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EVALUATION OF EFFICIENCY OF HEAT EXCHANGING DEVICES
BUILT INTO THE THERMAL CYCLIC MACHINES

The focus of this work is a method of exergy-economizing calculation for the recu-
perative and regenerative heat-exchangers that are built-in the thermal cyclic ma-
chines. The method is intended for the analysis of efficiency of a prospective design
and material for the heat-exchanger that is incorporated into the closed thermody-
namic cycle of thermal machines at the initial stage of designing.

Key words: heat-exchanging machines, loss of exergy, recuperative and regenerative
heat-exchangers.

Introduction. Currently, mathematical models are used for the optimization of
thermal cyclic machines that are being developed. These models describe the elements
and their connections in the form of systems of equations, of variable and of system of
logic conditions [1], [2], [3], [4]. However, process of development and designe of
thermal cyclic machines has a number of stages: preliminary outline sketch, outline,
technical and then working projects. For each of the aforementioned stages of an opti-
mization task for thermal cyclic machines, it is expedient to distinguish on depth and
detail of study of questions. First developmental and designing stages of thermal cyclic
machines are characterized by insufficiency of initial data for a choice of a construction
design and sizes, for example, of heat-exchangers. Therefore, alongside with mathemat-
ical models that are obtained on the basis of detailed and relatively trustworthy infor-
mation and that are suitable at stages of technical and working projections for the pro-
cesses in the thermal cyclic machines the simple engineering methods are needed for
choosing fundamental sizes and construction of elements for thermal cyclic machines on
first stages of designing. Method of Schmidt-Kirkley [5] is currently used as a model for
such preliminary calculation of effective fundamental parameters of thermal cyclic ma-
chines and optimum values of relative magnitudes of temperatures and volumes of hot
and cold cavities. However, as a result of an assumption about ideality of processes in
heat-exchangers in the above method, it becomes impossible to define the fundamental
sizes of heat-exchangers, the process in which efficiency of a thermodynamic cycle of
the thermal cyclic machine is substantially defined.

Objects and problems. Objects of research in the present work are thermo-
exchanging devices of regenerative and recuperative type of the thermal machines work-
ing on the closed thermodynamic cycle in which cyclic processes of compression and
expansion occur at various levels of temperatures, and management of a flow of a work-
ing body is carried out by change of its volume.

The purpose of the present work is the evaluation of efficiency of processes in
heat-exchangers using exergy-economizing method. Preference of the exergy-
economizing method of the thermodynamic analysis due to two reasons: the heat-
exchangers in thermal cyclic machines have substantially different temperatures, there-
fore the heat transferred has different energetic values; additivity of exergy allows to
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carry out the separate analysis of various kinds of losses independently from each other,
which in the end enables to plan concrete actions to increase efficiency of thermal cyclic
machines. Another important feature of the exergy method is a direct correlation of ex-
ergy parameters with technical and economic characteristics of machines. Such a direct
correlation is impossible when energy which cannot be neither "created" nor "destroyed"
is used. On the contrary, exergy, as well as cost, can be both created and destroyed in
various processes. Despite of some disagreements concerning what exact form correla-
tion between exergic and economic categories has, researchers agree that application of
exergy in economic research is extremely fruitful.

Main section. Exergy coming into a heat-exchanger is transferred to doing useful
work and to compensating for losses that are results of irreversible processes, and also
the exergy is transferred to cooling heat-carrier. Reduction in total losses of exergy in
the cycle will allow to increase useful work of a thermodynamic cycle according to ex-
ergic balance.

Losses exergy in heat-exchangers of cyclic thermal machines can be presented in
the form of the sum

SE =33E, )

where the considered heat exchanger is indicated by index i, and the considered
type of a loss is indicated by index j.

Following assumptions were made during development of the basics for the exergy-
economizing method for the evaluation of efficacy of heat-exchanging devices that are
built in a closed cycle of heat machines:

—intensity of heat exchange in the heat-exchanger, axial thermal streams, hydrau-
lic resistance of the heat-exchangers are factors that are independent from each other;

—surface temperatures of the heat-exchangers and of a working body of the ther-
mal machine are constant during an input and an output from the heat-exchangers;

—working body (heat-carrier) of the thermal machine is an ideal gas;

—processes of compression and expansion in the thermal machine are isothermal;

—flowing processes of the working body through the heat-exchangers are adia-
batic;

—leakages of a working body from the heat-exchangers are absent.

—Considered kinds of exergy losses in the heat-exchangers in thermal cyclic gas
machines are:

—losses due to the pressure drop that are caused by hydraulic resistance of chan-
nels of the heat-exchangers;

—losses due to non-ideality of the heat exchange that are caused by final differ-
ence of temperatures during heat exchange;

—losses due to longitudinal (axial) heat conductivity of a material of the heat-
exchanger;

—losses due to presence of free volume of the heat-exchanger;

—losses due to dispersion of heat in an environment.

The fundamental equations of the exergic balance method were used while deter-
mining main components of exergy losses:

—exergy heat equation:

dE=(T-T,)dS; @)

—exergy flow equation:
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dT dP

dEZdi—TadS=deT—Ta(Cp7—R?); (3)
—equation of exergy of a substance in an enclosed volume:
dE=dU-T dS—-PdV . @)

The following notations are used in the equations (2, 3, 4):
dE — change in exergy; dS — change in entropy; di — change in enthalpy; dU — change

in internal energy; ¢,— thermal capacity of a working body of the thermal cyclic ma-
chine at constant pressure; 7, P— temperature and pressure accordingly; V — cavity

volume of the thermodynamic process; 7, — temperature of the surrounding; R — gas

constant of a working body of the thermal cyclic machine.
The basis for calculation of separate constituents to losses are is experimental data
that is widely presented in the literature in the form of criteria equations of a kind:

n

A
Nu = BRe" — for the description of the convection heat exchange; & = Re' for the

description of the hydrodynamic resistance of the heat-exchangers, where £ —is a coef-
ficient of the hydrodynamic resistance channels of the corresponding heat-exchangers;
Re, Nu — are criteria of Reynolds and Nusselt correspondingly; A, B,n,m — are em-
pirical coefficients in criteria equations.

On the basis of the made assumptions and the exergy equations, we receive analyti-
cal expressions of each kind of losses in the heat-exchangers.

Exergy loss due to the pressure drop that is caused by hydraulic resistance of the
heat-exchangers’ channels, during the adiabatic process with a constant enthalpy is

dT
(deTZO, Cp7=0)3
2 ng3-n
OE,, = 3OAzi]/liTaY;R llu 2C—;
P P n Ad;zlJrF; n

max’ "0

®)

According to the exergy heat equation (2), averages for a cycle of exergy loss (due
to the presence of unoccupied heat-exchangers’ volume that was forcefully included in
the volume of the working body that participates in realization of a thermodynamic cy-
cle) are:

2
5EiM = lF;‘hi})max (1 A) (1 _E) . (6)
2 JA T

1

Exergy loss due to non-ideality of the heat exchange, and caused by final difference
of temperatures of a working body and a nozzle of a regenerator, is:

m-1 AT A (1-1)*11
JE = 60F™" (Gd, .c,(1=0)"Tlp .
P I1 ABh,t

Exergy loss due to final temperature difference of walls of recuperative heat-
exchangers and the working body:

™)

n,
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2
le—m,- m,-Fm,- '
—_a’o H i (g} nO (8)

"™ 2F'BG"A \ T ) 60°
Exergy loss due to presence of a thermal stream on the frame and on the nozzle of a
regenerator:

_ 2,(1=1)*T,F,60 and SE = At (D, +2h,)(1—1)’T,F,60 |

OoE 9
- h,fn, P h,tn, ©)
Loss due to heat dissipation into surroundings:
2\T, =T, f 7D ,h, 60
OE ;, = ( = ) Lr (10)

T ,n,
Following notation is used in expressions (5)-(12):
1,,T. — temperatures of the surroundings and the working body accordingly in the

heat-exchanger, K; d ,— equivalent diameter of channel openings (pores of a porous
material of a nozzle, internal diameter of tubes of the recuperative heat-exchangers) of
the corresponding the heat-exchanger, m; F;—area of effective cross-sections of the cor-

responding the heat-exchanger, m’; Dp h ,— diameter and length of the regenerator, m;

h, — length of channels of the corresponding the heat-exchanger, m; G — bulk flow of a
working body through the corresponding the heat-exchanger, kg/s; P_. ,P__,A— min-

min > max?
imal, maximal pressure, N/m’ of the thermodynamic cycle and their ratio; n,— rotation

frequency of a crank of the cyclic thermal, min; 1,4 — coefficients of dynamic vis-
cosity, Ns/m” and thermal conductivity, W/sK of the working body of the thermal cyclic

. T . :
machine; ¢ =—%— ratio of the temperatures on the entrance and exit from the regenera-
r

tive heat-exchanger; Q,— thermal flow through the recuperative heat-exchangers; 4,, 1,
— coefficients of heat conductivity, W/sK of regenerator nozzle material and regenerator
thermal insulation accordingly; A, — width, m of thermal insulation of the regenerator; IT

— porosity of the regenerator nozzle.
In the dependencies related to recuperative heat-exchangers, the values of effective

cross-sections F,and F; of heat exchange area are determined by the sizes of heat-
exchangers depending on their types. In this case tube-type heat exchanger:

n
F=m?’ 11
i 7 (11)

Fi* = ﬂdinthti ’ (12)

where 71, d,- , ]’lt,- — number, internal diameter and tube length of recuperative heat ex-

changer.

Exergic analysis demonstrated above allows evaluating the amount of exergy loss
during the processes of heat regeneration and recuperation from a cyclic heat machine as
a function of their base dimensions. Exergy is directly obtained from naturally existent
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sources — fuel resources, fissionable matter, etc. Exergic supply constantly demands fi-
nancial resources, human work hours and energy, which are reflected in the final cost of
a unit of fuel. Therefore, for approximate determination of the amount of exergy enter-
ing a thermal cyclic machine, a dependency can be utilized, proposed in work [6] for
liquid fuels:

£r =1,0374 + 0,0159£+ 0,0567Q+ 0,5985£(l -0,1737), (13)
H C C C

u

where E,— exergy of a fuel unit mass; //, — Lowest heat of burning a unit of

HOSN

mass of fuel; —,—,—,— — ratios of atomic numbers of hydrogen, oxygen, sulphur,
cccc
nitrogen and carbon to a molecule of fuel.
In that case, additional expenditures for fuel during realization of regeneration and
recuperation processes in a thermal cyclic machine are determined as follows:

oE
ST :CT E—, (14)
T

where OE; — total exergy loss during realization of regeneration and recuperation pro-

cesses, determined by formulas (5-10); C. — cost of a unit mass of fuel.

However, the real losses in a thermal cyclic machine are higher. The reason is that
other parts and machine layout pieces took part during exergy conversions and transfers,
which also carried human work expenditures. The objective of exergic analysis is to de-
termine financial resource expenditures for execution of thermodynamic cycle of ther-
mal cyclic machine. A particular objective of this analysis is the determination of above-
mentioned expenditures for regeneration and recuperation processes to occur. Those
expenditures are added from expenditures to manufacture Sy heat-exchangers and their
utilization Srt:

S = SN+ST+SP+Sy, (15)
where Sy = K + K, — expenditures to manufacture the heat-exchanger; K; — cost of unit
of mass of source material during manufacturing heat-exchanger material; K, — cost of
assembly of a unit of mass of heat-exchanger; Sp — expenditures for planned mainte-
nance of heat-exchanger elements; Sy — expenditures for utilization of heat-exchanger.

The cost of a unit of mass of a heat-exchanger material, depending on its type, is
presented in a table of data, which makes sense to be represented as analytical de-

pendencies like K, = ib. For example, table data on the grid of phosphorous bronze

BrOF 6,5-0,4 normal precision according to standard GOST 6613-73 [7], used as re-
52404,13

g5
Analogous dependencies can also be obtained for tube-type heat-exchangers. Manu-
facturing expenditures for those are also dependent on channel diameter and assembly
technology (soldering or welding for example).

Analysis of the obtained dependencies shows that with channel diameter increase
of heat-exchangers, expenditures rise sharply for executing thermal exchange process
as a consequence of final temperature difference of the walls in recuperative heat-

generators’ plantings, could be approximated with this dependency: K, =
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exchangers and working body and decreasing expenditures for pushing through the
working body through the channels of the heat-exchangers.

Conclusion. Correlations between exergy and economic parameters of regenerative
and recuperative heat-exchangers in thermal cyclic machines are established. The corre-
lations allow to perform comparative characterizations of various types of heat-
exchangers and designs for heat-exchangers at the first stages of their development and
design, which is performed on the basis of the initial information on their thermal and
hydrolytic characteristics. Simplicity of the received correlations allows to find optimum
values of the most important measures of heat-exchangers of the thermal cyclic machine
and to minimize the cost method of their manufacturing.
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OIIHKA E®OEKTUBHOCTI TEIIVIOBUX ITPUJIAJIB, BUPOBJIEHUX B
TEPMAJIBHI HUKJITYHI MAIIIMHHU

OcHoBHa yBara B Hiif poOOTI MPUCBSYYETHCS METONY PO3paxyHKy eHeproeeKTHBHOCTI
IUTST peKyTepaIlifHiX Ta pPereHepaTUBHUX TEIDIOOOMIHHUKIB, IO BOYIOBYIOTHCS B TEIUIOBHX
OUKTIYHIX MaldHaX. MeTop Mpu3HAYeHUH I aHalli3y e()eKTUBHOCTI MEePCIIEKTUBHOI KOHC-
TPYKIIi Ta MaTepianry A TEITOOOMiHHUKA, SKUH BKITIOUEHUH y 3aKPUTHH TEPMOINHAMIYHUN
IUKJI TEIUVIOBUX MAallMH HAa IIOYaTKOBOMY eTami mpoekTyBaHHS. IlepeBara ekcepriiiHO-
€KOHOMIYHOT'0 METOIY TePMOANHAMIYHOTO aHAJI3y IMOJATa€E B HACTYITHOMY: TETIOOOMiIHHUKHU
B TEIUIOBHX IUKIIYHUX MAIIMHAX MAIOTh ICTOTHO Pi3HI TEMIIEpaTypH, TOMY IepelaHe TEIIo
Ma€ pi3Hi €HepreTUYHI 3HAYCHHS, aJTUKTHBHICTH EKCEPTild TO3BOJSIE TPOBOIWTH OKPEMHU
aHaJi3 Pi3HOTO POIY BTPAT HE3AIEKHO OAWH Bifl OTHOTO, IO BPEIITI-PEIIT A€ 3MOTY IUIaHY-
BaTH KOHKPETHI Mii s miIBUIICHHS e(eKTHBHOCTI TeIDIOBUX MUKIiYHNX MammH. [lle onHieo
BYKIMBOIO OCOOJIMBICTIO METOMY €KCeprii € mpsMe CITiBBiIHOIIEHHS MapaMeTpiB eKceprii 3
TEXHIKO-€KOHOMIYHIMHA XapaKTePUCTUKAMHU MAIINH. EXcepris, mo HaIXOOWTh B TEIDIOOOMiH-
HUK, TTePEIAEThCS UII BUKOHAHHSA KOPHUCHOI pOOOTH 1 KOMIICHCAIlIT BTPAT, IO € PE3yIbTaTOM
HE3BOPOTHUX MPOIIECiB, a TAKOXK NMEPEHOCHTHCS HAa OXOJOMKYIOUHMHA TEIUIOHOCIH. Posrmsma-
FOTHCSl HACTYIIHI CITiBBiIHOIICHHS: BiAMOBINHO IO PIBHSHHS TEIUIOBOI €KCEprii, cepenHi 3Ha-
YeHHS IS MUKITY BTPAT eKceprii (depe3 HasBHICTh 00'eMy HE3aHHATHX TETUIOOOMIHHHKIB, KA
OyB BKJIIOUEHHI 0 00'eMy poOOUOro oprany, sSIKuili Oepe ydacTs y peaiizaiii TepMOIHHAMIY-
HOT'0 IIUKITY ); BTPATH BiJl €KCEPTii BHACHTIIOK HEiJeaTbHOCTI TEINTOOOMIHY, CIPHIMHEHOI OCTa-
TOYHOIO PI3HUIICI0 TEMIIepaTyp poOOUYoro Tija i COIUTa pereHepaTopa; BTpaTH HATIPYTH depes
KIHIIEBY PI3HHUIIO TEMIepaTyp CTIHOK PEKyIepaTUBHUX TEILIOOOMIHHHUKIB Ta poO0Yoro opra-
HY; BTPaTH BiJl HANIPYTH Yepe3 HASBHOCTI TEIIOBOTO IOTOKY HA paMi Ta Ha COIDI pereHeparo-
pa Ta BTpaTH BHACKTIIOK BiBEJICHHS TEIUIa B 30BHIIIHE cepemoBuine. Exceprignauii anamiz go-
3BOJISIE OIIHUTH BEIMYHMHY BTPAT €HEPTIi ITiJT 9ac MPOIECiB pereHeparii Tera Ta BiTHOBICHHS
BiJl IUKJIIYHOI TETIOBOI MAIIMHY SIK (DYHKIIIFO Bij iX 6a30BUX po3MipiB. Ex3epriune mocrayan-
HS MTOCTiHHO BUMarae (iHAaHCOBHX PECYpCiB, poOOYOro yacy JIOAWHH Ta €HEpTii, mo BigoOpa-
JKAETHCS HA KiHIEBii BAPTOCTI OMWHMIII MTAIHBA.

KirouoBi ciioBa: TermooOMiHHI MallliHY, BTpaTa HANPYIH, BiTHOBIIOBAIBHI Ta pereHe-
patiiiHi TemI000MiHHUKH



