
Spherical Layout implementation using
Centroidal Voronoi Tessellations

Mart́ın Larrea1,2, Dana Urribarri1,2, Sergio Martig1, and Silvia Castro1

1Universidad Nacional del Sur
Departamento de Ciencias e Ingenieŕıa de la Computación

Laboratorio de Investigación y Desarrollo
en Visualización y Computación Gráfica.

Avenida Alem 1253, Bah́ıa Blanca, Buenos Aires, Argentina. CP 8000
2Consejo Nacional de Investigaciones Cient́ıficas y Técnicas

(CONICET)
Avenida Rivadavia 1917, Ciudad de Buenos Aires,

Argentina. CP C1033AAJ
{mll,dku,srm,smc}@cs.uns.edu.ar

http://vyglab.cs.uns.edu.ar

Abstract. The 3D tree visualization faces multiple challenges: the elec-
tion of an appropriate layout, the use of the interactions that make the
data exploration easier and a metaphor that helps in the process of infor-
mation understanding. A good combination of these elements will result
in a visualization that effectively conveys the key features of a complex
structure or system to a wide range of users and permits the analytical
reasoning process. In previous works we presented the Spherical Layout,
a technique for 3D tree visualization that provides an excellent base to
achieve those key features. The layout was implemented using the Tri-
Sphere algorithm, a method that discretized the spheres’s surfaces with
triangles to achieve a uniform distribution of the nodes. The goal of this
work was centered in a new algorithm for the implementation of the
Spherical layout; we called it the Spherical Centroidal Voronoi Tessella-
tions (SCVT). In this paper we present a detailed description of this new
implementation and a comparison with the TriSphere algorithm.

Key words: Tree Layout. 3D Tree Visualization. Information Visual-
ization. Voronoi Diagrams. Voronoi on Spheres

1 Introduction

Information Visualization is a very young research field, but has grown very fast
as a rich and interdisciplinary research field. The last advances in Visualiza-
tion, and particularly in Information Visualization, also highlight fundamental
research issues. Nowadays, it is currently a challenging task for designers to
find out the strategies and tools available to visualize a particular type of in-
formation. The data characteristics and their organization are essential aspects
at the adequate visual representation selection. The creation of adequate visual

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296347073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

representations is a big challenge. A visual representation is able to convey re-
lationships among many elements in parallel and provides the user with a tool
to explore the data in an effective way. Visual representations are essential aids
to human cognitive tasks to the extent that they provide stable and external
reference points upon which dynamic activities and thought processes may be
calibrated and upon which models and theories can be tested and confirmed.
The interaction with visual representations makes many complex and intensive
cognitive tasks feasible. Visual representations and interaction techniques must
allow the users to see, explore and understand large amounts of information at
once and are essential to the analytical reasoning process in order to gain in-
sight in the data. Information Visualization has become a large field and tree
visualization has emerged as an important subfield applicable when there is a
hierarchical relation among the data elements to be visualized. Tree visualiza-
tion has many areas of application, and many domains require the manipulation
and comprehension of complex hierarchical dataset; to address this field, it is
necessary to support interactive representations of large trees. The 3D tree vi-
sualization faces multiple challenges: the election of an appropriate layout, the
support of the interactions that make the data exploration easier and a metaphor
that helps with the information understanding. A good combination of these el-
ements will result in a visualization that effectively conveys the key features of a
complex structure or system to a wide range of users and permits the analytical
reasoning process.

Fig. 1. A file hierarchy visualization using Spherical Layout implemented with the
TriSphere algorithm ([1]).

The Spherical Layout ([1], [2]) (Figure 1) is a 3D extension of the 2D radial
layout, it was created to allocate a larger number of nodes than the Radial Layout
providing an intuitive set of interactions in a 3D environment. Although the
Spherical Layout does fit a large number of nodes, its distribution in the space, by
the TriSphere algorithm, is not optimal. In this paper, we present a new approach
for the distribution of the nodes in the space under the Spherical Layout; by
using a Spherical Centroidal Voronoi Tessellations (SCVT) we can distribute
any number of nodes on the sphere maximizing its surface usage. This paper
is organized as follows: in the next section we present a brief description of the
Spherical Layout and its problems. We continue in Section 3 with a description
of the Spherical CVT. Afterwards, in Section 4, we compare both algorithms
and provide the conclusions. Section 5 ends this paper with the future work.

2 Spherical Layout

We presented the Spherical Layout as an extension of the Radial Layout to
three dimensions. Such extension is no straightforward, because the nodes must
be placed on a surface instead of an arc and this adds many possibilities. In this
section we give a brief presentation of the Spherical layout; as we said at the
beginning of this paper; a good association of layout and interactions will result
in an effective visualization. For the Spherical Layout we had defined a set of
interactions, for details of these interactions and more please refer to [1].

(a) The concentric spheres are the
basis of the Spherical Layout.

(b) In Spherical Layout the region as-
signed to a node is defined by a pyramid.

Fig. 2.

The basis of the Radial Layout are the concentric circles where the nodes are
placed; the first step to a 3D generalization is to map these circles into a 3D space.
To achieve this goal we consider concentric spheres on which surfaces the nodes

are going to be placed (Figure 2(a)). In the Radial Layout each node, except
the root, is allocated in a 2D sector within the sector assigned to its parent;
in Spherical Layout we replace the 2D plane with a 3D region and the nodes
are allocate within the surfaces defined by it (Figure 2(b)). The implementation
presented in [1] and [2] is describe as follow: In this implementation the nodes
are uniformly distributed on the spheres surfaces; to achieve this goal we first
discretized the surfaces of the spheres with triangles and place the nodes in the
center of them. We create as many concentric spheres as levels the tree has, all
with the same number of triangles. The Spherical Layout discretized uniformly
the surfaces of the spheres with triangles; in order to achieve this, we start with
an icosahedron, 20 triangles or faces. If the amount of nodes to be allocated is
smaller or equal to 20, we place each node in each of the icosahedron’s faces. To
allocate more than 20 nodes we increased the number of triangles in our sphere.
To maintain a uniform distribution each triangle is divided into four triangles;
so the number of triangles increases by a factor of 4. Starting from 20 triangles,
the next division will result in 80, then 320 and so on. The hierarchical relations
of the tree are present here through the projection of the region and subregion
from one sphere to the next inner sphere. The execution time of this algorithm
is in the order of the number of leaves by the depth of the tree.

2.1 TriSphere Distribution Problem

As we can see in figure 3(a), if the number of nodes is significantly smaller that
20 the result is not the best distribution. To allocate more than 20 nodes we
increase the number of triangles in our sphere. If the number of nodes has the
form 20 × 4i, where i is a positive integer, the resulting distribution will be
perfect (Figure 3(b)). However, any number different from this will result in a
non optimal distribution. Let us assume we have to allocate 100 nodes; a sphere
with 20 triangles is not enough, neither with 80, we must create a sphere with
320 triangles. From those 320 triangles only 100 will be used, which means that
220, more than 65% of the surface, will not be used.

3 Weighted Spherical CVT

Based on the Weighted Centroidal Voronoi Tessellation presented in [3] we de-
veloped a Weighted Spherical Centroidal Voronoi Tessellation to make the most
of the entire surface of the sphere at the moment of distributing nodes on it. Sev-
eral works have been done on Spherical Voronoi Tessellation ([9]) and Spherical
Centroidal Voronoi Tessellation ([7], [6], [8]), including Constrained Centroidal
Voronoi Tessellation, but it seems that nothing on Weighted Centroidal Voronoi
Tessellation on the surface of the sphere has been done. In contrast to Con-
strained Centroidal Voronoi Tessellation, which associates a density function to
the surface, Weighted Centroidal Voronoi Tessellation associates values (weights)
to the generators: a greater weight means a bigger generated region, indepen-
dently of the position of the generator on the surface.

(a) Ten nodes distributed on the
sphere’s surface.

(b) .Twenty nodes distributed on
the sphere’s surface.

Fig. 3. TriSphere distribution problem. Because we used an icosahedron as the smallest
sphere, 20 triangles, half the surface is not used in figure 3(a). In 3(b) because the
number of nodes is equal to the number of triangles in the surface we achieve a perfect
distribution.

Given a set of points (generators) P = {p1, p2, . . . , pn} in Rm, a Voronoi
Tessellation is a set of n regions V (pi), where a point q ∈ Rm lies in region
V (pi) if and only if distance(pi, q) < distance(pj , q) for each pi, pj ∈ P, i 6= j.
A Spherical Voronoi Tessellation is a Voronoi Tessellation of the surface of a
sphere. In this case the set P is a set of points lying on a surface S = {(x, y, z) ∈
R3 : x2 + y2 + z2 = 1}, and the regions V (pi) are the points q ∈ S which satisfy
distance(pi, q) < distance(pj , q) for each pi, pj ∈ P, i 6= j. A Weighted Spherical
Voronoi Tessellation (WSVT) is a Spherical Voronoi Tessellation where each
generator pi has associated a weight wi, and the distance between a point q
and a generator pi is the weighted distance w-distance(a, wa, x) = |a− x|2−wa,
where |.| is the euclidean distance.

The general idea of the algorithm used to calculate the WSVT of points P on
the sphere is detailed in algorithm 1. The weighted circumcenter of a spherical
triangle M©abc where wa, wb and wc are the weights of a, b and c respectively, is
defined as follows. Let x be the point coplanar to a, b and c which satisfies

w-distance(a,wa, x) = w-distance(b, wb, x) = w-distance(c, wc, x).

Then, the weighted circumcenter of M©abc is x
|x| .

A Centroidal Voronoi Tessellation (CVT) [5] is a particular Voronoi Tessella-
tion where the generator of each Voronoi region is the center of mass (centroid) of
its own region. A CVT with weighted distance is appropriate to divide a surface
into subareas where the size of each one depends on the generator itself and not
on the generator’s position on the surface. To calculate the Weighted Spherical
Centroidal Voronoi Tessellation (WSCVT) it is necessary to introduce the defi-
nition of centroid of a spherical triangle and centroid of a spherical polygon. For
the next formulae we are considering triangles and polygons on a unitary sphere,

Algorithm 1 Weighted Spherical Voronoi Tessellation (WSVT)
Input: A set of points P = {p1, . . . , pn} and a set of weights W = {w1, . . . , wn} where

wi is the weight of pi.
Output: The WSVT V of P and W on the spherical surface S.

1: Let H be the Convex Hull of P in R3. It represents the Delaunay Triangulation of
P on S. Note that H is not weighted.

2: Let V be the Voronoi Tessellation constructed as the dual graph of H: for each
triangle in H its weighted circumcenter is a vertex in V. If two triangles in H are
neighbors then their weighted circumcenters are linked by an edge in V.

3: return V.

therefore the radius is 1 in all of them. The centroid of a spherical triangle M©abc
is a+b+c
|a+b+c| . The centroid of a spherical polygon v0, . . . , vn [4] is

∑n−1
i=1 area(M©v0vivi+1) centroid(M©v0vivi+1)∑n−1

i=1 area(M©v0vivi+1)
,

where the area of triangle M©abc is equals to its spherical excess E

E = 4 arctan

√
tan(

1
2
s) tan[

1
2
(s−A)] tan[

1
2
(s−B)] tan[

1
2
(s− C)],

being A, B and C the side lenghts, and s the semiperimeter.
Our WSCVT algorithm is based on the one presented in [3] to compute

Weighted CVTs in planar surfaces. The general idea of the algorithm is to con-
struct the WSVT of a set of generators and then, replace each generator with
the centroid of its corresponding Voronoi region, until a desired error has been
reached. To control the size of each region, the weighted distance is not enough,
it is necesary to adjust the weight of each generator in every iteration: if after
one iteration a region size results bigger than the desired size value, the weight
of that generator might be decreased for the next iteration, analougsly, if the
region size results smaller, the weight might be increased.

It is important to note that the size values are not areas, but percentages.
Making an association between the weights of the generators and the surface of
the sphere, the area of a region Gi must represent the same percentage of the
entire spherical surface as the weight wi represents of the overall sum of weights.
Then, the desired size value di and the actual size value ai of a region Gi are

di =
wi∑
wi

ai =
area(Gi)
area(S)

.

The algorithm stops when the difference between the desired size value and the
actual size value of every region is below a given error ε. The adjusted weight of
a generator pi of current weight wi, desired size value di and actual size value
ai is

wi(1 +
ai − di

di
) if this value is greater than δ, otherwise δ

where δ is a positive value close to 0, for instance 10−6, which avoids sites with
null weight. Taking into account the weight adjusting and the size value measure,
the algorithm to generate a WSCVT is outlined in algorithm 2. Figure 4 shows
the resultant Voronoi Diagram for 100 generators with weights from 1 to 100.

Algorithm 2 Weighted Spherical Centroidal Voronoi Tessellation (WSCVT)
. Place nodes on the surface of a sphere

Input: A set of weights W = {w1, . . . , wn}.
Output: A set of points P = {p1, . . . , pn}, each point corresponds to the position of

a node distributed according W .

1: Let P be a initial tentative point distribution on a unitary sphere S. . Possibly a
random distribution

2: Let D be the desired values (di = wi∑
wi

)
3: while εmax > ε do . it has not achieve the desired threshold
4: Let V be the WSVT of P .
5: Let εactual be the maximum (or average) difference between desired size values

(di) and actual size values (area(Gi)
area(S)

) of the regions of V.
6: for all region Gi of V do
7: Let pi ∈ P the generator of Gi.
8: Replace pi with the spherical centroid of Gi.

9: return P .

Fig. 4. The Voronoi Diagram of 100 generators, with weights from 1 to 100, with an
error less than 5× 10−4. Transparence has been added to show the back of the sphere.

WSCVT can be applied to the first level of the Spherical Layout if the weight
of each root’s child measures how wide is the representation of the subtree rooted
on it. Then each Voronoi region is projected to the outer spheres (Figure 2(b))
to define the pyramid that delimits the regions to place the descendant nodes.

4 TriSphere and WSCVT: A comparison and conclusions

In this section, we present a brief comparison between the TriSphere and the
Weighted Spherical CVT algorithm. For each one, we generated 4 trees with
different size; 20, 50, 1000 and 1500 nodes each. In figure 5, because the number of
nodes has the form 20×4i, where i is a positive integer, the resulting distribution
using the TriSphere algorithm is perfect; as well as the WSCVT one. In figure
6 in order to allocate 50 nodes using the TriSphere algorithm, the icosahedron
must be divided once by four. The resulting figure has 80 faces, which means
than 37.5% of the sphere’s surface is not used. Figures 7 and 8 also shown how
the TriSphere algorithm cannot achieve an optimal distribution (21.875% of the
surface is not used in the first case and 70.70% in the second one), whereas the
WSCVT algorithm always does.

(a) TriSphere algorithm. (b) WSCVT algorithm.

Fig. 5. Same tree in both cases, 20 leaves to distribute on the surface of the sphere.

5 Future Work

WSCVT algorithm can still be highly improved. Due to the weighted part of the
algorithm being based on a non-weighted one, some wrong edges may exist, and
then some overlapping regions may appear, specially when the differences be-
tween the weights are considerable (the weight set has a high variance). One easy
solution, but not always effective, is to traverse the edges of the Delaunay Trian-
gulation, and swap every wrong edge. Let abc and acd be two adjacent triangles,
with weighted circumcenters mb and md respectiverly, the edge ac is wrong if

(a) TriSphere algorithm. (b) WSCVT algorithm.

Fig. 6. Same tree in both cases, 50 leaves to distribute on the surface of the sphere.

(a) TriSphere algorithm. (b) WSCVT algorithm.

Fig. 7. Same tree in both cases, 1000 leaves to distribute on the surface of the sphere.

(a) TriSphere algorithm. (b) WSCVT algorithm.

Fig. 8. Same tree in both cases, 1500 leaves to distribute on the surface of the sphere.

w-distance(d,mb) < w-distance(b,mb) or w-distance(b,md) < w-distance(d,md),
and it must be changed by the edge bd. This procedure reduces the existance of
wrong edges, althought it cannot always eliminate all wrong edges, because it
may happend that the edge bd is also a wrong edge. It can be added to the con-

dition in the while sentence in algorithm 2 that the Delaunay Triangulation has
no wrong edges, to avoid the few cases where swapping edges is not enough. This
is a time consuming solution to the problem and not an adequate one, therefore
we are working on designing a complete weighted algorithm. Furthermore, we
are looking into the possibility of applying this algorithm to just a portion of
the surface.

Acknowledgments. This work was partially supported by the PGI 24/N020,
24/ZN12 and 24/ZN19, Secretaŕıa General de Ciencia y Tecnoloǵıa, Universidad
Nacional del Sur, Bah́ıa Blanca, Argentina.

References

1. Mart́ın Larrea, Sergio Martig and Silvia Castro, 2007. “Spherical Layout: Layout
for 3D Tree Visualization”. IADIS 2007 Multi Conference on Computer Science and
Information System, 2(1), pp.91–98. ISBN:978-972-8924-39-3.

2. Mart́ın Larrea, Sergio Martig and Silvia Castro, 2006. “Thesis Overview: Spherical
Layout for 3D Graph Visualization”. Journal of Computer Science and Technology,
7(1), pp.112–113. ISSN:1666-6038.

3. Michael Balzer, Oliver Deussen, 2005. “Voronoi Treemaps”. IEEE Symposium on
Information Visualization (InfoVis 2005), pp. 49–56, ISSN: 1522-404X.

4. Jeff S. Jenness 2008. “Calculating areas and centroids on the sphere”. Poster pre-
sented at Arizona/New Mexico Wildlife Society Meeting. Albuquerque, New Mexico,
USA (2008) and 28th Annual ESRI International User Conference. San Diego, Cali-
fornia, USA.

5. Qiang Du, Vance Faber and Max Gunzburger. 1999. “Centroidal Voronoi Tessella-
tions: Applications and Algorithms”. SIAM Review, 41(4) pp. 637–676.

6. Qiang Du, Max D. Gunzburger and Lili Ju. 2003. “Voronoi-based finite volume
methods, optimal Voronoi meshes and PDEs on the sphere”. Computer methods in
applied mechanics and engineering, 192 pp. 3933–3957.

7. Geoffrey A. Womerdorff. 2008. “Spherical Centroidal Voronoi Tessellations: point
generation and density functions via images”. Master of Science Tesis, Florida State
University.

8. Qiang Du and Lili Ju. 2005. “Finite Volume Methods on Spheres and Spherical
Centroidal Voronoi Meshes”. SIAM J. Numer. Anal., 43(4) pp. 1673–1692, ISSN:
0036-1429

9. Hyeon-Suk Na, Chung-Nim Lee and Otfried Cheong. 2002. “Voronoi diagrams on
the sphere”. Comput. Geom. Theory Appl., 23(2) pp. 183–194, ISSN: 0925-7721.

