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Abstract. We propose an architecture which supports the behavioral
self-optimization of complex systems. In this architecture we bring to-
gether specification-based reasoning and the framework of ant colony
optimization (ACO). By this we provide a foundation for distributed
reasoning about different properties of the solution space represented by
different viewpoint specifications. As a side-effect of reasoning we prop-
agate the information about promising areas in the solution space to
the current state. Consequently the system’s decisions can be improved
by considering the long term values of certain behavioral trajectories
(given a certain situational horizon). We consider this feature to be a
contribution to autonomic computing.

1 Introduction

The main target of our research consists in the definition of an architecture
which supports the integration of reasoning and optimization thus enabling
autonomic systems behavior. We take our starting point in the introduction
of concepts for the knowledge-based fuzzy specification of various systemic as-
pects (extending our results from [1]). We show how it is possible to inex-
pensively check the conformance of these properties by traversing the solution
space. These traversals of the solution space are performed by ant colonies. Ar-
eas of the solution space which are promising w.r.t. to a certain specification are
marked with numerical information (frequently called trail). This information
is propagated to the current state where it can be exploited for the optimiza-
tion of behavior. Since there are multiple aspects of systems behavior which
are examined by ant colonies different sorts of trail have to be evaluated in the
process of decision making. As we will see this task is performed by an entity
referred to as the queen.

In this paper we propose a hybrid architecture which integrates knowledge-
based modeling [2], automata-based techniques of reasoning [3] with ant colony
algorithms [4] in order to enable intelligent behavior of complex systems. In
order to give specific support for robustness of reasoning and behavior we rely
on fuzzy concepts for knowledge representation and reasoning.
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After firstly giving a brief introduction to our usage of fuzzy description
logics (in Section 2) we discuss a simplified application scenario (Section 3).
The semantic and algorithmic aspects of reasoning are described in Section 4
and 5. The architectural integration is discussed in Section 6.

2 Fuzzy Description Logics

For the fuzzification of description logics fuzzy sets [5] are introduced into the
semantics instead of the crisp sets used in the traditional semantics (cf. [2]).
For more detailed discussion of these issues cf. e.g. [6, 7].

If C is a concept then CI will be interpreted as the membership degree func-
tion of the fuzzy concept C w.r.t. I. Thus if d ∈ ∆I is an object of the domain
∆I then CI(d) gives us the degree of being the object d an element of the
fuzzy concept C under the interpretation I [6]. For some selected constructors
which were considered for description logics the interpretation function ·I has
to satisfy the following equations:

⊤I(d) = 1

⊥I(d) = 0

(C ⊓ D)I(d) = min(CI(d),DI(d))

(C ⊔ D)I(d) = max(CI(d),DI(d))

(¬C)I(d) = 1 − CI(d)

(∃R.C)I(d) = supd′∈∆I{min(RI(d, d′), CI(d′)}

(∃T.C)I(d) = supd′∈∆I{min(T I(d, o), CI(o)}

(qR.C)I(d) = {d|d ∈ ∆I , |{d′|R(d, d′) > 0}| ≥ q}

(modqR.C)I(d) = {d|d ∈ ∆I ,mod(|{d′|R(d, d′) > 0}|) ≥ q}

(〈q1, . . . , qn〉R.CI(d) = {d|d ∈ ∆I ,∀i ∈ {1, . . . , n},#i(R(d, d′)) ≥ qi}

Remarks. In addition to roles we also support functional roles T which are
needed for the integration of fuzzy concrete domains ∆D (with o ∈ ∆D). We
support a very simple style of quantifications allowing the use of positive rational
numbers q or fuzzy modifiers mod (defined by piecewise linear membership
functions). In addition we support a construct of tuple-valued cardinality which
will be used to represent quantification concerning different aspects. As we
will see such tuples contain global numerical information from different sources
(commonly referred to as trail).

From Subsumption to Conformance. Deviating from common approaches based
on description logics we do not focus on model-based reasoning about equiva-
lence or subsumption. This is the reason why we do not rely on tableaux-based
reasoning and thus do not have to face the resulting computational complex-
ity (cf. [2]). In contrast we propose a syntax-directed approach for reasoning
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about the conformance of specifications. Specifications concerning different as-
pects of systems behavior are compared with the specification of the solution
space. As we will see this is done by colonies of artificial ants. The require-
ments related to conformance are represented by sets of constraints describing
morphisms. This approach is heavily influenced by [8].

3 Fuzzy Specifications

In this section we describe a simple example which we use to illustrate some
characteristics of our approach. We apply fuzzy terminologies to the description
of locations in sensor networks (cf. [9]). We use this concept as a high-level ab-
straction since in many cases it does not make sense to address the individual
components of a sensor network explicitly. Alternatively such systems provide
the transparent access to data from interesting places (without having to men-
tion individual components). Similar arguments and more details about sensor
networks can be found in [10].

A terminological description of a location is shown in the following (simpli-
fied example):

loc-wl-xyz
.
= 1.0 contains.Sensor1 ⊓0.7 contains.Sensor2 ⊓

0.6 contains.Sensor3

Sensor1
.
= ∃energy.=.7 ⊓ ∃water-level.=8.5

Sensor2
.
= ∃energy.=.8 ⊓ ∃water-level.=9.1

Sensor3
.
= ∃energy.=.6 ⊓ ∃water-level.=8.9

As an example we introduce a terminological description of a simple location
which contains three individual sensor components. The containment relation
contains is quantified by a relevance value of the specific sensor component in
the actual location. Note that this value is taken from the interval [0, 1]Q. For
the sake of our example sensor components contain data describing the current
energy level and data concerning the water level. Note that the relations energy
and water-level have to be treated as functional roles containing objects which
represent concrete domain values (cf. Section 2).

Scenario. For the sake of this presentation we assume that the system has
to decide which location it prefers in order to retrieve information in a given
situation. Thus the solution space in this scenario contains various behavioral
alternatives which each corresponds to the choice of an individual location.
Obviously the quality of a solution is determined by parameters like relevance
and energy-level. In our approach ant colonies have the task to retrieve this
information (related to these two different aspects) and to mark the trajectories
which conform best to their viewpoint specifications.

Viewpoint Specifications. In order to gain interesting information about the
current situation different viewpoint specifications are checked throughout the



68 Michael Cebulla

solution space. These specifications may concern different aspects like availabil-
ity of energy, like relevance or like flooding.

high-energy
.
= Most contains.energy(High)

high-relevance
.
= Most contains.Sensor

flooding
.
= Most contains.water-level(High)

Each of these three viewpoint specifications describe a criteria whose value
is important for the systems decision making. Note that in such specifications
we can use fuzzy terms like most and high. While most is defined in terms of
fuzzy role quantification high is defined on concrete domain values of energy.
Note that we are able to formulate less restrictive (and more robust) constraints
using fuzzy concepts. In our framework such specifications are associated with
colonies of ants which traverse the solution space (within a certain horizon) and
check accessible paths for their conformance w.r.t. a certain specification.

4 Semantics

In the following we will extensively use the fact that we can consider specifi-
cations as tree-like term structures. For example both the systems specifica-
tion as well as the viewpoint specifications can be represented in such a way
(cf. Figure 1). We propose a syntax-directed approach for reasoning about fuzzy
conformance which is based on the concurrent traversal of trees. Note that the
promising paths in the solution space are marked with their value of confor-
mance as a side-effect of reasoning.

loc-wl-xyz

Sensor1

1.0 contains

.85

w-level

0.7

energy

Sensor2

0.7 contains

.91

w-level

0.8

energy

Sensor3

0.6 contains

.89

w-level

0.6

energy

high-energy

Sensor

Most contains

high

energy

Fig. 1. Tree-like Representations of Specifications

Observations and Experiments. Intuitively, we say that two specifications are
conform (to a certain degree) if they support similar observations and experi-
ments. Observations and experiments on fuzzy specifications are described by
fuzzy transition systems (FTS).

signature FTS
obs: X × T → [0, 1]Q
next: X × T × X → [0, 1]Q
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In the signature of the transition system we can see that the observation and
transitions functions are multi-valued. In fact we are interested in observations
(whose content is represented by a fuzzy terminological concept) which hold to
a certain degree. On the other hand we want to know which costs are coupled
with a certain state transition (triggered by a terminological role). Thus the
application of the transition function next yields a result which corresponds to
the (fuzzy quantification) of the role term which is used as parameter (frequently
referred to as costs).

Fuzzy Morphisms. In order to get a foundation for the notion of fuzzy confor-
mance we rely on the notion of fuzzy morphism (cf. [11]).

Definition 1 (Fuzzy Morphism on FTS). A fuzzy morphism f between two
fuzzy transitions systems A1 and A2 is given by: obs2(T ) ≤ obs1(f(T )), and
next2(X2, T,X ′

2
) ≤ next1(f(X2), f(T ), f(X ′

2
)),

X2 × T X1 × T

[0, 1] [0, 1]

f

obs1obs2

≤

and

X2 × T × X2 X1 × T × X1

[0, 1] [0, 1]

f × id

next2next1

≤

Fig. 2. Fuzzy Homomorphism on Signatures

Note that we sometimes assume (in Figure 2 and elsewhere) that both spec-
ifications use the same terminology T. We interpret positive differences between
observations as conformance values (e.g. obs2(T )− obs1(T )). As a side-effect of
reasoning the solution space is annotated with these values. In the following
we heavily rely on an operational interpretation of these morphisms. For more
details concerning this approach cf. [12].

5 Reasoning

In this section we heavily use the argument that morphisms can be mapped on
bisimulations between automata (cf. [13]). We construct an automaton whose
purpose is to recognize such bisimulations between two fuzzy tree automata.
Such an automaton is called tree tuple automaton [3]. For the description of
transition rules we use concepts from membrane computing (cf. [14]).

Membrane-Based Tuple Tree Automaton. Intuitively the automaton checks
whether the systems description D supports the same experiments and ob-
servations as a certain viewpoint specification S. If there are multiple exper-
iments necessary copies of the automaton are created for every experiment.
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We exploit the characteristics of membrane computing and its computational
properties for the creation and handling of multiple copies of tree automata. In
our proposal the automaton for the recognition of bisimulation is implemented
as a rewriting P-system (on structured objects) (cf. [14]). In this formalism
we can use embedded membranes in order to articulate the tree-like structure
of a term. In addition membranes contain multisets of terminal symbols or
other information (e.g. trail). Consequently we can define transition rules for
the processing of expressions using the paradigm of multiset rewriting. While
(atomic) concept expressions are represented by molecules role expressions (and
their cardinalites) are encoded in membrane labels. In order to deal with fuzzy
expressions we support rational cardinalities of multisets. For more details on
our usage of P-systems cf. [12].

Definition 2 (P-system for Bisimulation). A P-system for bisimulation is
defined as a tuple PBS = 〈T, µ,w1, . . . , wm, R1, . . . Rm〉, where T is a terminol-
ogy and µ = [0[D]D[S ]S ]0 is the initial configuration (of the membrane struc-
ture).

While the membrane [D]D represents the systems description [S ]S contains a
viewpoint specification. Intuitively in each step of the simulation the necessary
observations and experiments are drawn from the viewpoint specification (by
obsS and nextS) and then applied to the systems description (by obsD and
nextD). For simplicity we assume that both automata (and both specifications)
use the same terminology T.

The behavior of the automaton is defined by the following rewriting rules:

1. Atomic Concepts A ∈ T :

[[DX]D[SA[Qα]Q]S ] → [[DX, td
i
]D[S [Qα]Q[S ],when obsD(A) ≥ obsS(A)

Note that a molecule representing the conformance value d is introduced
into the systems specification per side-effect. Intuitively the molecule t (for
trail) is related to the ith viewpoint specification and represents a rational
conformance value d.

2. Basic Roles Q ∈ T :

[[DX]D[S [Qα]Q]S ] → [[Dann-lbl(td
i
)]D[Sα]S ],

when nextD(Q) ≥ nextS(Q)

These rules describe a test concerning the costs of transitions. Thus by a
call to nextS we can retrieve the transitions which have to be supported
by the system’s description D in order to stay conform to the specification.
Again trail is left when conformance is detected. We use the operation ann-
lbl to introduce the molecule representing the trail information into the
tuple-valued quantification of the membrane-label (not explicitly shown in
the rules).
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3. For the treatment of the constructors from fuzzy description logics the fol-
lowing rules can be used (selected examples). Note that the operators have
to be treated according to fuzzy semantics (cf. Section 2).

[[DX]D[SA ⊓ B]S ] → [[⊓[[DX]D[SA]S ][[DX]D[SB]S ]]⊓]
[[DX]D[S∃Q.C]S ] → [⊔i∈{1,...,k}[i[⊓[Dnexti]D[SQ]S

[Dnexti]D[SC]S ]⊓]i],

In the rules for the processing of quantified role expressions (involving
atomic roles) the terms labeled with i have to be created for each i ∈ [1, kT ]
where kT is the branching factor of the tree. Intuitively this corresponds to
the creation of a copy of the automaton for each role filler of Q. nexti are
procedures for the explicit navigation in trees (retrieving the ith subtree
of the current node). As we will see the fuzzy semantics of the operators
controls the propagation of trail.

4. The treatment of numeric quantification is similar to the treatment of quan-
tification described above. For each role filler a copy of the automaton is
created.

[[DX]D[SqQ.C]S ] → [⊔i∈{1,...,k}[i[⊓[Dnexti]D[SQ]S
[Dnexti]D[SC]S ]⊓]i] when #DQ ≥ q

[[DX]D[SmodqQ.C]S ] → [⊔i∈{1,...,k}[i[⊓[Dnexti]D[SQ]S
[Dnexti]D[SC]S ]⊓]i] when mod(#DQ) ≥ q

Example. While comparing the specifications from our example the situation
in Figure 3 is constituted at some point. On the left hand side of the transfor-
mation we see that experiments concerning most contains are prescribed by the
specification. Since there are three such experiments possible on the system’s
description three copies of the automaton are created. Then the experiments
concerning contains are initiated concurrently (as shown at the right hand side
of the rule). For this mechanism we rely on the fact that membrane division is
a common and inexpensive operation in membrane computing (cf. [14]).

→

Fig. 3. Example: Behavior of Tuple Tree Automaton
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Trail Propagation. In the final phase of reasoning about the conformance of a
viewpoint specification the information represented by the trail is propagated.
For this sake the numerical information is treated like a synthesized-attribute
in attributed grammars (cf. [15]). Intuitively the information about promising
locations in the solution space is propagated to the the current state thus increas-
ing the quality of the system’s decisions. Again we exploit some characteristics
of membrane computing for the reactive propagation of this information.

→

Fig. 4. Example: Trail Propagation

In the example transition in Figure 4 we can see how trail information
is propagated bottom-up through the membrane hierarchy. The rules for the
propagation are determined by the semantics of the operators (in this case ⊓).
According to Zadeh’s logic the value of f is defined as the minimum of i, j, k.

6 Distributed Reasoning

We propose an architecture for the integration of high-level modeling, auto-
mated reasoning and ant-colony optimization. Our goal is to propagate infor-
mation about valuable places in the solution space in order to support decision
making in the current state. Generally we propose that systems rely on solu-
tions found by ant colonies during normal situations while they have to depend
on default values for their decision in highly dynamic situations (represented
by so-called myopic heuristic information, cf. [4]).

Integration. In order to collect additional information about the long-term val-
ues of behavioral alternatives ant colonies iteratively traverse the accessible
trajectories. A given ant colony is embodied by a fuzzy tuple tree automaton
as discussed in the previous sections. Note that tree automata are copied into
multiple instances while examining different branches of a tree thus keeping the
correspondence to the metaphor of ant colonies. Since we use fuzzy morphisms
in our framework we assume that ants leave large amounts of trail on traces in
the systems state space where the conformance to their specification is strong.
The global choice between these solutions is performed by the queen. Note that
the marked traces in the systems behavior can be considered as trajectories
in an n-dimensionary hypercube. Unfortunately we cannot discuss the issue of
trail evaporation [4] due to space limitations.
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Example. In a simplified example we consider the situation that the system
(represented by the queen) has to choose between two locations. Obviously
at first sight it is not possible to decide which group of sensors to use (since
heuristic information about the costs – as represented by attribute def – are
equal concerning both alternatives).

Curr−State

State−1 State−2

select−secondselect−first

[def=.3, rel=.6, eng=.4] [def=.3, rel=.9, eng=.6]

Fig. 5. Example Situation

We assume that the ants examinations (concerning relevance and energy)
resulted in the values shown in Figure 5. Consequently it is the queen which
has to infer the best alternative from the available information. For this sake we
define the queen as a tree tuple automaton which performs a simple version of
multi-criteria optimization: the queen always selects the behavioral alternative
which is marked with the greatest global value (depending on environmental
parameters). Note that for simplicity we assume a non-fuzzy decision behavior
of the queen always resulting in the choice of exactly one behavioral alternative.

[〈α,β〉[〈s0,s1,s2〉A1
]〈s0,s1,s2〉A1

[〈t0,t1,t2〉A2
]〈t0,t1,t2〉A2

]〈α,β〉 → [A1
. . .]A1

when max1,2(si) > max1,2(ti) and α > β

[〈α,β〉[〈s0,s1,s2〉A1
]〈s0,s1,s2〉A1

[〈t0,t1,t2〉A2
]〈t0,t1,t2〉A2

]〈α,β〉 → [A1
. . .]A1

when s0 > t0 and β > α

For the sake of example we give two rules which describe the queen’s decision
making in our scenario. We encode the information about trail into membrane
labels. The first rule describes how behavioral alternative A1 is selected on the
basis of trail information (represented by t1, t2, s1, s2). The global parameter
α denotes the weight of trail information (during normal environmental con-
ditions) while β contains a high value when the situation is highly dynamic.
This case is described by the second rule where also A1 is selected but this time
on the basis of heuristic information (contained in s0, t0). Remember that trail
information tends to be useless in the presence of environmental changes.

7 Conclusion

Our motivation in this paper is directed towards an architectural integration
of high-level knowledge-based modeling, of automated reasoning and of tech-
niques for local optimization in order to support context-aware behavior in
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autonomic systems. For this reason we propose to use colonies of artificial ants
for the exploration of the solution space of complex systems. In this framework
we support distributed and robust reasoning about high-level specifications.
Knowledge about the systems properties is diffusing through the solution space
thus supporting decentral and distributed forms of decision-making and control.
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