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Abstract 
In this article ten cointegration tests based on residuals of cointegrating equation are 

compared on basis of stringency criterion: a robust technique for comparison of tests using Monte 

Carlo simulations. Two tests i.e. Phillips and Ouliaris’ ûP and Choi Durbin-Hausman statistic are the 

leading performers and are recommended for any sample size. The remaining eight tests are 
recommended for only large sample sizes of 200 or greater. The use of all these ten tests is not 
recommended when presence of both intercept and linear time trend is assumed in cointegrating 
equation unless the sample size is very large i.e. greater than 200. 
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Introduction 
Since the path breaking paper by (Engle and Granger 1987), a variety of cointegration tests 

have been proposed to assess the long run relationship between economic variables and specially 
macroeconomic variables. Most of these tests are residual based techniques that are the 
enhancements of unit root tests like: Engle and Granger’s Augmented Dickey-Fuller (EGADF) test 

(Engle and Granger 1987), Phillips and Ouliaris’ Ẑ (POZA) test (Phillips and Ouliaris, 1990) and 

many more. However, some proposed tests were based on system estimation like: Johansen 
Maximum Eigen Value (JME) and Johansen Trace (JT) tests (Johansen and Juselius 1990). Several 
tests were developed on the mechanism of error correction model like: Autoregressive Distributed 
Lag Bounds (ADLB) test (Pesaran, Shin et al., 2001) and Boswijk Wald (BW) test (Boswijk 1989). 
All this variety of tests created a  dilemma of contradictory results as one test tells us that two 
variables are cointegrated while the other says they are not. Therefore, to provide guidelines to 
practitioners and applied researchers, several comparisons like (Bewley and Yang, 1998), (Gabriel, 
2003), (Haug, 1996), (Kremers, Ericsson et al., 1992), (Mariel, 1996), (Pesavento, 2004) and many 
more have been carried out to assess the size and power properties of cointegration tests. (Banerjee, 
Dolado et al., 1986) compared two tests i.e. Cointegrating Regression Durbin-Watson (CRDW) and 
t-test on error correction term of an error correction model (TECM) and they found that the later has 
better powers with slightly high size. (Kremers, Ericsson et al., 1992) evaluated the size and power 
properties of EGADF, CRDW and TECM and concluded that EGADF has lesser powers than rest of 
two. (Boswijk and Franses, 1992) examined the performance of three tests (BW, EGADF and JME) 
and BW was found to be better test both in terms of size and power. In a comprehensive 
comparative study by (Haug, 1996) performance of nine tests was evaluated and it was concluded 

that Phillips and Ouliaris ẑP (POPZ) and POZA have higher powers with high size distortion. 

Similarly, (Mariel 1996) compared nine tests and concluded that tests with null of cointegration 
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have lesser size distortions with lesser powers as compared to tests with null of no cointegration 
having higher powers with high size distortion. (Mariel 1996) recommended the use of both type of 
tests having null of no cointegration and null of cointegration for strong empirical evidence. 
(Pesavento, 2004) evaluated the performance of four tests on basis of analytic methods and Monte 
Carlo. (Pesavento, 2004) concluded that JME and TECM are better performers. In same manner, 
many more comparative studies were carried out, but these comparisons created no definite answer 
that which test is better than the rest. This is because all comparisons did not consider a universal set 
of alternative space and they used asymptotic critical values also. Hence, these comparisons failed to 
provide clear-cut guidelines to practitioner. As (Zaman, Zaman et al., 2017) pointed out that 
stringency is the robust technique for comparison of tests because it considers the whole alternate 
space, therefore, this article uses stringency criterion for comparison of ten residual based 
cointegration tests to fill the gap in literature. A detailed discussion of stringency criterion can be 
found in (Zaman 1996) and (Zaman, Zaman et al., 2017).  

 
Tests to be Compared 
The primary test with null hypothesis of no cointegration is Engle and Granger’s Augmented 

Dickey-Fuller (EGADF) proposed by (Engle and Granger 1987). It is simply an Augmented Dickey 
Fuller (ADF) test of unit root on residuals t of cointegrating Equation (1) 

1
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Two tests i.e. Phillips and Ouliaris’ Ẑ (POZA) and Phillips and Ouliaris’ ˆ
tZ (POZT) are 

using the long run variance of residuals t of cointegrating Equation (1). Similarly, Phillips and 

Ouliaris ûP  (POPU) is the variance ratio test of long run variance and contemporaneous variance of 

residuals of Eq. (1). While, Phillips and Ouliaris ẑP (POPZ) is a trace statistic based on long run 

variance of residuals of Equation (1). The detailed discussion on all four Philips Ouliaris tests can be 
viewed in (Phillips and Ouliaris 1990).  

(Hansen 1990) used (Cochrane and Orcutt 1949) procedure to obtain a bias adjusted estimate 
   of autoregressive coefficient of residuals t  of cointegrating equation (1) and then   is used to 

obtain bias adjusted residuals ˆ t
 . (Hansen 1990) showed that simple t- test on autoregressive 

coefficient of ˆ t
 , ADF and POZA statistics can be used on these bias adjusted residuals ˆ t

 . These 

three tests are Hansen’s Cochrane-Orcutt   (HCO), Hansen’s variation of the ADF (HADF) test 

and Hansen’s variation of the Ẑ (HZA) test. 

(Choi, 1994) proposed Durbin-Hausman statistic (CDHS) based on two estimators estimated 
from the residuals of Equation (1). According to (Sargan and Bhargava, 1983) a modified Durbin 
Watson statistic (Cointegrating Regression Durbin-Watson(CRDW)) from the residuals of Equation 
(1) may be used for an initial assessment of null of no cointegration. 

 
Methodology 
Data Generation 
The data generating process is taken from (Jansson 2005).Consider two-time series, ty and tx

of length T, that are generated by the process 
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t t t     and  ~ 0,t N   where  represents an identity matrix of order in 

conformity with t . tD denotes the deterministic part comprising of intercept and trend i.e.

1 1 . . . 1

1 2 . . .tD
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and   is coefficient vector stating the nature of deterministic part. In this article three cases 
of deterministic part are considered i.e.  

i. without Intercept and Linear Time Trend (I0T0): For this case  0 0  ,  

ii. with Intercept and without Linear Time Trend (I1T0): For this case  1 0  and 

iii. with Intercept and Linear Time Trend (I1T1): For this case  1 1  .  

For 1   in Eq. (4) ty and tx are generated under null hypothesis of no cointegration and for 

0 1   in Eq. (4), ty and tx are generated under alternative hypothesis of cointegration. The values 

of   are taken from the set{0,0.1,0.2,0.3,............, 0.9,1}. 
Stringency criterion 
If j

 is used to denote the power of a test  at a specific alternative hypothesis j for 

1,2, ,k   and 1,2, ,j l  where “k” represents total number of tests and “l” 

represents total number of point alternative hypothesis. Similarly, if j is used to represent the 

power of respective point optimal test at specific alternative hypothesis j, then shortcoming of a test
 i.e. j

 at a point alternative hypothesis j is 

j j j
      

Stringency of a test i.e.  is  

 
1,2, ,
max j

j l

 

 
    

The test with the minimum stringency from all tests is the most stringent test. See (Zaman, 
Zaman et al. 2017) for detailed discussion.  

Cointegration tests are categorized into three; better performers, average/mediocre 
performers and worst performers on basis of their stringencies. Tests having stringency around or 
less than 30 are considered as better performers, tests having stringency greater than 30 and less or 
around than 50 are considered as average/mediocre performers and tests having stringency greater 
than 50 are considered as worst performers.   

 
Results and Discussion 
In this article four sample sizes are considered i.e. 30,60,120, 240T   and a Monte Carlo 

sample size of 10000 is taken. To control for size of test, simulated critical values are used as when 
asymptotic critical values were used the size of tests was not around nominal size of 5%. 

It is evident from Table 1 that for case I0T0 of deterministic part, stringency of all ten tests 
tends to decrease with increase in sample size with varying rates of decrease.  
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Table 1: Stringencies of Tests with Null of No Cointegration for I0T0 
Tests T=30 T= 60 T= 120 T= 240 
POPU 30.26** 26.56** 22.27** 0.33**
CRDW 37.98* 27.71** 22.88** 1.16**
HZA 38.87* 25.22** 15.34** 3.58**
HCO 39.18* 25.54** 14.58** 3.51**
HADF 70.3 38.04* 19.33** 7.77**
POZA 41.84* 42.34* 41* 3.4**
POZT 42.77* 39.53* 39.1* 3.02**
CDHS 45.46* 43.28* 41.22* 3.34**
POPZ 46.33* 45.82* 46.05* 7.03**
EGADF 59.96 49.71* 45.18* 3.45**

Note: ** and * shows that a test is a better or an average performer respectively. 
 
Table 1 clearly depicts that from ten residual based tests only a single test i.e. POPU is better 

performer at all four sample sizes. Three residual based tests i.e. CRDW, HZA and HCO are 
average performers at smallest sample size of 30 however, these three are better performers at 
sample sizes of 60, 120 and 240. Five residual based tests i.e. POZA, POZT, CDHS, POPZ and 
EGADF are average performers up-to sample size of 120 however, these five are better performers 
at sample size of 240. The single remaining residual based test i.e. HADF is a worst performer at 
sample size of 30, an average performer at sample size of 60 and a better performer at sample size of 
120 and 240. 

 
The stringencies of tests with null of no cointegration for second case of deterministic part 

i.e. I1T0 are displayed in  
 

Table 2: Stringencies of Tests with Null of No Cointegration for I1T0 
Tests T=30 T= 60 T= 120 T= 240 
POPU 41.18* 36.42* 33.81* 2.83** 
CDHS 47.51* 51.19* 49.85* 8.62** 
HCO 55.87 37.51* 22.91** 4.81** 
HZA 56.4 40.53* 26.38** 5.1** 
HADF 80.99 50.31* 28.98** 15.76** 
POZA 52.03 52.63 53.56 11.13** 
CRDW 56.44 57.18 54.43 12.68** 
POZT 58.11 61.49 58.32 16.95** 
EGADF 67.68 58.2 59.62 14.51** 
POPZ 68.34 58.56 51.25 13.57** 

Note: ** and * shows that a test is a better or an average performer respectively. 
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Table 2. From ten residual based tests only two tests i.e. POPU and CDHS are average 
performers at the smallest sample size of 30 and these tests continue to be average performers up-to 
sample size of 120. However, these two tests are better performers at sample size of 240. Three 
residual based tests i.e. HCO, HZA and HADF are worst performers at sample size of 30, average 
performers at sample size of 60 and better performers at sample sizes of 120 and 240. Rest of five 
residual based tests i.e. POZA, CRDW, POZT, EGADF and POPZ are worst performers up-to 
sample size of 120 however, these five are better performers at sample size of 240.  
 
Table 3: Stringencies of Tests with Null of No Cointegration for I1T1 

Tests T=30 T= 60 T= 120 T= 240 
CDHS 63.8 64.9 63.99 24.48** 
POPU 64.51 56.22 56.73 15.79** 
POZA 65.86 67.15 65.8 26.25** 
CRDW 67.92 68.3 64.69 25.62** 
HADF 92.7 76.09 69.08 27.4** 
POZT 68.81 70.14 67.27 34.49* 
EGADF 74.9 69.72 65.57 31.64* 
HCO 92.39 94.45 94.07 94.25 
HZA 94.21 94.98 94.9 95.14 
POPZ 94.86 95.08 95.3 95.02 

Note: ** and * shows that a test is a better or an average performer respectively. 
 
In Table 3 stringencies of tests with null of no cointegration for the third case of 

deterministic part i.e. I1T1 are displayed. It is clearly evident from Table 3 that none of ten tests is a 
better or average performer up-to sample size of 120 rather; all of ten tests are worst performers up-
to sample size of 120. However, at sample of 240 from ten residual based tests five i.e. CDHS, 
POPU, POZA, CRDW and HADF are better performers. From the remaining five residual based 
tests, two (POZT and EGADF) are average performers and three (HCO, HZA and POPZ) are worst 
performers.  
 

Conclusions and Recommendations 
In absence of nuisance parameters i.e. intercept and trend (I0T0) in cointegrating equation 

only POPU performs better at all four sample sizes. However, with increase in sample size some 
other tests like CRDW, HCO and HZA become also better performers. The remaining six tests are 
either worst or average performers at small sample sizes however; these six are also better 
performers at large sample size of 240. So, the use of POPU test for any sample size is 
recommended. However, CRDW, HCO and HZA are recommended for moderate small sample 
sizes of 60 and above. The remaining six tests i.e. HADF, POZA, POZT, CDHS, POPZ and EGADF 
are recommended for sample size of 240 or above only. 

An increase in stringencies of all ten tests is observed when presence of one nuisance 
parameter i.e. intercept (I1T0) in cointegrating equation is assumed as compared to first case of I0T0. 
This increase in stringencies is due to decrease of powers of all tests. Due to this increase in 
stringencies, now POPU and CDHS are average performers up to sample size of 120 and these two 
are better performers at sample size of 240. Despite this increase in stringencies again POPU is the 
leading performer along with CDHS. Three tests i.e. HCO, HZA and HADF are worst performers at 
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smallest sample size of 30, average performers at sample size of 60 and better performers at sample 
size of 120 and 240. The remaining five tests are only better performers at largest sample size of 
240. So, in presence of intercept in cointegrating equation POPU and CDHS are recommended for 
small sizes as well as for large sample sizes. Three tests i.e. HCO, HZA and HADF are 
recommended for sample sizes greater than 60. The remaining five tests i.e. POZA, POPZ, POZT, 
CRDW and EGADF are recommended for only very large sample sizes of 240 or greater. 

Again, an increase in stringencies of all ten tests is observed when presence of two nuisance 
parameters i.e. intercept and trend (I1T1) in cointegration is observed as compared to earlier cases of 
I1T0 and I0T0. This increase is the result of an overall decrease in powers of all ten tests. Now all of 
ten tests are worst performers up-to sample size of 120. Five tests i.e. CDHS, POPU, POZA, CRDW 
and HADF are better performers at the largest sample size of 240. So only these five tests are 
recommended for large sample sizes. 

In general, two tests i.e. POPU and CDHS are recommended for all three cases of 
deterministic part. However, for the last case of deterministic part i.e. I1T1 these two tests are 
recommended for only very large sample sizes of 240 or greater. 
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