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ABSTRACT 

This paper proposes a model that predicts the complexity 
of Boolean functions with only XOR/XNOR min-terms 
using back propagation neural networks (BPNNs) applied 
to Binary Decision Diagrams (BDDs). The BPNN model 
(BPNNM) is developed through the training process of 
experimental data already obtained for XOR/XNOR-based 
Boolean functions. The outcome of this model is a unique 
matrix for the complexity estimation over a set of BDDs 
derived from Boolean expressions with a given number of 
variables and XOR/XNOR min-terms. The comparison 
results of the experimental and BPNNM underline the 
efficiency of this approach, which is capable of providing 
some useful clues about the complexity of the circuit to be 
implemented. It also proves the computational capabilities 
of NNs in providing reliable classification of the 
complexity of Boolean functions. 
 
Key words: Binary Decision Diagrams (BDDs), Reduced 
Ordered Binary Decision diagrams (ROBDDs), 
XOR/XNOR min-terms, Complexity, Boolean Functions. 
 

1.  INTRODUCTION 
The continuous increase of integration level of modern 
digital circuits imposes high and increasing needs for 
methods and algorithms used in VLSICAD design 
verification and testing [1], [2], [3]. The efficiency of any 
method depends on the complexity of Boolean functions 
representing circuits under test and verification. Research 
on the complexity of Boolean functions using non-uniform 
computation models is today an active research area in 
theoretical computer science [4], [5]. It has a direct 
relevance to practical problems in the CAD of digital 
circuits. 
ROBDD is an efficient structure for representing and 
manipulating Boolean functions symbolically and has 
been successfully applied to solving many problems in 
VLSICAD [4], [5], [6]. The BDD representation is defined 
and proposed by Akers [7] and extended by Bryant [8]. 
BDDs are compact representations for many functions and 
lend themselves for fast execution of logical operations. 
One of the constraints required to achieve canonicity is the 
ordering imposed by the input variables [9]. The size of 
ROBDD, measured in number of nodes it contains, 
depends on this order and may vary drastically from one 
ordering method to the other. Some functions, such as 
adders, lead to a BDD size that exponentially or linearly 
varies with the number of variables depending on the 
variable order selection [9]. Due to memory and 
processing-time constraints associated with real world 
CAD applications, it is important to minimize the ROBDD 
size as much as possible [10], [11]. 
BPNNs are common classes of artificial NNs. They are 
named after a very familiar teaching method for NNs 

called the Back-Propagation. Some examples of inputs and 
their corresponding known-correct outputs are presented 
to the BPNN. Internal structures of the BPNN are then 
numerically adjusted to iteratively improve the difference 
between the input and desired outputs [12], [13], [14]. A 
lot of research works have been carried out to study the 
relationship of Boolean function and NN [15] as well as to 
analyze the measure of the Boolean function complexity 
related to their implementation in NN [15].  
The base of this work is the mathematical model obtained 
for the BDD complexity using XOR/XNOR min-terms 
[16]. In this work we apply the BBNN method to ROBDD 
to estimate the complexity of Boolean function with only 
XOR/XNOR min-terms. The proposed BPNNM provides 
good alternative to other methods previously proposed by 
the same authors.  In section 2 we provide some 
background information pertaining to BDDs and NNs. 
Section 3 reviews the previous works done by the same 
authors on the estimation of BDD complexity based on 
mathematical models. The proposed BPNNM for the 
complexity estimation of Boolean functions with only 
XOR/XNOR min-terms is explained in the 4th and 5th 
sections. Finally we conclude this paper with our future 
developments. 

 
2.  PRELIMINARIES 

 
2.1 Binary Decision Diagram (BDD) 
Basic definitions for binary decision diagrams are detailed 
in [6], [7], [8], [9].  

 
Definition 1: A BDD is a directed acyclic graph (DAG). 
The graph has two sink nodes labeled 0 and 1, 
representing the Boolean functions 0 and 1. Each non-sink 
node is labeled with a Boolean variable v, and has two out-
edges labeled 1 (or then) and 0 (or else). Each non-sink 
node represents the Boolean function corresponding to its 
1 edge if v=1, or the Boolean function corresponding to its 
0 edge if v=0. 
 
Definition 2: An Ordered Binary Decision Diagram 
(OBDD) is a BDD in which each variable is encountered 
no more than once in any path and always in the same 
order along each path. 
 
Definition 3: A Reduced Ordered Binary Decision 
Diagram (ROBDD) is an OBDD where each node 
represents a distinct logic function. It has the following 
two properties: 

(i) There are no redundant nodes in which both of the 
two edges leaving the node point to the same next 
node are present within the graph. If such a node 
exists, it is removed and the incoming edges 
redirected to the following node. 
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(ii) If two nodes point to two identical sub-graphs (i.e. 
isomorphic sub-graphs), then one sub−graph will 
be removed and the remaining one will be shared 
by the two nodes. 

  
2.2  Neural Networks (NNs) 
NN mimic the ability of a human brain to find patterns and 
uncover hidden relationships in data. NNs can be more 
effective than statistical techniques for organizing data and 
predicting results, and are very efficient in modeling non-
linear systems [17], [18], [19]. A NN is defined as a 
computational system comprising of simple but highly 
interconnected processing elements (PEs) ( or neurons) ( 
Figure 1) [13]. PEs are NN equivalents of biological 
neurons. Similarly, neural network interconnections are 
equivalents of synapses that connect a neuron to others. 
Information is processed by the PE’s by dynamically 
responding to their inputs. Unlike conventional computers 
that process instruction and data stored in the memory in a 
sequential manner, the NNs produce outputs based on a 
weighted sum of all inputs in a parallel fashion. 
 

 
 
Figure 1. Processing element (PE) – building block of a 
neural network 

 
In Figure 1 the inputs (i(0)..i(n-1)) to a PE are scaled with 
weights (w(0) .. w(n-1)) and summed up before being 
passed through an activation function. The activation 
function determines whether a PE activates (fires) or not. 
A sigmoid (non-linear) activation function has an s-shaped 
output between the limits [0, 1]. The function (1) is 
defined as [20]:   

)1(
1

xe
Y −+
=                                   (1) 

Each input of an NN corresponds to a single attribute of 
the system being modeled. The output of the NN is the 
prediction we are trying to make. Figure 2 shows the 
topology of a simple 5-layer feed-forward NN with 2 
inputs and one output.   
The NN has 2 input neurons (PE(ip1), PE(ip2)), three 
hidden layers with 5 neurons each (PE(hnm) is the mth 
neuron in nth hidden layer), and one neuron in the output 
layer (PE(op1)) [20]. The BPNN is fully-connected, 
meaning; all neurons in one layer connect to all neurons in 
the next layer. NNs use different types of learning (or 
training) mechanisms, the most common of them being 
supervised learning. In this method of learning, a set of 
inputs is provided to the NN and its output is compared 
with the desired output. 

 
 
Figure 2. Topology of 5-layer feed-forward neural 
network 
 
The difference between the actual and the desired outputs 
is used to adjust the weights (Figure 1) to different PEs in 
the network. The process of adjusting weights is repeated 
until the output falls within an acceptable range.  
To ensure a robust NN design, the set of input data and 
corresponding output data has to be chosen carefully. The 
input-output data set for an NN is called a training set. 
Additionally, special attention has to be paid to the 
formatting and scaling of the data for effective NN 
training [20]. The available data is divided into training 
and validation sets. An NN is only trained with the 
training set. Validation set is run on the NN to verify that 
the inputs are producing desirable outputs. If the 
validation phase produces large deviations, the training set 
or the network structure needs to be re-examined; re-
training is required in this case [20]. 

 
3.  PREVIOUS WORK 

In this section we briefly describe the background concept 
and results achieved in the area of the estimation of BDD 
complexity prior to introducing the BPNNM. 
 
3.1 Relation between the Size of a Boolean function and 
the BDD Complexity  
The complexity of the ROBDD mainly depends on the 
number of nodes represented by the BDD. An experiment 
was done in [21] to analyze the complexity variation in 
BDDs i.e. the relation between the number of product 
terms and the number of nodes for any number of 
variables. The experimental and equation graph (Figure 3) 
shows that the complexity of the BDD can be modeled 
mathematically by (2).  

1)( +⋅⋅= ⋅− γβα NPTeNPTNN                              (2) 
 
where, NN is the number of nodes that represents the 
complexity of the BDD, NPT is the number of non-
repeating product terms in the Boolean function,α  , β  
and γ  are three constants. Using curve fitting techniques, 
the variations of α, β and γ were mathematically modeled 
and represented by the following equations (3), (4) and 
(5). 

)51.1063.0(9855.0 NVe ⋅⋅=α               (3) 
)298.1()01552.0( 2072.6703115.1 NVNV ee ⋅−⋅− ⋅+⋅=β  (4) 
)5072.1()4188.0( 9723.4196228.0 NVNV ee ⋅−⋅− ⋅+⋅=γ   (5) 

Where, NV is the Number of Variables.  
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Figure 3. Simulation / Mathematical ROBDD Complexity 
for 11 Variables 
 
3.2  XOR/XNOR Min-term Representations  
In this work, the complexity of ROBDD for a specific 
group of XOR/XNOR min-terms is analyzed [16]. A 
graph that represents the ROBDD complexity and the 
behavior of XOR/XNOR is modeled mathematically by 
equation (6): Figure 4 shows that the mathematical model 
represented by this equation provides a good 
approximation of the experimental results of ROBDD 
complexity. 

[ 1)(
5.022 +−−⋅= ββα NXMNN ]                           (6) 

 
where, NN is the number of nodes that represents the 
complexity of ROBDD, NXM is the number of 
XOR/XNOR min-terms in the Boolean function, β is 2n-
1 with n the number of input variables, and α = 0.605234 
for 10 variables. 
. 

 
Figure 4. Simulation / Mathematical ROBDD Complexity 
for XOR/XNOR Min-terms 
 

4.  ANALYSIS OF XOR/XNOR MIN-TERM 
REPRESENTATIONS 

The Colorado University Decision Diagram (CUDD) 
package [22] was used to analyze the complexity variation 
in ROBDDs for a specific group of XOR/XNOR min-
terms [19]. The number of variables was fixed to n. The 
Symmetric Sift variable ordering technique was selected 
from the CUDD and hundred different Boolean functions 
with one XOR min-term and another hundred different 
Boolean functions with one XNOR min-term were 
generated. The ROBDDs for all 200 Boolean functions 
were built and the average number of nodes in all 
ROBDDs was computed. The same procedure was 
repeated for different number of XOR/XNOR min-terms 
(2, 3, 4…etc) until the maximum possible number of 
XOR/XNOR min-terms (2n-1). A graph that represents the 
ROBDD complexity in terms of the number of nodes with 

respect to the number XOR/XNOR min-terms of the 
Boolean function was then plotted. 
 

5.  APPLICATION OF NEURAL NETWORKS TO 
BOOLEAN FUNCTION COMPLEXITY 

MODELING 
This section covers the definition and implementation of 
the BPNNM for modeling the XOR function complexity 
(Figure 5). Inputs to the model are (1) number of variables 
and (2) min-terms; and the output (or prediction) is the 
tree-size.  
 

 
 
Figure 5. BPNNM block diagram for XOR function 
complexity prediction  
 
5.1  Data Collection and Processing 
For the BPNNM in this paper, the training and validation 
data sets were obtained based on the experiments of 
section 4. Pre-processing the data sets can take a 
considerable amount of resources for a practical and 
reliably functioning BPNNM [18], [23]. In our research, 
the first data pre-processing step was to transform the data 
set in such a way that inputs have equitable distribution of 
importance. In other words, the larger absolute values of 
an input should not have more influence than the inputs 
with smaller magnitudes [13]. The need of such equitable 
distribution can be explained with Figures 6 and 7. Figure 
6 shows the raw (original) data for 2 to 12 variables. 
Notice that the plots for 2 to 7 variables are hardly visible 
when all variables are plotted on the same scale. If the data 
were presented in its original form to the NN for training, 
only the 8- to 12-variable cases may be learnt by the 
BPNN and 2 to 7 variables values may be ignored. So in 
order to provide similar importance to all variable values 
(2 to 12), we performed pre-processing as explained in 
section 5.2. The data after pre-processing is plotted in 
Figure 7. As we can see now, the different plots (for 6-, 7-, 
and 8-variables) are in similar ranges which can ease the 
BPNN learning process.   
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Figure 6: Un-scaled (raw) data for XOR function 
complexity.  
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5.2  Training and Testing the BPNNM  
In order to ‘use’ or ‘run’ a trained BPNN, de-
normalization and de-transformation has to be done to 
restore the predicted outputs to the original ranges. Steps 
employed in 'training' and 'running' the network is 
summarized here:  
 
5.2.1 Data set  
We had acquired a total of 4106 data sets (also called 
facts/training facts) during our simulations of XOR/XNOR 
functions. We used 90% of the data sets (facts) as training 
set and the remaining 10% as validation set.  
 
5.2.2 Data pre-processing   
We pre-processed/scaled both the horizontal and vertical 
axis; horizontal axis represents the min-terms (MT) and 
vertical axis the Tree-size (TS). Equations for MT (7) and 
TS (8) scaling are given below:  
 

1
max

2 −
⋅

= vscaled
MTMTMT             (7) 

Where, 
MT = original value of minterm 
MTscaled = scaled value of minterm  
MTmax = maximum value of minterm for all (2 to 12) 
variables = 2048  
V = number of variables  
 

vscaled SFTSTS ⋅=             (8) 
 

Where, 
TS = original value of tree-size   
TSscaled  = scaled value of tree-size 
SFv = scaling factor corresponding to variable v (listed in Table 1)
  

Table 1: Scaling factors for different variables 

Variables 
V 

Max Tree-size 
TSpeak

Scaling Factor 
SFv=max 

(TSpeak)/TSpeak

2 3.00 161.77 

3 5.00 97.06 

4 7.50 64.71 

5 11.70 41.48 

6 18.88 25.73 

7 32.00 15.16 

8 54.20 8.95 

9 91.86 5.28 

10 156.33 3.10 

11 272.71 1.78 

12 485.33** 1.00 
      ** max (TSpeak) = 485.33 
 
Effect of scaling on 2- and 3-variable data can be seen 
numerically in Table 2  
 
All variables (2 to 12) have horizontal and vertical ranges 
close to each other thus greatly improving the chances of 
NNs learning all the curves.    
 
 
 
 

Table 2: Effect of pre-processing/scaling on min-terms 
and tree-size 

ORIGINAL 
VALUES SCALED VALUES 

Variables 
v 

Minterms 
MT 

TreeSize 
TS 

Minterms 
MTscaled

TreeSize 
TSscaled

2 0 1 0 161.77 

2 1 3 1024 485.33 

2 2 3 2048 485.33 

3 0 1 0 97.06 

3 1 4 512 388.26 

3 2 4 1024 388.26 

3 3 5 1536 485.33 

3 4 4 2048 388.26 
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Figure 7. Scaled data (after pre-processing the raw data 
with equations 7 and 8) for XOR function complexity.  
 
After the NN has been trained with the scaled data, its 
running/use would involve these steps:  
a) Scale the input by using the equations in section 5.2.2  
b) Present the scaled value to the BPNN 
c) Restore to its original range the output of the BPNN to 
get the actual result   
 
5.2.3 BPNNM configuration and training  
In general, as the number of hidden layers increases, the 
prediction performance of a BPNN goes up, but this 
continues only up to certain extent, after which the BPNN 
performance starts to deteriorate [23]. To find the 
optimum topologies for our BPNNs, we experimented 
with up to 3 hidden layers; each layer consisted of a 
different number of neurons. Most practical problems can 
be modeled with one or two hidden layers [24]. However, 
we explored a larger design space by experimenting with a 
maximum of 3 hidden layers. The details of some of our 
BPNN’s experiments are listed in Table 3. Two neurons in 
the input layer correspond to two inputs, i.e., number of 
variables and min-terms. The single output neuron 
represents the model output of tree-size.  

The performance metric for an BPNN was the "percentage 
of facts learnt with 96% (or more) accuracy". We chose to 
limit the training iterations (called epochs) to 500 because 
most of our BPNN configuration stopped improving their 
performance before they reached the 500-epoch count. 
From multiple BPNN configurations we experimented 
with, we chose one hidden-layer BPNN (highlighted row 
#3 in the table 3) with 5 neurons in its hidden layers. This 
configuration provided nearly the same training accuracy 
as its larger counterparts (rows #4, #7, #8, #10 and #11). 

 
 
 

JCS&T Vol. 7 No. 2                                                                                                                                 April 2007

144



Table 3. Configuration & Training Statistics For XOR 
function complexity BPNN's * 

CONFIGURATION TRAINING 
STATISTICS 
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%
 F
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ts

 L
ea

rn
t 

Ep
oc

hs
 

1 2 3   1 3706 201 94.9% 183 

2 2 4   1 3741 166 95.8% 188 

3 2 5   1 3751 156 96.0% 38 

4 2 7   1 3751 156 96.0% 150 

5 2 10   1 3726 181 95.4% 500 

6 2 3 3  1 3223 684 82.4% 500 

7 2 5 5  1 3752 155 96.0% 74 

8 2 7 7 3 1 3764 143 96.3% 88 

9 2 3 3 5 1 3373 534 86.3% 500 

10 2 5 5 5 1 3751 156 96.0% 279 
* Brain Maker training parameters: Training tolerance = 0.07; 
testing tolerance = 0.07; learning rate adjustment type = heuristic. 
(See [26] for detailed explanation of these settings). 
 
   
The matrices containing weights for different neuron 
layers of the chosen 2-5-1-neuron BPNN (#3) are given in 
Tables 4 and 5. For example, weight in ip1-h11 cell in 
Table 4 refers to weight between the input "ip1" and "h11" 
neuron of the first hidden layer. Similarly, in Table 3, the 
weights between the hidden and output layers are shown.    

 
Table 4. Weight Matrix – Input Neuron Layer to Hidden 

Neuron Layer-1 
 ip1 ip2 

h11 2.127 7.687 

h12 6.390 -3.640 

h13 -2.748 6.275 

h14 3.577 -4.510 

h15 -5.157 -6.266 

 
Table 5. Weight Matrix – Hidden Neuron Layer-1 to 

Output Layer 
 h11 h12 h13 h14 h15 

op1 -5.972 -0.307 1.187 -2.991 1.544 

 
5.3  BPNN Modeling Results and Analysis 
Due to the inherent nature of NN, the input values used for 
running the BPNNM should be kept somewhat close to, 
but not necessarily the same as, the input values in the 
training set. Any significant deviations of the running set 
from the training set can provide misleading results. We 
used an arbitrary set of values for number of variables and 
number of min-terms, and used the BPNNM to predict the 
XOR/XNOR function complexity.  
Figure 8 indicates the comparison for experimental results 
and BPNNM predictions of ROBDD complexity for 10 

variables. It can be inferred that the BPNNM results 
provide a very good approximation of the ROBDD 
complexity.  
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Figure 8. Complexity analysis of Experimental / Neural 
network models for 10 variables 
 
The same work has been repeated for Boolean functions 
with 2 to 15 variables. Figures 10 and 11 illustrate 
experimental and predicted BPNNM results for variables 8 
and 12 respectively. 
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Figure 9. Complexity analysis of Experimental / Neural 
network models for 8 variables 
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Figure 10. Complexity analysis of Experimental / Neural 
network models for 12 variables 
 
Screen capture for a sample Brain-Maker training session 
is shown in the Figure 11. The top part shows the training 
statistics, i.e. number of 'good' and 'bad' facts, tolerance, 
etc. ('Good' facts refer to the training sets learnt that are 
within specified accuracy and the 'bad' facts are outside 
the required accuracy). The input and output data sets are 
also shown near the top left of the screen. The (set of four) 
graphs on the bottom left show the histograms for the 
neuron weights in different layers whereas the graph on 
the bottom right shows the NN error as the training 
progresses.  
Figure 12 shows the efficiency of the proposed BPNN, 
which produces very close fit as the mathematical model 
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[16] for the prediction of XOR/XNOR function 
complexity. It can be inferred that the BPNN was able to 
match the experimental curve with minimum error for 
most of the XOR/XNOR Product terms. 
 

 
Figure 11. Training the BPNN using Brain-Maker  
 
 

 
Figure 12. Comparison with Experimental and 
mathematical models 
 

6.  CONCLUSION 
In this research work, we have proposed a new ROBDD 
complexity prediction methodology based on neural 
network as another alternative to the CUDD simulation 
and the mathematical models presented by the same 
authors. An advantage of this model is that it is a single 
BPNNM for the calculation of ROBDD Complexity for 
different number of variables and number of XOR/XNOR 
minterms. Once the BPNNM is developed, it could be 
used to conduct further experiments with different types of 
inputs, in a fraction of the time what a circuit simulator 
would take. The results show the capabilities of training 
algorithms in neural networks, which produce a close 
match for the CUDD simulation with average errors of 
0.51% for the calculation of the ROBDD complexity. In 
light of the results, we conclude that the proposed 
BPNNM in this work could be a valuable tool for 
exploring the complex computational capabilities of neural 
network. We are currently exploring the extension of this 
work to other complexity applications. Extending the 
BPNNM for wider range of variables to verify the 
proposed method with real benchmark circuits will also be 
considered. 
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