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Growing popularity of location based services is leading to an increasing volume of mobility 
data. In this paper we introduce a data mining approach to the problem of predicting the next 
location of a moving object with a certain level of accuracy. We use apriori algorithm to build a 
probabilistic model of future object location. The experiments have demonstrated that our 
technique gives reasonably accurate prediction 
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Introduction 
In recent years, the increasing number 

of mobile devices with the use of wireless 
communication, such as Bluetooth, Wi-Fi 
and GPRS, inasmuch as, advances in 
positioning technology compel 
manufacturers to equip their devices with 
positioning sensors that utilize Global 
Positioning System (GPS) to provide 
accurate location of a device. This means 
that the movement of people or vehicles 
within a given area can be observed and 
collected by the wireless network 
infrastructures.  In order to fully exploit the 
possibilities offered by location-aware 
services (navigational services, traffic 
management and location-based advertising), 
it is crucial to determine the current position 
of a moving object at any given point in 
time.  

Due to the unreliable nature of mobile 
devices (such as power supply shortage of a 
moving object) and the limitations of the 
positioning systems (such as signal 
congestions, signal losses due to natural 
phenomena, or the existence of urban 
canyons), the location of an object is often 
unknown for a long period of time. 
Whenever the location of a moving object is 
unknown, a robust method of possible 
location prediction of a moving object is 

required in order to anticipate or prefetch 
possible services in the next location.  

We want to show that data mining 
techniques can be successfully used for 
location prediction. The idea is to transform 
frequent trajectories into movement rules, 
because individuals tend to follow common 
paths (people go to work every day by 
similar routes, and public transport crosses 
similar routes in different time periods). In 
order to predict the location of a moving 
object we compute for each possible location 
the probability of prediction correctness 
based on the support and confidence of 
discovered movement rules.  

Associattion analysis 
We use methodology known as 

association analysis, which is useful for 
discovering interesting relationships hidden 
in large data sets. Association rule mining is 
an important data mining model studied 
extensively by the database and data mining 
community. The uncovered relationships can 
be represented in the form of association 
rules or sets of frequent items. There are two 
key issues that need to be addressed. First, 
discovering patterns from a large transaction 
data set can be computationally expensive. 
Second, some of the discovered patterns are 
potentially spurious because they may 
happen simply by chance. 
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Let I = {i1,i2,. . .,id} be the set of all 
items and T = {t1,t2,...,tN} be the set of all 
transactions. Each transaction ti contains a 
subset of items chosen from I. The 
transaction width is defined as the number of 
items present in a transaction. A transaction 
tj is said to contain an itemset X if X is a 
subset of tj.  

An important property of an itemset is 
its support count, which refers to the number 
of transactions that contain a particular 
itemset. Mathematically, the support count, 
σ(X), for an itemset X can be stated as 
follows: 

σ(X) = |{ti|X ⊆ ti, ti ∈ T}|, 

where the symbol | · | denotes the number of 
elements in a set.  

 
Association Rule: An association rule 

is an implication expression of the form 

 
X → Y, where X and Y are disjoint itemsets, 

i.e., X ∩Y = ∅. The strength of an 

association rule can be measured in terms of 
its support and confidence. Support 
determines how often a rule is applicable to a 
given data set, while confidence determines 
how frequently items in Y appear in 
transactions that contain X. The formal 
definitions of these metrics are: 

Definition 1. (Association Rule 
Discovery). Given a set of transactions T, 
find all the rules having support ≥ minsup 
and confidence ≥ minconf, where minsup 

and minconf are the corresponding support 
and confidence thresholds. 

А common strategy adopted by many 
association rule mining algorithms is to 
decompose the problem into two major 
subtasks: 

1. Frequent Itemset Generation, 
whose objective is to find all the itemsets 
that satisfy the minsup threshold. These 
itemsets are called frequent itemsets. 

2. Rule Generation, whose objective is 
to extract all the high-confidence rules from 
the frequent itemsets found in the previous 
step. These rules are called strong rules. 

A basic idea of A-Priori is all 
nonempty subsets of a frequent itemset must 
also be frequent. According to the idea, a 
two-step process is employed as generate 
and prune actions: 

1. Candidate generation: This step is to 
generate a new set of candidate k-itemsets by 
join k-1 itemset itself found in the previous 
iteration. 

2. Candidate Pruning: This step 
eliminates infrequent candidate k-itemsets 
depending on the support-based pruning 
strategy. 

A-Priori algorithm (Figure 1): Find 
frequent itemsets using an iterative level-
wise approach based on candidate generation 

1. A transactions in database D are 
scanned to determine frequent 1-itemsets,  

L1 by comparing with minsup 
2. Generate candidate k-itemset  Ck 

from the two joining k-1 itemsets, Lk-1  and 
remove its infrequent subset. 

3. Scan D to get support count for each 
k-itemsets, Ck . 

4. The set of frequent k-itemsets, Lk is 
then determined. Lk   results from support 
count of  candidate k-1 itemset minsup 

5. Back to step 2 until there is no 
candidate k+1 itemsets, Ck+1  

6. Extract the frequent k-itemsets, L =  
Lk.
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Fig.1. Apriori Algorithm Pseudocode 

It must be assumed that we found the 
frequent itemsets from transaction in a 
database D that meet a threshold of support, 
and extract support calculated for each of 
these itemsets. Thus, we can find all 
association rules as follows: 

1. For each frequent itemset L, 
generate all nonempty subsets of L. 

 

 
 
2. For each nonempty subsets of L, 

output the rule. 

Prediction strategy 
The idea is to discover movement rules 

with support and confidence greater than 
user-defined thresholds of minsup and 
minconf, respectively. And match movement 
rules against the trajectory of a moving [2]. 
In order to take only the portion of 
trajectories we select a spatial area and a 
time period, then algorithm extracts from the 
selected trajectories the frequent movement 
patterns. After, we use association rules as 
predictive rules in rule based classifiers to 
define regions that are frequently visited and 
typical travel time. 

 A trajectory of a moving object 
is a sequence of time-stamped locations, 
representing the traces collected by some 
wireless/mobility infrastructure (GSM, GPS, 
etc). The location is abstracted by using 

ordinary Cartesian coordinates, as formally 
stated by the following definition: 

Definition 2. A Trajectory or spatio-
temporal sequence is a sequence of triples  

T =< x0,y0,t0 >,...,< xn,yn,tn >, where 
 ti (i = 0 . . . n) denotes a timestamp 

such that ∀0<i<n ti < ti+1 and (xi, yi) are 

points in R2.  
Intuitively, each triple < xi , yi , ti > 

indicates that the object is in the position 
(xi,yi) at time ti [3]. Consider an example in 
Figure 2, where a user has two trajectory 
patterns (i.e., T1 and T2). In T1, the user 
usually has the routing path from his home 
(i.e., A) to his study place (i.e., C) alone with 
the main street (i.e., B). As can be seen in 
Figure 2, our trajectory model includes not 
only travel time information between two hot 
regions but also appearing time information 
about when this user appears. Furthermore, 
since these two sequential patterns have two 
common regions (i.e., A and B) these 
sequential patterns could be represented as a 
compact model in which common regions 
(i.e., A and B) are shared by two trajectory 
patterns. Traditionally, sequential patterns 
will have supports that indicate their 
appearing counts among trajectories. In this 
example, T1 (i.e., A → B → C) has higher 
support than T2. Assume that recent 
movements are A and B, and this user travels 
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at region B around 10:00am. From these two 
sequential patterns, the next location of this 
user is C since T1 has higher support. 
However, one could imply that if a user 
moves to C, the time will be 11:00 (i.e., the 
sum of the current time and time interval 
between B and C). The appearing probability 
at region C at 11:00 via the routing path A → 
B is zero. On the other hand, this user may 
appear at region E at 12:00 with the 
probability larger than zero. Thus, in this 
case, the next location of the user is region 
E, showing that by exploring both spatial and 
temporal information, the accuracy of 
location prediction could be enhanced [1]. 

After extracting the frequent regions, 
each raw trajectory is transformed into a 
sequence of frequent regions. Such a 
sequence is called a region-based moving 
sequence and defined as following:  

Definition 3. A Region-based Moving 
Sequence is a sequence of frequent regions  

Sr = {(r1, t1), (r2, t2), ..., (rn, tm)} with 
time constraint t1 < t2 < ... < tm , where (ri , 
tj ) indicates the object visits the frequent 

region ri at timestamp tj .Trajectories are 
transformed into region-based moving 
sequences: 

{(c16 , t1 ), (c26, t2), (c25, t3), (c35, 
t4), (c45, t5), (c42, t8), (c41, t9), (c31, t10), 
(c30, t11)}.  

There are three steps as follows: 
 Step 1. Frequent Region Discovery: In 

this step, we extract frequent regions from a 
set of trajectories to capture movement 
behaviors. A frequent region contains a 
sufficient number of trajectories whose data 
points are within the corresponding region.  

Step 2. Trajectory Transformation: 
According to the set of frequent regions 
determined by Step 1, each raw trajectory is 
transformed into a region-based moving 
sequence. Location points that are not in 
frequent regions will be regarded as noise. 

Step 3.  In location prediction module, 
given current movements of an object and a 
query future time, we propose to use a 
location prediction algorithm to traverse the 
object and estimate the future location at the 
query time [1]. 

 

Fig. 2. Exploring Spatial-Temporal Trajectory Model for Location Prediction [1] 
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Fig. 3. Exploring Spatial-Temporal Trajectory Model for Location Prediction [1] 

Conclusion and results 
In this paper, we presented approach to 

predict an object’s future locations which is 
based on modified a-priori algorithm. We 
focus on that how to discover frequent 
movement patterns and manage these 
patterns to answer predictive queries. Also, 
was added opportunity to analyze the 
dependence on the size of the region and the 
time of movement of the object as presented 
at Figure 3. 

For our experiment, we used two types 
of dataset: SmallDataSet.dat and 
LargeDataSet.dat. The results presented at 
Figure 4 (a) were compiled for the large 
dataset ~8k rows, results presented at Figure 
4(b) were compiled for the small dataset. 
The general trend was that as the support 
level got lower and the data set bigger, the 
benefits of enabling pruning made a 
substantial difference it terms of candidate 
set(s) processed. 

Time Taken:1.038 seconds  
Pruning: Enabled 
Processed: 308 Candidate set(s)  
Min Support: 50.0 %   
Min Confidence: 70.0 %  
File Selected: LargeDataSetSample1.dat  

Time Taken:0.961 seconds 
Pruning: Disabled 
Processed: 332 Candidate set(s)  
Min Support: 50.0 %  
Min Confidence: 70.0 % 
File Selected: LargeDataSetSample1.dat  

(a) Results for the large dataset 

Time Taken:0.004 seconds 
Pruning: Enabled 
Processed: 21 Candidate set(s)  
Min Support: 50.0 % 
Min Confidence: 70.0 % 
File Selected: SmallDataSetSample1.dat 

Time Taken:0.007 seconds 
Pruning: Disabled 
Processed: 22 Candidate set(s)  
Min Support: 50.0 % 
Min Confidence: 70.0 % 
File Selected: SmallDataSetSample1.dat 

(b) Results for the small dataset 

Fig. 4. Results 

Support Threshold. Lowering the 
support threshold often results in more 
itemsets being declared as frequent. This has 
an adverse effect on the computational 
complexity of the algorithm because more 

candidate itemsets must be generated and 
counted, as shown in Figure5. The maximum 
size of frequent itemsets also tends to 
increase with lower support thresholds. As 
the maximum size of the frequent itemsets 
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increases, the algorithm will need to make 
more passes over the data set. 

Average Transaction. Width for dense 
data sets, the average transaction width can 
be very large. This affects the complexity of 
the Apriori algorithm in two ways. First, the 
maximum size of frequent itemsets tends to 
increase as the average transaction width 
increases. As a result, more candidate 
itemsets must be examined during candidate 

generation and support counting, as 
illustrated in Figure 6. Second, as the 
transaction width increases, more itemsets 
are contained in the transaction. This will 
increase the number of hash tree traversals 
performed during support counting. 

Our experiments demonstrated that our 
technique gives reasonably accurate 
prediction and allows end users to tune the 
algorithm using a set of thresholds. 

 

Fig.5. Effect of support threshold on the number of candidate and frequent itemsets . 
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Fig.6 Effect of average transaction width on the number of candidate and frequent itemsets 
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