-

P
brought to you by i CORE

View metadata, citation and similar papers at core.ac.uk
provided by SEDICI - Repositorio de la UNLP

JCS&T Vol. 14 No. 2 October 2014
Invited Paper:
Tiered Architecture for Remote Access to Data Sources

Karina M. Cenci Leonardo de Matteis and Jorge R. Ardenghi

Departamento de Ciencias e Ingenieria de la Computacién
Universidad Nacional del Sur
Bahia Blanca, Argentina
kmc@cs.uns.edu.ar, ldm@cs.uns.edu.ar, jra@cs.uns.edu.ar

Abstract—Teamwork is benefited by the use of
shared data sources. Also, ever increasingly, organiza-
tional work depends on the activities of team members
situated in different physical locations, including both
employees who work from their homes and others who
have been temporarily transferred to another place.
Since, for all these reasons, accessing data remotely is
a growing need, organizations implement internal sys-
tems in order to control shared data access according
to user privileges. In this regard, the cost of resource
transportation needed to generate communication must
be considered. The main contribution of this paper
is the extended reference layered architecture ICDFS-
CV (Interface Control and Distributed File Systems
- Communication Versioning). It allows to build a
solution that, facilitates documents download and the
creation and concurrent modification by multiple users
through versioning control.

Keywords: Distributed File System - Remote
Access - Distributed Systems

I. INTRODUCTION

Resource utilization from different locations is increas-
ing due to the growth of mobile devices, broadband net-
works and wireless connections. New technologies influ-
ence organizations to ask for new requirements to improve
quality and efficiency of staff work.

The access to remote resources, especially to data
sources, has led to a variety of studies [9], [5], [7], [8].
Weissman et al [9] propose a paradigm called Smart File
Object (SFO) to achieve an optimal performance in the
access to remote files. This proposal uses the concept
of file as an object type to provide high level interface
and make use of object concepts to invoke operations and
file properties. Another option, the file system Trellis [8],
provides an abstraction to access data files using names
based on URL and SCL, and its basic functionalities are
implemented in user space. One of the features that it
includes is the transparent access to any remote data, an
important ability to metacomputation and grid computing
areas.

On the other hand, the administration of shared data in-
side an enterprise or organization is commonly performed
through a distributed or net file system, with capabilities to
manage users in a local network or its own cloud. In some
cases, these systems do not offer security, scalability and
effectiveness when run through organizational boundaries.

The utilization of a virtual private network (VPN) [4]
is an alternative, but in some cases, it is not an acceptable
solution, since it does not respect internal information
security policies. It is important to point out that it is not
recommended to give all users access to the organizational
network through VPN due to several security reasons. Be-
sides, the implementation of this type of access requires the
consideration of performance factors such as the speed of

67

B
DFS

User

Fig. 1. Problem

the available connection and the CPU usage (both the client
and the VPN server) according to the encoded scheme of
the adopted protocol (PPTP, L2TP/IPSec, OpenVPN, etc.).

Miltchev et al [7] establish a framework to compare
different distributed file systems. There, they present the
necessary characteristics for the comparison: authentica-
tion, authorization, granularity, autonomous delegation and
revocation. These benchmarks allow an understanding of
the intermediate solutions to access shared data. The
relevance of the selected topics for the comparison is that
remote access requires credentials management, authoriza-
tion and permissions to allow the access, in this case, file
access.

Section II describes characteristics of the problem to
solve. Section III presents the ICDFS reference archi-
tecture for the design of a solution to this situation. In
section IV an extended version of ICDEFS is introduced,
with the principal inclusion of a new component: the
Communication Versioning. Section V presents an appli-
cation example using the extended architecture to solve the
problem. Section VI describes existing proposals to access
shared data files of common use in some organizations.
Section VII highlights advantages and drawbacks to this
proposal and related works. Finally, the conclusions and
future works are presented in section VIII.

II. PROBLEM / GENERAL CONSIDERATIONS

The remote access tendency is growing and the need to
have high quality access means through different technolo-
gies is essential. This situation is shown in figure 1. The
Distributed File System (DFS) is placed on the left side,
inside the organization; while the user is seen on the other
side, out of the boundaries. In this case, any employee
with permission to work outside the organization and with
the necessity to access the internal files (documents) is
considered a user.

Organizations design and implement their own infras-
tructure to connect the different machines and devices.

https://core.ac.uk/display/296374976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

JCS&T Vol. 14 No. 2

DFS

User
Fig. 2. Conceptual Model
. B Module
Module / Interface
RES Control ‘
d
3
User

Fig. 3. Model ICDFS - Reference Architecture

Each employee has rights and restrictions to use the
resources. For this particular problem, a file is considered a
resource. Sometimes employees, whose tasks may require
utilization of information (documents) saved in the internal
network, may need to work outside the organizations
or enterprises. Figure 2 shows a model in which the
enterprises (organizations) and users (employees) are con-
nected through the bridge. The inclusion of this component
allows users to access the internal resources from remote
locations.

The conceptual model introduces the idea of using a
bridge such as a gateway. This gateway is an open point in
the border of the enterprise. The challenges are to maintain
all the internal information security policies and to provide
efficient access from different environments.

III. ICDFS REFERENCE ARCHITECTURE

A reference architecture to this problem was introduced
in [1]. This model called INTERFACE, CONTROL AND
DISTRIBUTED FILE SYSTEM (ICDFS) is shown in figure
3.

The ICDFS is organized by tiers. Each tier is inde-
pendent and they communicate among themselves through
well-defined interfaces, in such way that if the behavior of
the functions is changed, it is not necessary to modify the
rest of the components.

The main components are: distributed file system (DFS),
control module and interface module.

o Distributed file system (DFS): this component is
inside the limits of the organization. It includes all the
operations for managing files, accessing capabilities,
sharing directories and files, managing users and
providing permissions.

o Control Module: this component connects the inter-
face module with the distributed file system, and it
is the entrance door to the organization from the
outside. It includes functions to guarantee access
security, allowing users to gain admission to the
same information that the DFS component grants. In
addition, the component contains functions to read,
copy, modify and add documents to the DFS.

« Interface Module: this component runs in each of the
remote access points, such as cellular phone, tablet,

68

October 2014

notebook. All the operations on the DFS are done
through the control module.

IV. ICDFS-CV EXTENDED ARCHITECTURE

In this work, an extended reference architecture based
on ICDFS is introduced. The relevance of this extension is
the inclusion of a new compoment named Communication
Versioning. Figure 4 shows the extended version ICDFS-
CV.

The control module is the main component of this
architecture. It is formed by the following internal ones:

o Authentication: This component controls the access
to the system. It checks the user and password
through the DFS module.

o Communication: This component connects with the
same element of the interface module. It receives
the messages with the requirements and sends the
answer.

o Operation: This component contains the read, write,
and modify operations. It receives the request from
the communication component, and connects with the
communication versioning module and DFS module.

— Read: On-line policy is an option to implement
this operation. The user needs to be connected
with the remote modules during all the reading
time. Another option is Downloading for the im-
plementation of this operation. This last policy
allows several users to share the file without
special controls.

— Write: this operation is equivalent to the creation
of a new document in the file system. The name
of the file is checked since it could not have the
same name as an existing file.

— Modify: this operation is used to change an
existing file. For the implementation of this
function, one of the following policies may be
selected.

+ Session semantics: when a file is modified by
several users at the same time, the last copy
to be uploaded is the one that is saved in the
system.

* Versioning semantics: in this case, all the
versions of a file are saved with the same
name but with some distinctive attribute, such
as the user, date and time of the uploaded file
or an internal identifier.

In this proposal, the selected policy is versioning
semantics. For this reason, a new component,
Communication Versioning appears in the ex-
tended architecture.

The communication versioning manages the file mod-
ifications. It connects with the DFS and the operation
component.

This model shows that the control module communi-
cates via the operation submodule with the versioning
module that works as the interface with the distributed
file system. In the future, interfaces will be implemented
within the versioning module to establish communications
with various existing protocols: Samba, SFTP or FTP.

All these protocols have operations on files and direc-
tories:

o change directory

o list a directory

o read a file

« upload a file.

The versioning module will be responsible for the
resolution of conflicts according to the versioning policy.
Thus, if naming conflicts arise despite the control module’s

JCS&T Vol. 14 No. 2

DES Module

4 Control

October 2014

Module
Interface

‘Authentication

User

‘Communication

Communlcatlon\;

Versioning

\‘Operation

Fig. 4. Model Extended ICDFS-CV

checks (filter/safewards) for the write operation of existing
files, they can be considered and solved.

In this sense, the following conflict scenarios associated
with the write operation include:

o A file already exists with the same name prior to
the operation, despite previous checkup at the control
module.

o During a file upload process, another user creates a
file with the same name and writes before completing
the reception.

« During the file upload process another process deletes
the immediate previous version of the file. In this
case, two different actions can be taken either to
follow the policy of incremental versioning in the
order prior to deletion, or delete the file.

To solve the problems posed by the stated situations, a
new layer, related to the control module, will be defined.
Completely independent, it is implemented as a small pro-
cess running on the file server itself. A new functionality
provided by this process consists of the reception of file
manipulation from different applications.

The defined operations of the new layer are shown in
table I.

Let us now consider the operation to save a new file in
the distributed file system:

o The control module defines a unique identifier for
the new file to save, under the name file_id. Then,
the module proceeds to contact the versioning layer
through the operation file_push_begin(file_id).

o When the versioning module receives the command
file_push_begin(), it proceeds to queue the filename
it received for a finite period of time, and then it
begins receiving the file. After the transfer upon
the filesystem (with the corresponding file_id), the
versioning module starts waiting to receive the com-
mand: file_push_end(file_id, flename).

o Upon receiving the file_push_end() command, the
versioning module renames the received file accord-
ing to the defined versioning policy. To complete this
action the following steps, defined in the versioning
algorithm to implement, are comp leted:

1) Take received temporary file name, in this case:

file_id.
2) Take <filename> as prefix for the destination
file.

3) Define the new file name suffix based on
the latest version of the file on the server.
For example, if the file exists: filename
[(version_number)] = version_number suffix
(where version_number belongs to the set of
positive integers).

4) Rename the file as: filename(suffix+1).
o If communication between the control module and
versioning layer is broken, the last component will

69

delete those temporary files created after a fixed time.
« If the versioning layer could not receive the file or
could not complete the renaming operation according
to the versioning policy, it will notify the con-
trol module with the corresponding error message.
Also, the temporary file generated during the transfer
process (reception via file_push_begin()) will be
deleted.
Figure 5 shows the steps required for a successful write
operation and the messages exchange among the modules.
In the communication between defined modules schema,
any error is only reported and the necessary measures
are taken to remove temporary data, but fault tolerance
does not imply automatic retry attempts. The user will
be informed of the errors produced, and he shall take the
corresponding/necessary actions to retry writing, reading
or achieving the desired modifications.

V. APPLICATION EXAMPLE

The proposed reference architecture is used to design
an architecture for the implementation of a remote access
system in a distributed repository located in the internal
net of an organization.

The following requirements for the implementation have
been considered:

« Remote access to the common files of the organiza-

tion.

o Respect for the same access permissions in folders

and files provided by the DFS.

e Access in read mode to the files as the principal

functionality.

« Files and folders not to be deleted.

o Write access as a secondary functionality.

The environment in which the example is applied has
some characteristics. First, the shared files are placed in
the repositories, which are accessible through SMB (Server
Message Block) protocol over Microsoft AD (Active Di-
rectory) services of Microsoft Windows 2003R2.

Second, different area users may read those folders and
files they have access permissions through the internal
policy granted by the organization. In addition, a remote
access service to the internal documents is an important
and essential functionality to the users. This access may
guarantee the same policies and security measures that
apply in the internal net.

The chosen policies of the operation component (Con-
trol Module) are the following:

1) read operation: it allows the downloading of the file

to the device;

2) write operation: it does not allow the creation of

a new document with the same name of another
document in the corresponding folder;

3) modify operation: the versioning semantics is cho-

sen. This decision is based on the idea of providing

JCS&T Vol. 14 No. 2

October 2014

Operation Description

file_push_begin(<file_id>)

used to begin the operation of creation of a file (new one or new version).

file_push_end(<file_id>, <filename>)

used to saved the file in the DFS. This function checks the versioning.

file_get(<filename>)

used to obtain the file.

TABLE T
COMMUNICATION VERSIONING: OPERATIONS

AInterface |_Control

createnewfile{fisname)

defineiD|

Fig. 5. Successful write operation

users with all the modifications made concurrently
in a period of time.

A. Components

For the implementation of a service environment that
meets the functional requirements specified in the previous
section the following components were used:

o Virtual machine with GNU / Linux CentOS 6 oper-
ating system.

« Samba’s smbclient component.

o A web server with Nginx.

« Use of PHP-FPM to interact with the web server.

 Scripting service through PHP-CLI module with the
core of PHP in version 5.4

o Module ngx_http_ssl_module to provide HTTPS sup-
port.

o OpenSSL library.

o Control module implemented in PHP language.

o Web interface implemented in PHP language.

« Mobile devices with embedded web browsers.

The component selection was guided by their advan-
tages for the purpose of the formulated setting. Thus, PHP
is a scripting language, currently listed as a general purpose
language for running in web servers.

In the implementation, the modules developed in PHP
run through an FPM interface that allows higher speeds
and better performance compared to those that could be
achieved with a deployment using Apache web server and
PHP as one of its modules.

Meanwhile, PHP-FPM (FastCGI Process Manager) is a
FastCGI interface and it is also an alternative implementa-
tion with additional features that make it suitable for use
in web applications of any size but with high amount of
requests per time unit.

Furthermore, FastCGI is a protocol that works as an
interface with other programs that communicate with a web
server. The main objective of this protocol is to reduce
the additional time used in communication with the web

e Fi’{e_puﬂ'l_begin[fﬁe—id]

__file_push_end(fie_id, fiename)

70

| Comm.
Version.

‘transferring

==
versioningifile_id, fiename)
Feeial

<

server, allowing it to service a greater amount of requests
simultaneously.

To provide secure communications between the inter-
face module and the control module, a communication
scheme based on the HTTPS protocol was chosen, so the
objectives of data confidentiality policies of the organiza-
tion are achieved. Besides, directives HSTS (HTTP Strict
Transport Security) are used to achieve secure access to
the interface module.

VI. RELATED WORK

Among the alternatives to manage access to shared data
the use HFS, mod_dir of Apache and WebDAV may be
considered.

In the first place, HFS (HTTP File Server) [6] allows
an easy file sharing among a workgroup through HTTP
protocol. File sharing may be limited to a group of users
or allow everyone to access them. The difference between
this and other file systems is that it does not require the
net. HFS is a web server, characteristic that allows files
publication through a website presentation. HTTP protocol
has weaknesses in security aspects, since the traffic is sent
in plain text and every sent data bit between the web
server and the client can be intercepted and read by all
the machines that are in the way to the final site. This
tool works over Microsoft Windows operating systems.
One disadvantage of this is that it does not support an
authentication scheme through ADSI (Active Directory
Services Interfaces) interface.

A second option, Apache Module mod_dir [2] is used
to redirect the trailing slash and it is used as the file
directory index. It is a simple way to share files, especially
those used to access free distribution data sources. One
advantage of this tool is the availability to install it over
operating systems that can execute Apache HTTP Server
such as: Microsoft Windows, GNU/Linux, Unix, OS X,
etc.

Another possibility is WebDAV (Web-based Distributed
Authoring and Versioning). It is a set of HTTP extensions,

JCS&T Vol. 14 No. 2 October 2014
Criterion ownCloud | I-ICDFS-CV
Authentication N N4
Privacy N N
Auditing X N
Reading NE X
Writing NE NE
Modification V4 X
Simultaneous Modificacion X V4
Downloading V4 vV
Verioning NE vV

1: LDAP - 2: LDAP / API ASDI
3: Only edited files in collaborative mode - 4: Preliminary Check
5: Control Name - 6: Manual
TABLE II
COMPARISONS

that allows users to cooperate among them to edit and
manage files in web servers through the net. WebDAV is
documented in RFC 2518 and extended in RFC 3253. RFC
2518 specifies the set of methods, headers and secondary
content types to HTTP/1.1 to manage properties, create
and administer collections of resources. For common users,
WebDAV allows web team developers and other work-
groups to use a remote web server as easily as a local
file server.

Hernandez and Pegah [3] propose a solution to shared
files using WebDAV. LDAP (Lightweight Directory Access
Protocol) is included in the system to maintain a unique
registration. This extension allows a shared access service
without interruption. All these components are integrated
through the Apache web server that allows the usage of
WebDAV extensions and the meta-directory model LDAP
for users authentication. The advantage of this implemen-
tation is that it gives a solution compatible with NFS y OS
X.

VII. COMPARATIVE ADVANTAGES

In the proposed architecture, the authentication can be
defined on different implementations of distributed files
that use LDAP or some other type of system to catalog
users and objects with different permissions, since the
control module is responsible for the remote users authen-
tication. The authentication depends on the underlying sys-
tem that provides that service. So whether a validation on
each requirement is needed to make —as in the presented
implementation example— or if an enduring validation is
obtained for a certain time —in the case of using the API
ASDI, for example—, the control module can be adapted
to both schemes. Another advantage of this permission
validation scheme is that, if the administrator modifies
permissions to the objects in the distributed file system,
they immediately produce an effect on the files that the
user may or may not access.

This proposal is compared with a recognized and widely
used application, such as the ownCloud system. This
system, also implemented in PHP with interfaces to access
different file systems, does not have a synchronization
layer for the read/write accesses. In ownCloud, simul-
taneous access to rewrite the same file by two different
users simultaneously causes only the most recent changes
to remain available making it to fail. These problems occur
because smbclient is used as wrapper and access requests
are not previously enqueued as in our proposal. The system
ownCloud implements the report errors policy if they occur
as a result of executing the call to smbclient.

No locking mechanism on the access for writing a file
is observed at the ownCloud source code, it only performs

71

a preliminary check for its existence and asks the user
for the policy that should be adopted with respect to the
overwriting or writing of a new file with a number as suffix
to indicate the file version.

Moreover, the architecture provides access through the
graphical interface that is presented to the user on any
mobile device with a browser with support for HTTPS
protocol and HTML language. The goal is to provide
universal access to all client computers without installing
a specifically compiled application for each architecture
and operating system available today in widespread and
massively used devices. Users are not created on this
architecture: they already exist on the file sharing scheme
the organization has.

Besides, this way, basic safety requirements are ensured:
authentication, privacy and auditing. With respect to the
first two, they are inferred from the previous description,
but the third requirement, the audit, is an advantage of
the architecture, as administrators of the organization may
have a record of all events on access to internal company
files from the outside and may account for authentication,
downloads and modifications made by each user. Note
that without a control module that provides these services,
related system proposals presented above do note make
available all the information necessary for a complete
audit, unless the system administrator changes specific
compartments of these systems to include this type of
audit, either by modifying policies of the specific dis-
tributed system (eg, in the case of implementations on
Microsoft AD) or by mod_dir logs in Apache, to name
some particular cases.

Table II shows a summary of criterions comparison of
this proposal and ownCloud.

Another advantageous feature of is the fact that the
internal network is not exposed completely to the remote
computers users employ to access, as in the case of
the use of virtual private networks (VPN). This proposal
allows organizations that do not implement VPNs as a
service for all users, because of internal policies, to provide
this service more generally without the VPNSs’ security
inconveniences. In these organizations, only those users
with exceptions and special privileges may use the VPN
service.

VIII. CONCLUSIONS

The media insertion in society changes the way people
perform daily activities, for example, using the Internet to
make payments, inquiries and reservations, or accessing
government services, etc. In enterprises, network connec-
tivity allows employees to carry out their work activities
from different locations. In order to do so, an option

JCS&T Vol. 14 No. 2

is the use of VPNs, which have both advantages and
disadvantages.

As an alternative, this work proposes ICDFS-CV, an
extended reference architecture to model the access to data
sources located within the organization’s boundaries. This
alternative ensures that each outside user gets the same
capabilities and permissions as if he were working within
the physical boundaries of the organization. Moreover,
it includes a special component to manage documents
versioning. Benefits are associated with the auditing of
operations executed from the organization outside.

As future projections, this work proposes the incorpora-
tion of submodules into the control module to access differ-
ent distributed file systems, along with the authentication
feature on various systems with LDAP as a related service,
or any other possible validation schemes. Therefore, it
aims at specifying a general framework specification for
the control module as a relevant goal, so that it, in turn,
can incorporate other sub-modules to the necessary extent,
in order to broaden the proposed reference architecture’s
spectrum of use.

REFERENCES

[1] K. Cenci, L. de-Matteis, and J. Ardenghi. Arquitectura en
capas para acceso remoto. In CACIC 2013, 2013.

72

[2]
[3]

(4]
[3]

(6]
(71

(8]

(91

October 2014

The Apache Software Foundation. Apache Module mod_dir,
2013. httpd.apache.org/docs/current/mod/mod_dir.html.

L. Hernandez and M. Pegah. Webdav: What it is, what it does,
why you need it. In SIGUCCS ’03, ACM, pages 249-254,
2003.

R. Hills. Common VPN Security Flaws, 2005. http://www.nta-
monitor.com/.

T-J Liu, C-Y Chung, and C-L Lee. A high performance and
low cost distributed file system. In Software Engineering
and Service Science (ICSESS), 2011 IEEE 2nd International
Conference on, pages 47-50, 2011.

M. Melina. HFS Http File
http://www.rejetto.com/hfs/.

S. Miltchev, J. Smith, V. Prevelakis, A. Keromytis, and
S. loannidis. Decentralized access control in distributed
file systems. ACM Comput. Surv., 40(3):10:1-10:30, August
2008.

J. Siegel and P. Lu. User-level remote data access in overlay
metacomputers. In Proceedings of the IEEE International
Conference on Cluster Computing (CLUSTER’02), pages 1—
4, 2002.

J. B. Weissman, M. Marina, and M. Gingras. Optimizing
remote file access for parallel and distributed network appli-
cations.

Server, 2002.

