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Abstract—Lagrange problem with the account of functional limitation at any functional limitations at
any moment in a given interval is presented. The required conditions for optimal trajectories of the
determinated dynamic system synthesized as space vehicle trajectories have been obtained.
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I. INTRODUCTION

At present the problem is considered when the
dynamic system trajectories should satisfy not only
the main trajectories but a number of alternative
ones [1].

Trajectory alternativity consists in that at any
moment of dynamic system movement on this tra-
jectory there are conditions for another variant of
movement the objective of which excludes the main
objective of this system movement. To such class of
trajectories one may relate for example flying ve-
hicle landing trajectory from any point of which go-
around fly is possible; trajectories of flying vehicle
orbital injection enabling the maneuver of return in
the event of malfunction [2], vehicle flight trajectory
from any point of given section of which accident-
free cargo dropping is possible [3]. The designed
possibility of dynamic system trajectory branching
at any moment in a given interval gives grounds to
refer to such a trajectory as quasi-branched trajecto-
ry or trajectory with an alternative (alternative va-
riant of movement).

II. PROBLEM STATEMENT

The proposed in [1] Boltz problem formulation
contemplates dynamic system movement main tra-
jectory optimization provided that redirecting and
(or) system movement dynamics change requiring
the construction of auxiliary trajectory and resulting
in main trajectory branching may occur at a finite
number of points of the main trajectory. But in a
whole number of technical systems the command of
change to auxiliary trajectory may come at any cur-
rent moment in a given interval [2]. This means that
it is necessary to solve branched trajectory optimiza-
tion problem with not fixed time moment but with
fixed time interval that is with infinite number of
fixed points of main trajectory branching.

The derivation of the required conditions of op-
timality for main trajectory movement of the dynam-

ic system with regard to infinite number of auxiliary
trajectories is set out in this paper. The method used
as the basis for mentioned required condition
derivation lies in change over to the problem with
finite number of probable time moments of trajecto-
ry branching into main and auxiliary paths and in
formulation of its solution [4] as well as in applying
the principle of limiting transformation to this
solution [5].

III. PROBLEM SOLUTION

In working out algorithms of trajectory control
we have to solve optimization problems in which
dynamic object control should provide functional
extremum not only at given but also at free time
moments of the beginning and the end of the
process and also at any current time moment [8].

For the problem

1= S(x(t)ot ;x(0),15x(2, )t

+J<I>(x,u,r)dr—>min, (M
x = f(xu,0),t €lty,t,], )
(p(x(t0)7t0);x(t_f)’ tf) = 05 (3)

where

xeE", ueQcE", ¢:E”"? > E (r<2n+2),
S()— 1is smooth scalar function of variables
x(4)), x(t), x(t;), ®(-)—is a continuous reflection

of E"xQxE'— E'together with matrix o®/ox,
the solution may be found by a trivial way: that is
on the basis of the principle of optimality [6] it
follows that the section of optimal trajectory itself
is an optimal trajectory. Hence it is clear that the
solution of problem (1) — (3) coincides with the

solution of a problem (1) — (1) for #=¢,.

© National Aviation University, 2016
http://ecs.in.ua

v

P
brought to you by i CORE



https://core.ac.uk/display/296361637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

O.1. Lysenko, O.M. Tachinina Optimal Principle for Dynamical System with Alterative Orbiting

109

The problem becomes considerably more com-
plicated for the case of disintegrated system with
current moment of disintegration.

We consider the problem of optimization for
disintegrated system

1=8(x(t,), 4,); x(4), 15 x(ty), ty; x(t,)1,)

T 4 _ 4)
+I®(x,u,t)dt+_[d>°(x°, u’, n)dn — min,

x=f(x,u,t),telt,,7], %)

= (" ), eln,t)], x(0)=x(1), (6)

T€h,ty] C[IO’tf]a (Po(x(lo)’to) =0,

¢ (x(t,).1,)=0, 0" (x"(¢}),£7) =0,
xeE", xer",ueQeEm,ueroCE'"“,

where with respect to S(), ¢°C), o’ (), 9" (),
DC), (), £°0), of /ox,0f" / ox" the assumptions
are performed that are similar to those assumptions
made for corresponding functions of the problem
()-(3); t,— time moment at which system (5)

reached finite variety O, = {(x(t_/.),t_ K4 (x(#,),
)= 0)} provided that the change of the dynamics

of its movement in time interval [f,7,] did not

take place; 7 is the time moment of finite variety

movement 0, = {(x°(z;),t;) /(" (15),17) =0
of system (6). In physical meaning the problem (4)
— (6) may be interpreted as a problem of dynamic
system optimal trajectory construction with proba-
ble malfunctions in time interval [f,,¢,] resulting
in this system movement dynamics change. With
this despite probable malfunctions the dynamic
system should accomplish its main and auxiliary
task [1]-[4]. Assuming that the system dynamics
hasn’t been subjected to changes at time interval
[#,,ty] or that it could be changed at any time mo-
ment ¢ €[t,,¢,] we come to the next auxiliary prob-

lem of vector optimization [7]-[10]
1" =col[I, »min, I, 5> min, ..., /,, > min], (7)
I,= S(x(to),to); x(t), 5 x(ty )ty

ly
x(t,)ut,) + [ @(x,u,7)dx,

)

I, :S(x(to)’to; x(4),4,3 x(tN)JN;x(t»/')’t»/’)

1, 1
+ [O(xu,v)dT+[ (2 u’ ,n)dn, (=1 N),

I [

X=f(xut), tet,t], (8)

£ = mmell )

0" (<t )ty) =0, ¢’ (x(t,),t,)=0,
0" (X°(1)1)) =0,

xeE" x'eE" ueQeE" u’c Q,cE™,

(10)

x(t)=x"(t), (=L,N), <t,<.<..<ty <ty

where t}ﬂ is the time moment at which finite varie-
ty O 0 is reached by system (9), that began its

movement at time moment ¢, and this problem

differs from the problem (4) — (6) by that fact that
the condition allowing infinitely large numberof
time moments of system dynamics change was
substituted by less rigid condition assuming finite

number of points tl.(i=1,_N) of system dynamics
change. As the requirements (7) — (10) are less
rigid than (4)—(6) each feasible process x(¢),

u(t), x’(m), u’(M), t,, t,, 4,1, of the problem (4)
— (6) will be admissible as well as in the problem
(7) — (10) at arbitrary chosen ¢ (i =2,—N—1) and
t, <t(i =1,N). We shall introduce the notion of
steady optimal process and establish its features as
in [5], [8].

Process  x(1),u(t), x"(),u" (M), 4y, 1,,1,,1, Op-
timal for the problem (4) — (6) is considered as
steady optimal if natural N, exists and it is so that
for countable variety of values N > N, the admiss-
ible process x(t),u(t), x'(m),u’ (M), T, 1,,1,, having
vector T =(t,t,,...ty_,,t,) consisting of fixed
values ¢ <t,<t;<..<t, <t, is also optimal in
problem (7) — (10). We recognize that N > N, and

pass to the branched trajectory optimization prob-
lem using the principle of quasi-branching of sys-

tem trajectory (9) at time moments ti(izl,_N)
changing from trajectory of system (8), moving
from 0, = {(x(to):to):
0" (x(,),4,)=0} to finite variety Q ,. This prin-

original variety

ciple is based on the following considerations.
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Suppose that system dynamics (8) will change
at time moment t=¢,. In this case dynamic system
trajectory should consist of two sections optimally
joint together by condition of stop change [4]. In
the interval [f,,7,] trajectory is given by equation
(8), and in the interval [¢,¢,] — by equation (9).

Suppose that for reaching time moment 7, sys-
tem dynamics change didn’t occur. Then system
movement trajectory continues to be described by
equation (8) until the next hypothetical moment ¢,
of its dynamics change and change-over to the
system moment trajectory description by equation
(9). However trajectory section in time interval
[#,,t, ] should be optimally joint at time moment ¢,
with two above mentioned sections. Hence it fol-
lows that at time moment ¢ it is necessary to ob-
serve the condition of step change for systems
moving on branched trajectories [4] but not for
disintegrated systems [2], [5].

Viewing in symilar way the condition of trajec-
tory step change at time moments ¢,, ¢, and so on
until ¢, we come to the problem of optimization of
branched trajectory with criterion of

_ .,
1=V SGe(ty)uty ) X(t)ot, ) + j D(x,u,t)dt
f

N f 0
A PN i
s [0 mdn+ e @) |
t!

i=1

(11)
According to [4] for process optimum

)%(t)a ﬁ(t)a )2.0 (n)a ﬁo(n)a T: to: ff the prOblemS (8) -

(11) there are solutions A" (¢),A"" (1) of abjoint
vector equations

V= {lN(z‘) A (f(f)a;((ft); M@, ’)} —0,
(12)
o {w (4 G (n)(;;to ((;1)), A" (), n)} _o,

such that the conditions following beneath are
valid:

(1°) of transversality

N{ os
Vv
ox(ty)

(0)0

g" =0, (13)

(0 |+ 2
. oo(t,) .

VNB—IS — H(x(@), 4(%,), " (7)), fo)]
" | (14)
(0)0
£ o0 g, =0,
ot
(f)0
w8 AV (@) L g, =0, (15
ox(t,) da(1,)
o 00
WA )+ o g =0, (16)
60(tf)A
(/)0
v{a—s +H(-,t})\]+6“’ e =0, (17)
o, ’ ;
oMo
W H L)+ 8 =0, (18)
l‘f .
(2°) of step change
V2 v +0) =2V (@ - 0)
(), (19)
+PL1N7\'ON(Z‘1 +0)=0,
V=B v, +0)- 2 (e, —0)
| Ox(ty)],

+ YA (2, +0) =0,
vV IAN@E +0) =A@ -0
[ +0)-2" (1, -0) ] 0
+ 20 (1 +0) =0.

(3%) of Hamiltonian minimum

H(x(t),4(), " (1), 1) =
H (G0, u@. 27 0).1), @D

= min
u(z)eQ,ze[E(, ,?f]

H° (2 (), 2° (), " (). m)

22
HO (3 (), (2 ). )

= min
u* (e® nef 1,1 |

(4°) of nontriviality and nonnegativity:

A0 A

N N
RPN DRIEDAIESIPNFESNINER)
i=l Jj=1 j=1

=1 j=1

&, 20(j=1r"), €} 20, (j =1,rD), 1’ >0,
24

/20, (j=1r"";i=1N).
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AP

Here marks
parameters:

H()=(x(0), u(t) + 2" (6) £ (x(t), u(t), t),
H°()=®" (x"(),u"(M).n)

£ )£ (> () ())

Let’s set on numerical axis step functions

means optimum variables and

n (o) u g () (j zl,r(fn)) with step change cor-
respondingly w,",...,u,", &,",....,§,," at points
fseoosly . At 1<t assume that p¥(1)=£&7(1)=0.

In time interval [tl,tN]the adjoint equation (14)

together with the condition of step change (20) is
written in equivalent integral form including
Stieltjes integral,

‘COH ((20), (1), A1), 1)

M=y I ox(t)dt
| (25)
+ [ 2% @ap () +" {aifz : +2V (1, +0)},

where te[f,7,], AV (t, +0)—in the result of solu-

tion of equation (12) is in the interval of [tN, t_,.]

observance of limiting conditions (18). In this case
the condition of step change (19) will take the
form

oS
N N N — = 26
v LW)‘ AVt +0) =AY -0)[=0, (26)

A

where A"(f, —0)—is obtained as a result of the

solution of equation (12) in the interval
[#,, #,] limiting condition (13).
Due to the condition (4°) functions

n" (1), &} (r)are nonnegative, bounded and have
bounded variation. Take arbitrary section J of nu-
merical axis Including [tl, tN] together with small
neighbor hood and choose N >N, such, that
t,....ty remained to be the points of continuity of
control u(z). From the sequence of functions
{uN(t):N>NO}, {aj.v(t):N>N0} one can isolate
subsequences that by points on J converge to limit-
ing functions u(?),&;(7) that is

(- u®), EO->E @, tes. (27

Scalar v and vectors & &}, N> N, are also
bounded in a set and therefore the sequences
(VViN>N}, {eliN>N), {g) N> N} have
that is v' —>v,
& — &, &f > &,. Variations of functions u(z)

convergent subconsequences,

on J are bounded, hence in integral equation of
Voltaire type

M) = \{ as +A(ty + 0)]
ox(ty
" (28)
" OH ",
+v‘[aAdt+‘!‘k )du(t),

the last summand has a meaning. The solution
A(1) of this equation exists in a class of functions
of bounded variation and therewith it is sole [9].

Due to (27) the solutions A"(t) of equation
(25) at each point teJ come to the solution A(t)
of equation (28). With this function p(t) as a limit
(4%) of nondecreasing nonnegative function is itself
nondecreasing nonnegative function on J and
hence it can be considered as a measure.

Passing to the limit of change to
N(N — o0, max(t_, —1,) > 0) in relationships (12)
- (18), (21) — (24), (26), taking into consideration
all above we obtain the following result.

Let  x(2), d(2), ' (), 4(m), £, ff, iy, 1,—too
be a stable optimal process of problem (4) — (6).

In this case there are nonnegative numbers

éoj(jzl,r(o)), &, (jzl,r(-")), v and nonnegative

measures (1), &,(2) (j:l,r(fﬂ)) of a bounded

function that are concentrated on variety
M= {t:l e[t, zN]} , there is vector function A(t) of
bounded variation being the solution of integral
equation (28) for te[tl,tN] and of conventional

differential equation

At) = —%—i} for te|t,.t, |<[t.t]

A

and there is a vector function A’°(n) of bounded
variation being the solution of equation

. meln],

A

oH"

A =-—
m) P

such that the following conditions are valid:
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(1°) of transversality IV. CONCLUSION
{ as . ] a(P(O)o‘ The dynamic system’s path complying with
v + M2y [+ — € =0, stated above conditions has the feature — it provides
ax(t,)], aolt, )|, to dynamic system the additional abilities to proceed
5 20 on Pew 'paths d'lll.ring (ﬁzzfi'tim;. "l;hese patl)ls alll(oyv
AN AR AN () _ performing auxiliary (additional/ alternative) task in
V{g_to —HG(), (), M), to)] * o, S =0, case of system’s dynamics changes due to faults and
" " damages as well in case of on-line retargeting.
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