribu-
tions to the different software and hardware layers. That same year, the robot
were used as a principal platform for the annual extension project “Divulgando
Computación con Robots en la Escuela Media”. This project held meetings with
secondary school students who were taught programming with robots there. The
meetings sported a low rate of problems related to the robotic platform, and in
all the cases they were solved during the same meeting [22].

Also during 2013, within X Jornadas de Informática de la Universidad de la
Patagonia Austral, Ŕıo Gallegos, these educational robots were used as a testing
tool in four university activities: an extension course and postgraduate course
on Artificial Intelligence (“Robótica Cognitiva”), a programming workshop for
university students, and a dissemination talk about university courses held dur-
ing the Jornadas [23]. During 2014 they are being used as a principal platform
in the annual extension project “Con la Escuela Media Programamos robots y
Conocemos más de Computación”, in the initial Artificial Intelligence courses,
and as a laboratory tool for the development of several undergraduate theses
related to vision and Artificial Intelligence [24].

4 Conclusions

– Our design has allowed us to build a few educational robots at a low cost,
enabling the use of this platform in several places at the same time for differ-
ent purposes. Field usage has allowed us to improve hardware and software
architectures, and we hope to keep making them better through the feedback
from teachers and students, who report problems or ask for new features.

– Our experiencies have also awaken interest in local media [25] [26], broad-
ening the reach of information about our courses in informatics, academic
and extension activities.

– A Myro framework prototype for the CiaoProlog programming language is
currently being implemented. This language is used in Artificial Intelligence
classes and related undergraduate theses.

– Some tasks are still to be accomplished in order to comply with the Copy-
left Hardware licensing definition. For instance, the printer circuit boards’
schematics and files should be ported to formats supported by free software.

10 Designing a Myro-Compatible Robot for Education as Copyleft Hardware

Fig. 8. Extension project “Con la Escuela Media Programamos Robots y conocemos
más de Computación” 3rd meeting, Salón Azul, Universidad Nacional del Comahue,
06/24/14.

At the moment, they are in eagle format. Eagle is a non-cost software, but
not a free software. More adequate formats are those generated by Kicad
or Geda.

– Existing documentation, schematics, printed circuit boards designs, robot
software, example user programs, installation tutorials, and every informa-
tion related to the project can be obtained from our web site and from the git
version repository. This fulfills most of the requirements of copyleft hardware
and free software [16].

References

1. Tucker Balch, Jay Summet and Doug Blank, Designing Personal Robots for
Education: Hardware, Software, and Curriculum, IEEE Pervasive Computing, Vol.
7, pp. 5-9, 2008.

2. Mikko Apiola, Matti Lattu and Tomi A., PasanenCreativity and intrinsic
motivation in computer science education: experimenting with robots, ITiCSE ’10
Proceedings of the fifteenth annual conference on Innovation and technology in
computer science education Pages 199-203 - ACM New York, NY, USA 2010 -
ISBN: 978-1-60558-820-9.

3. Institute for Personal Robots in Education wiki: http://wiki.roboeducation.org
4. Stefanie A. Markham and K. N. King, Using personal robots in CS1: expe-

riences, outcomes, and attitudinal influences, Proceedings of the fifteenth annual
conference on Innovation and technology in computer science education, pp. 204-
208, (2010).

Designing a Myro-Compatible Robot for Education as Copyleft Hardware 11

5. Calico project website:http://calicoproject.org/.
6. Douglas Blank, Jennifer S. Kay, James B. Marshall, Keith O’Hara and

Mark Russo, Calico: a multi-programming-language, multi-context framework de-
signed for computer science education, Proceeding SIGCSE ’12 Proceedings of the
43rd ACM technical symposium on Computer Science Education Pages 63-68 ACM
New York, NY, USA 2012 - ISBN: 978-1-4503-1098-7.

7. Calico-Myro Robots website: http://calicoproject.org/Calico_Myro\#Robots.
8. Scribbler Robot website: http://wiki.roboteducation.org/Myro_Hardware.
9. The Finch Robot website: http://www.finchrobot.com/.
10. Hummingbird Robot website: http://www.hummingbirdkit.com/.
11. Grupo RobotGroup website: http://www.robotgroup.com.ar/.
12. D́ıaz Javier F., Banchoff Tzancoff Claudia M., Martin Sof́ıa y López

Fernando, Aprendiendo a Programar con Juegos y Robots, VII Congreso de Tec-
noloǵıa en Educación y Educación en Tecnoloǵıa. Universidad Nacional del Noroeste
(Buenos Aires, Argentina), Junio 2012 - http://hdl.handle.net/10915/19307/

13. Carlos I. Camargo, El papel del Hardware Copyleft en la enseñanza de sistemas
embebidos, CASE (Congreso Argentino de Sistemas Embebidos) 2011.

14. Werner Almesberger, Haciendo Hardware Copyleft, Comunidad Qi Hardware
- 2011 - http://downloads.qi-hardware.com/people/werner/fisl12 es.pdf

15. Robot Educativo wiki: http://labti.fi.uncoma.edu.ar/trac/wiki/RoboTitos

16. MR3020 board openwrt website: http://wiki.openwrt.org/toh/tp-link/tl-mr3020
17. EasyDuino cloned repository: https://github.com/zrafa/se_uncoma/

robotitos/hardware/easyduino1

18. Rafael Zurita, Rodolfo del Castillo, Miriam Lechner y Eduardo
Grosclaude, Reverse-Engineering a Closed-Box Hardware and Software Linux
Embedded System, Libro de Trabajos de Foro Tecnológico y Pósters - Congreso
Argentino de Sistema Embebidos, 14-16 de Agosto 2013, Buenos Aires - ISBN 978-
987-9374-88-7.

19. mjpg-streamer Project website: http://sf.net/projects/mjpg-streamer/.
20. Cvblob project website http://code.google.com/p/cvblob/.
21. Robot Educativo Frankestito website: http://github.com/se_uncoma/.
22. Proyecto de Extensión año 2013 “Divulgando Computación con Robots en la

Escuela Media”. Universidad Nacional del Comahue: http://divulgando.fi.

uncoma.edu.ar.
23. Boletin Oficial de Noviembre de 2013 - Gobierno de Santa Cruz: http://www.

santacruz.gov.ar/boletin/13/noviembre13/12noviembre2013.pdf.
24. Proyecto de Extensión año 2014 “Con la Escuela Media Programamos robots y

Conocemos más de Computación”. Universidad Nacional del Comahue: http://

robots.fi.uncoma.edu.ar.
25. Diario La Mañana del Neuquén - Edición del

04/10/2013: http://www.lmneuquen.com.ar/noticias/2013/10/4/

aprendieron-a-programar-y-crearon-a-frankestito_202090.
26. Programa de Televisión “Código Rupestre”, capitulo “El lenguaje de los Robots”:

http://www.codigorupestre.com.ar/?p=443.

