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Abstract  
We consider the problem of selling a fixed capacity or inventory of items over a finite selling 

period. Earlier research has shown that using a properly set fixed price during the selling period is 
asymptotically optimal as the demand potential and capacity grow large and that dynamic pricing 
has only a secondary effect on revenues. However, additional revenue improvements through 
dynamic pricing can be important in practice and needs to be further explored. We suggest two 
simple dynamic heuristics that continuously update prices based on remaining inventory and time in 
the selling period. The first heuristic is based on approximating the optimal expected revenue 
function and the second heuristic is based on the solution of the deterministic version of the 
problem. We show through a numerical study that the revenue impact of using these dynamic 
pricing heuristics rather than fixed pricing may be substantial. In particular, the first heuristic has a 
consistent and remarkable performance leading to at most 0.2% gap compared to optimal dynamic 
pricing. We also show that the benefits of these dynamic pricing heuristics persist under a periodic 
setting. This is especially true for the first heuristic for which the performance is monotone in the 
frequency of price changes. We conclude that dynamic pricing should be considered as a more 
favorable option in practice. 

Keywords: Dynamic pricing Revenue management Yield management Heuristics 
 
Introduction  
Pricing is one of the most important decisions that impact a firm's profitability. The effect of 

pricing is more profound for companies in transportation services sector where it is difficult to 
change capacities in the short term and variable costs are small. Recognizing this, airlines, rental car 
companies and other firms in transportation and service industries have begun to implement 
techniques to improve their pricing and allocation decisions since mid-1980s. Following the success 
of these practices, now broadly called revenue management, pricing decisions are becoming more 
tactical and dynamic pricing is increasingly being adopted in retail and other industries.  

In a seminal work, Gallego and van Ryzin (1994)  (GvR hereafter) study the problem of 
dynamically pricing a fixed stock of items over a finite horizon under uncertain demand. An 
important result in GvR is that keeping the price constant (at a level determined by the deterministic 
solution of the problem) throughout the horizon has a bounded worst -case performance and is 
asymptotically optimal as the expected sales goes to infinity. GvR also shows numerically that when 
the demand function is exponential, fixed-price policies have good performance even when the 
expected sales is small. The authors conclude that" ... offering multiple prices can at best capture 
only second-order increases in revenue due to the statistical variability in demand". Since 1994, a 
large and important body of literature in operations research has evolved to offer solutions and study 
different variants of the problem studied in GvR. (Recent examples include research that study the 
impact of product substitution (Kim and Bell 2011), consumer inertia (Zhao, Tian, and Li, 2011) and 
competition and price uncertainty (Tsai and Hung, 2009)  on dynamic pricing. Although GvR 
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caution that these second-order increases in revenue may be significant in practice, revenue 
management literature has remained relatively silent on quantifying the benefits of dynamic pricing 
over fixed-price policies. This is primarily due to practical convenience: computing optimal 
dynamic prices is difficult (if not impossible) and changing prices frequently may be undesirable or 
costly.  

Our primary aim in this paper is to reemphasize the power of dynamic pricing under 
resupply restrictions. We suggest two computationally simple dynamic pricing heuristics and show 
that the performance of these heuristics can be significantly better than that of fixed-price policies. 
In particular, we first propose the revenue approximation heuristic which is based on approximating 
the expected revenue of the optimal policy in order to calculate the price to be applied for a given 
remaining inventory and remaining time in the selling season. The approximation is a combination 
of a lower bound based on the homogeneity of the optimal expected revenue and an upper bound 
based on the deterministic version of the problem. The second heuristic we suggest is the dynamic 
run-out rate heuristic which adaptively uses the solution of the deterministic version of the problem. 
We carry out an extensive numerical study which shows that the revenue gap between fixed-price 
and optimal dynamic pricing policies may be substantial and this gap worsens when the season 
length (or demand potential) increases. We show that the two heuristics that we propose close a 
significant portion of this gap and lead to near-optimal expected revenues. We also show that most 
of the benefits of dynamic pricing heuristics are sustained by changing the prices periodically rather 
than continuously. For the first heuristic, the performance is monotone in the number of periods 
used. Our analysis and results are confined to the benefits of dynamic pricing under "normal" 
statistical fluctuations in demand. The benefits of dynamic pricing will be more pronounced when 
the demand is non-homogeneous or when the demand function or distribution is not known in 
advance. 

Among the relevant works in the literature, Gallego and van Ryzin (1997) extend their model 
to the multiple products case and demonstrate that two heuristics that are similarly based on the 
solution of the deterministic version of the problem are asymptotically optimal. Cooper (2002) 
proves asymptotical convergence results that are stronger than those in GvR and Gallego and van 
Ryzin (1997). Cooper (2002) also presents an example where updating prices (more precisely, the 
allocations in Cooper's model) by resolving the deterministic problem throughout the horizon, a 
widely applied approach in practice, may perform worser than applying the static policy. Secomandi 
(2008) establishes the conditions under which resolving does not deteriorate the performance of 
heuristic pricing policies. Maglaras and Meissner (2006) show that resolving heuristics are also 
asymptotically optimal as starting inventory and expected sales both go to infinity and Cooper's 
example should not persist in problems with large demand potential. There is limited research on 
developing dynamic pricing heuristics and those that are suggested are usually based on 
deterministic formulations. The main contribution in this paper is to propose two new heuristics that 
are simple and computationally feasible. While dynamic run-out rate heuristic also uses the 
deterministic solution in feedback form, revenue approximation heuristic is based on approximating 
the revenue-to-go function using a homogeneity assumption.  

The literature also does not provide enough guidance on nonasymptotic or average 
performance of heuristic policies and the factors that moderate their performance. In GvR, the 
authors use the exponential price sensitivity of demand and conduct a small numerical experiment to 
study the performance ofthe fixed-price policy against the optimal dynamic policy. It is shown that 
the revenue gap between the fixed-price and dynamic pricing policies is smaller than the theoretical 
bounds and gets smaller as starting inventory increases. However, Zhao and Zheng (2000)  show 
that the revenue gap is more significant when the constant demand elasticity function is used rather 
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than the exponential demand function. Zhao and Zheng (2000) also show that the revenue gap is 
rather insensitive to the elasticity of demand and there are diminishing marginal returns of dynamic 
pricing policies to the number of prices used. Maglaras and Meissner (2006) conduct a numerical 
study on the multiproduct pricing problem with a linear demand function. Their results show that the 
fixed-price policy's regret over the optimal dynamic policy can be substantial and resolving the 
deterministic problem periodically during the horizon can offer significant benefits. In Section 3, we 
provide the results of an extensive numerical experiment to study the performance of heuristic 
pricing policies. The results show that the regret of fixed-price policies can be important in practice 
and dynamic pricing heuristics can be used to generate near-optimal results. 
 

Table 1. The demand functions that are used in the analysis 
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The remainder of this paper is organized as follows. In Section 2, we propose the revenue 
approximation and dynamic run-out rateheuristics. 

In Section 3, we report the results of a detailed numerical study that quantifies the regrets of 
fixed-price and dynamic pricing heuristics over the optimal dynamic pricing policy. This section 
also analyzes the effect of periodic price changes on the performance of dynamic pricing heuristics.  

 
Dynamic pricing heuristics 
We first state our problem following the notation in GvR and provide some preliminary 

results. A given stock of n items is to be sold over a finite season of length t. The demand rate 
depends only on the current price p through a function , whose inverse is . The revenue rate, 
denoted by 	 	 )is assumed to satisfylim → 0, and is continuous, bounded, 
concave and has a least maximizer denoted by ∗	 	 	 ∶ 	 	 max (the 
corresponding price is ∗ 	 ∗ ).  

There exists a null price denoted by ∞for which lim → ∞
0. The price is selected 

from a set of allowable prices 	∪ ∞. The corresponding set of allowable rates is denoted 
by ∶ 	 ∈ . 

For the numerical examples and experiments in this paper, we use three different functions to 
model the price-demand relationship: exponential, linear and logit demand functions. These are 
some of the most commonly used demand functions in theory and practice 7,13  and are given in 
Table1. 

The demand is stochastic and modeled as a Poisson Process.  
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The firm controls the intensity at every instant by using a price in P. The problem is to 
determine the pricing policy that maximizes the total expected revenue over the season denoted 

∗ , .  
For a given remaining time s and inventory x in the season, GvR show that the optimal 

expected revenue-to-go (and the corresponding optimal price at that instant) can be found by solving 
the following system of differential  

∂ ∗ ,
∂

sup
	 ∗ , ∗ 1, ,	 

For all 
1,2, … . . , . 

with boundary conditions ∗ , 0 	 0 for all 	1,2, . . . , and ∗ 0, 	 0 for all 
	 . GvR also prove the existence of a unique solution to (1) along with monotonicity of the optimal 
expected revenue (and corresponding demand rates and prices) with respect to remaining inventory 
and remaining time in the season. Ger. state that obtaining a solution to (1) is quite difficult - if not 
impossible - for arbitrary demand functions. In addition, implementing a pricing policy that would 
change the price continuously over time may be difficult in practice. Therefore, they suggest the use 
of a heuristic pricing policy in which the price is constant for the entire season. The fixed-price (FP) 
heuristic that they develop uses the solution of the deterministic version of the problem and sets the 
price At 	 ̅ 	 	 , ∗ , where 	 / is the run out rate and ∗is the revenue 
maximizing rate. One can improve upon this by using the optimal fixed-price (OFP) heuristic and 
setting the price to _  argmax , where is a Poisson random 

variable with rate . GvR shows that both heuristic are asymptotically optimal as nand 
∗ (or demand potential) both go to infinity. In the remainder of the section, we suggest two 

computationally simple heuristics that can be used to dynamically adjust prices. 
 
Revenue approximation heuristic  
The main idea behind our first heuristic approach is to approximate the optimal expected 

revenue function ∗ with a proper function, say , and use this approximation in (1) to find  
,  arg sup 	 , 1, . 

This is similar to the approximate dynamic programming approach used to calculate bid 
prices for network revenue management by approximating the value function in Bellman 
equation. Zhang and Cooper (2006) used a similar approach to determine prices in a revenue 
management problem with substitutable flights. Our approach differs from theirs as we use a 
new way to approximate the value function and consider a continuous time dynamic program 
(thus use approximation in the Hamilton-Jacobi optimality condition). We first develop a lower 
bound and an upper bound for the value function and then use a combination of these bounds to 
approximate the value function.  

 
Lower bound  
The lower bound we develop is based on the following intuitively appealing argument: 

The optimal expected revenue that can be obtained by selling x units of remaining inventory 
over a remaining season of length s is approximately equal to x times the optimal expected 
revenue that can be obtained by selling one unit of inventory over a season of length / , i.e.,  

, 	 	 1, / .	 
This approximation would be exact only if the optimal expected revenue function was 

positively homogeneous, i.e., ∗ , ∗ 1, / . As we show next, this is not the case and 
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the expected revenue obtained through this approximation is a lower bound for the optimal 
expected revenue.  

Theorem1. 

, ∗ 1, 	 ∗ , ,			∀ 0. 

Proof. Consider the pricing policy for x units of inventory to be sold over a remaining 
season of length s. The remaining season is split into x periods, each having length / . In each 
of these periods, one additional inventory is put on sale along with any leftover inventory from 
the previous period. In each period, the intensity at time w is set to ∗ 1, / .Since 
∗ 1	, / is the expected revenue of this policy in one of these periods without considering the 

leftover inventory, there is a positive probability (which is equal to or larger than where 

	 ∗ 1,
/

) that there will be leftover inventory at the end of a given 

period, and the prices are non-zero, the expected revenue resulting from this pricing policy is at 
least ∗ 1, / ). 

Fig. 1 shows the percentage gap between the lower bound and the optimal solution given 
by 

100
∗ , ,

∗ ,
 

for the exponential, linear, and logit demand functions for 2,5,10. We take  for 

the exponential, , 2,1  for the linear and , 	 	 1	 , / 	1  for the 
logit demand functions leading to ∗ 	 	 ∗ 	1 for all demand functions.  

The gaps tend to be small for small s, but increase rapidly to their peak at moderate x 
values and then stabilize. We see a similar pattern for different parameter values as well. 

The lower bound requires the calculation of ∗ 1,  using a single differential equation 
∗ ,

	 ∗ 1, . 

Remember that obtaining the optimal policy requires solving the system of differential 
equations given in (1). Therefore, obtaining the lower bound is much simpler compared to the 
optimal policy. For 	1, the lower bound coincides with the optimal expected revenue, i.e., 

1, ∗ 1, . 
 
Upper bound  
The upper bound we use is the solution of the problem in which the demand rates are 

deterministic. In this case, as is shown in [1], we have: 

, 	 ̅ , min , , ∗ , 

where 	 , 	 	 / is the run-out rate. As shown below, , constitutes an upper 
bound for the optimal revenue ∗ , . 

Theorem 2 (Gallego and van Ryzin[1, Theorem 2]). 
∗ , , ,				∀ 0. 

 
Approximation  
Since we establish , ∗ , 	 	 ,  in Theorems 1 and 2, we can obtain better 

approximations for the optimal revenue through a combination of , and , , 
, 	 	 , , 	 	 1 , , .	 

In principal, ,  can be fine-tuned for a given demand function, starting inventory and 
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length of the horizon. For example, Fig. 2 shows the optimal revenue as well as the upper and lower 
bounds for the linear demand function with 	 	2 and 	 	1. As one can observe, the lower 
bound is tighter than the upper bound for small values of starting inventory, but the upper bound 
better approximates the optimal revenue for larger values of starting inventory. In Section 3, we use 
the weights , 	 		 1 √⁄  in a detailed numerical study. This leads to a heuristic performance 
within or around 0.2% of the optimal revenue for all problems we consider.  

We now explain how one can compute the intensity and corresponding prices for the revenue 
approximation heuristic for the three demand functions used in this paper.  

Exponential demand function: For the exponential demand function, using (2), we get  
 

, 	
, ,

. 

For the exponential demand function, ∗ 1, 	 ln 1	 ∗  (see GvR). Therefore, we 
have , 	 	 ln 1	 ∗ / . In addition,  

, 	 	 , ∗ / , ∗ . Using these in (4),  

,

1 ∗ ,
, ∗

, ∗ ,
1

1 	
∗ ,

, ∗

, ∗ ,

1 	
∗ ,

, ∗

, ∗ ,
2,

 

 
where ∗ 	 	 / . The corresponding price is , 	 	 /	 , . Note that the 

optimal price and intensity can be calculated in closed form. The optimal price is an increasing 
(decreasing) function of the remaining time (inventory) in the season. Correspondingly, optimal 
intensity is a decreasing (increasing) function of the remaining time (inventory) in the season. 

 

 

Figure 1. Percentage gap of the lower bound for ∗ ∗ . 
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Figure 2. Upper and lower bounds for the optimal revenue for the linear demand function 

with a=2 and b=1 

Linear demand function: For the linear demand function, using (2), we get 

, 	
2 2

, 1, . 

In order to find , , one needs to first calculate ∗ , . By solving (3), we get,  
∗ 1, . 

Therefore, we have , 	 	 / 4 . 
In addition, , 	 , ∗ , ∗ / where ∗ 	 	 2⁄ . Then, we get  
 

,

2
1,

2 4

min 1, 	min 1, 1 	 1,

2
1

2
,

2 4
1, 1

2 4 1

min , 	min , 1 	 ,

2
min 1, 	min 1, 1 	 1,

2
1

 

 
The corresponding price is , 	 	 , / . Again, the optimal price and 

intensity can be written in closed form and maintain monotonicity properties. 
Logit demand function: For the logit demand function, using (2), we get  

, 	
, ,

, ,
. 

The corresponding price is , 	 /	 , 1 .  
The solution to the deterministic problem leads to , 	 	 	 , ∗ / 	 	 /
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, ∗ 1 	where ∗ 	 	 / 	/1 	 / . Unfortunately, however, there is no 
closed-form representation of ,  since there is no closed-form solution for ∗ 1, in (3). 
∗ 1, can only be represented as a solution (z) to the following equation. 

	 . 

Therefore, all calculations need to be carried out numerically by obtaining the solution 
∗ 1,  from (6) to get  , 	 ∗ 1, / . However, the computation burden of the heuristic is 

much less compared to obtaining the solutions for ∗ 1,  for all 	 	1, . . . . . 
In general, calculating the prices (or intensities) that will be used for RA heuristic is as 

difficult as solving the single differential in (3) and if (3) has a closed-form solution, the prices can 
also be represented in closed form.  

One can extend the idea used in computing the lower bound to a class of dynamic pricing 
heuristics by approximating ∗ 1, with , 	 	 / ∗ , /  with 	1. More generally, 
one can use a linear combination of d of these approximations such that , 	 	 ∑ /

∗ , / . We performed a preliminary numerical investigation of the performance of these 
heuristics with 	 	1, but since this leads to additional computational burden and does not 
necessarily provide a tighter bound in our numerical study, we only focus on 	 	1 and 	 	1 in 
this paper.  

 
Dynamic run-out rate heuristic  
The dynamic run-out rate heuristic is a dynamic version of FP heuristic suggested in GvR. 

For a given remaining time s in the horizon and remaining inventory x, the price is set at  
, , max ∗, , 	, 

Where ∗is the revenue maximizing price and , 	 	 ,  with , 	 	 /  
being the run-out rate. Alternatively, this heuristic sets the intensity at , ̅ ,
min ∗, , . 

Note that ,  is the solution of the deterministic version of the problem solved when 
the remaining time in the season is S and remaining inventory is .Thus, this heuristic is equivalent 
to continuously "resolving" the deterministic problem (fluid policy).  

It is worthwhile here to note what distinguishes dynamic run-out rate heuristic (RR) from 
fixed-price (FP) heuristic. FP heuristic solves the deterministic problem once only at the beginning 
of the selling period when there are n units of inventory and t units of time remaining. This 

,  is the run-out rate. FP does not change this price during the selling period. RR heuristic, 

on the other hand, resolves the deterministic problem at every instant by recalculating run-out rate 
,  for the given remaining time s and inventory x, and sets the price to  

, ∗, ,  at that instant. 
Example price paths: We demonstrate the price paths created by the optimal and heuristic 

policies in an example in Fig. 3. There are n=5 units of inventory to sell over a horizon of length t= 
10. The average demand rate depends on the price through the function 	 	2  (linear price 
response function with a=2 and b= 1). For this function, we have, ∗ 	 	 ∗ 	 	1. FP heuristic sets 
the price to  

	 	 	 ∗, / 	 	 1,0.5 	 	2 0.5	 	1.5.  
One can determine the price of OFP heuristic by maximizing  

	 , 	 	 	 5, _ 10 . A numerical procedure can be used to 
find 	 	1.419305. Dynamic pricing policies adjust the price as a function of remaining time s 
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and remaining inventory x. RR heuristic sets the price to , 	 ∗, 	2

1, / . As explained in Section 2.1, RA heuristic computes a lower and an upper bound for 
the revenue-to-go and uses a combination of these to compute the price. In this example (as well as 
in most of other numerical experiments), we use , 	 	 1 √⁄  as the weight of the lower bound. 
Using this, ,  given in (5) and the fact that , 	 	2 , , we find  

 

,

1
2 √
2 4

2 √ 1
2 4 1

min , 2 min , √ 1

2 √

	
min 1, 2 min 1, √ 1 1

2 √ 1
1,

1 	
2

2 4
1.

 

 
 

 

Figure 3. Price paths for optimal and heuristic policies, linear demand, a=2, b=1, t=10, n=5. 

 

 

Figure 4. Price paths for optimal and heuristic policies, logit demand 
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Finally, the optimal dynamic price ∗ ,  can be computed only numerically by solving the 
system of differential equations given in (1). 

Sample price paths for optimal dynamic pricing (denoted by OPI), RA heuristic and RR 
heuristic are plotted in Fig. 3, as well as the fixed prices set by FP and OFP heuristics. The 
horizontal axis represents the remaining time in the season. The jumps in dynamic policies 
correspond to sales (for demonstration, the example assumes that the sales are realized at the same 
times for each policy, although, in reality the realizations depend on the prices charged and hence 
could be different for each policy). As is the case for the optimal dynamic policy, both dynamic 
pricing heuristics reduce the price over time between consecutive sales and introduce an upward 
jump at each sale (the only exception to this behavior is when the remaining time in the selling 
period is less than 1 and remaining inventory is 1. leading to a constant price 1, 	
	 	 	 1,1	/ 	 	1 for RR heuristic). The price set by RR heuristic can be somewhat different 
from the optimal price. On the other hand. RA heuristic's price is always very close to the optimal 
dynamic price. In this particular case. the difference ∗ , , remains in the interval [-
0.005017.0.005708]. The optimal expected revenue for this example is ∗ 5,10 	 	6.4857. Using 
RA.RR.OFP. FP heuristics instead generate expected revenues 

5,1	0 	6.4844, 5,10 	6.4268, 5,10 	6.2795, 5,10 	 	6.1840. 
Fig. 4 shows similar price paths for an example with logit price response function with 

parameters 	 	 1/  and 	 	1	 	 / / / 	leading to ∗ 	 	 ∗ 	 	1. Again, 
we have five units of inventory to sell over a selling period of 10 time units. In this case. FP and 
OFP heuristics' prices are very close to each other; 	 	1.6441	 	 	1.6439.  

The price paths for the optimal dynamic policy and dynamic heuristics have shapes similar 
to those in Fig. 3. However.in this case the range of prices is larger. RA heuristic still follows the 
optimal policy closely although not as closely as the case for linear price response function. Again. 
RR heuristic may set a price quite different from what is optimal. The optimal expected revenue for 
this example is ∗ 5,10 	 	7.0737. Using RA.RR.OFP. FP heuristics instead generate expected 
revenues  

5,10 	7.0711, 5,10 	6.9535, 5,10 	6.7782, 5,10 	 	6.7782.  
 
Numerical study  
In this section, we analyze the performance of dynamic pricing heuristics (namely. revenue 

approximation (RA) and dynamic run-out rate (RR) heuristics) and compare their performance 
against constant price heuristics (namely. fixed-price (FP) and optimal fixed-price (OFP) heuristics) 
through a detailed numerical study. We also attempt to complement the numerical analysis in GvR 
for FP and OFP by considering different demand functions and larger demand potentials. For this 
purpose.we use exponential. linear and logit demand functions. 

In order to calculate the expected revenue of a given dynamic pricing heuristic P, we first 
numerically solve the system:  

 
,

, 	 , , 1, , for all 	 	1	. . . . . ,  

 
with initial conditions , 	 	 . ∀  and , 	 	 . for all 1, . . . , , where 

,  is the demand rate set by the heuristic policy. The expected revenue of using the heuristic 
policy P then can be found by evaluating ,  at x=n and s=t.  

In order to calculate the optimal revenue ∗ , . We solve the system of differential 
equations (1) numerically. We carried out these calculations in an advanced numerical mathematics 
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software package. For larger problems (especially for larger values of starting inventory level) or 
more complex price-response functions. obtaining the optimal policy may be intractable or the 
computation times may be prohibitive in a practical setting. 

 
Performance of fixed and dynamic pricing policies  
In Table 2.we report the optimal revenue and performance of heuristic policies for the 

exponential demand function when n = 1 ..... 20 and ∗  takes on values 10 or 40. The first four 
columns of Table 2 report the optimal expected revenue ( ∗) and the performance of fixed price 
policies FP and OFP for ∗ 	10. These are exactly same as what is reported in Table 1 of GvR. 
We extend the numerical study in GvR for a larger demand potential ( ∗ 	 	40) in columns 8-10. 
In addition.we report the performance of heuristic dynamic pricing policies. denotes expected 
revenue of the dynamic run-out heuristic.  denotes the expected revenue of the revenue 
approximation heuristic when only the deterministic upper bound is used to approximate the value 
function ( . 	. , , 	 	0).JitA denotes the expected revenue of the revenue approximation 
heuristic when only the lower bound is used ( . 	. , , 	 	1) and  denotes the expected 
revenue approximation heuristic when weights are set to , 	 	 1	 √⁄  (We investigated the use 
of other weights such as , 	 	0.5 or other functional forms. but these did not lead to better 
performance ). When ∗ 	 	10. the regrets of FP and OFP heuristics are relatively small. FP 
heuristic performs worst at 87.06% for n = 1, but for larger values of n, the performance is good and 
approaches 100% when n=20. OFP heuristic's worst performance is 94.51%. Comparing columns 3 
and 4 with columns 10 and 11 shows that both FP and OFP heuristics perform worse for all. but two 
values of n when ∗ 	 	40 case. Average reduction in performance is 3.15% and 2.85% for FP and 
OFP heuristics. Respectively. Both heuristics lead to significant optimality gaps when ∗ 	 	40. 
Even when n=20. a regret of about four percent remains for both heuristics. This shows that for a 
given starting inventory level (n), increasing the demand potential over the season (increasing ∗or t) 
reduces the effectiveness of fixed-price heuristics. especially when the price is not optimized.  

In general. dynamic pricing heuristics offer important improvements over FP and OFP 
heuristics and generate near optimal results. RR heuristic performs better than OFP heuristic except 
five instances and its worst performance is 97. 2% when 8and ∗ 	 	10. In contrast to fixed-
price heuristics, RR per-forms better when the demand potential is larger. When ∗ 	 		40, RR has 
a near-optimal performance with minimum performance at 99.34%.RA heuristic has an outstanding 
performance in all instances. It performs better than FP, OFP and RR heuristics in all problems, and 
its worst performance is as high as 99.84% (when n=10 and ∗ 	 	10). RA leads to an average of 
3.97% and 7.44% improvement over FP heuristic for ∗ 	10 and ∗ 	40 cases, respectively. 
The improvement over OFP heuristic is, on the average, 2.22% and 5.23% for these cases. The 
results in Table 2 also show that combining the upper and lower bounds when approximating the 
revenue is important. These bounds, when used alone in approximating the optimal revenue 
( ), do not lead to a consistent and comparable performance. 

A similar study is carried out for the linear price response function in Table 3. In particular, 
we used 2 and b=1 leading to ∗ 	 ∗ 	1. The performance of FP heuristic in the linear 
demand case is generally worse than the case of exponential demand. For ∗ 	10, 
theworstperformanceisat72.06%when n=1. The OFP heuristic, on the other hand, performs better 
with the linear price response function. The worst performances 96.66% when n=3. Increasing the 
demand potential ∗  to 40 has a more dramatic effect on FP heuristic in the case of linear price 
response function. For all values of n, FP heuristic performs worse with larger demand potential. 
For 	 	1, the performance goes down to 65.54%. When ∗  is increased from 10 to 40, the 
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average reduction in performance is about 6.28%. The OFP heuristic, on the other hand, performs 
better with ∗ 	 	40 for smaller values of n, and performs worse for larger values of n. The 
average reduction in performance is 1.27%. Regret in the range of 3-4% still remains even for large 
values of n for both heuristics.  
 

Table 2. Performance of dynamic and fixed price heuristics, exponential, a=e. 

n A*t = 0       A*t =40       

 J* J FP / J* J OFP / J* J RR / J* 	/	 ∗ / ∗ J RA / 

J* 
J* J FP / 

J* 
J OFP / J* J RR / J* 	/	 ∗ / ∗ J RA / J* 

1  2.3979 0.8706 0.9451 0.9866 0.9122 1.0000 1.0000 3.3327 0.7981 0.9343 0.9976 0.8974 1.0000 1.0000

2  4.1109 0.9259 0.9468 0.9841 0.9644 0.9767 0.9998 6.7346 0.8654 0.9365 0.9973 0.9502 0.9759 0.9996
3  5.4279 0.9452 0.9500 0.9817 0.9800 0.9698 0.9998 9.3508 0.8938 0.9387 0.9971 0.9687 0.9622 0.9993
4  6.4682 0.9535 0.9537 0.9793 0.9862 0.9704 0.9997 11.6799 0.9101 0.9407 0.9969 0.9779 0.9536 0.9993
5  7.2982 0.9564 0.9578 0.9769 0.9885 0.9745 0.9995 13.7866 0.9209 0.9425 0.9967 0.9834 0.9481 0.9993
6  7.9609 0.9558 0.9621 0.9748 0.9889 0.9800 0.9993 15.7117 0.9286 0.9442 0.9965 0.9870 0.9445 0.9993
7  8.4869 0.9523 0.9667 0.9730 0.9883 0.9855 0.9990 17.4834 0.9346 0.9458 0.9963 0.9894 0.9423 0.9994
8  8.8998 0.9460 0.9713 0.9720 0.9872 0.9903 0.9987 19.1223 0.9393 0.9473 0.9960 0.9912 0.9412 0.9994
9  9.2190 0.9369 0.9759 0.9724 0.9864 0.9940 0.9985 20.6443 0.9431 0.9487 0.9958 0.9925 0.9410 0.9995
1 9.4605 0.9248 0.9805 0.9753 0.9865 0.9964 0.9984 22.0619 0.9463 0.9501 0.9956 0.9935 0.9414 0.9996
1 9.6387 0.9509 0.9847 0.9807 0.9886 0.9978 0.9988 23.3850 0.9490 0.9514 0.9954 0.9943 0.9424 0.9996
1 9.7662 0.9696 0.9886 0.9863 0.9916 0.9984 0.9992 24.6221 0.9513 0.9527 0.9952 0.9949 0.9438 0.9996
1 9.8544 0.9821 0.9919 0.9911 0.9945 0.9986 0.9995 25.7803 0.9533 0.9540 0.9950 0.9954 0.9456 0.9997
1 9.9129 0.9899 0.9946 0.9946 0.9966 0.9986 0.9997 26.8654 0.9550 0.9553 0.9948 0.9957 0.9478 0.9997
1 9.9500 0.9946 0.9966 0.9969 0.9981 0.9985 0.9998 27.8827 0.9565 0.9565 0.9946 0.9960 0.9502 0.9997
1 9.9726 0.9973 0.9980 0.9983 0.9990 0.9986 0.9998 28.8367 0.9578 0.9578 0.9943 0.9962 0.9528 0.9997
1 9.9856 0.9987 0.9989 0.9992 0.9995 0.9986 0.9998 29.7314 0.9589 0.9590 0.9941 0.9963 0.9557 0.9997
1 9.9928 0.9994 0.9995 0.9996 0.9998 0.9988 0.9998 30.5703 0.9599 0.9602 0.9939 0.9964 0.9586 0.9997
1 9.9965 0.9997 0.9997 0.9998 0.9999 0.9989 0.9998 31.3567 0.9607 0.9615 0.9937 0.9965 0.9617 0.9997
2 9.9984 0.9999 0.9999 0.9999 1.0000 0.9991 0.9999 32.0934 0.9614 0.9627 0.9934 0.9965 0.9649 0.9997

AVe 8.4399 0.9625 0.9781  0.9861 0.9868 0.9912 0.9994 21.0516 0.9322 0.9500 0.9955 0.9845    0.9537 0.9996 

 

Table 3. Performance of dynamic and fixed price heuristics, linear, a = 2, b =1. 

n A*t       A*t       

 J* J FP / J OFP / J RR / 	/	 ∗ / ∗ J RA J* J FP / J OFP / J RR / 	/	 ∗ / ∗ J RA / 
1  1.6667 0.7206 0.9695 0.9798 0.8811 1.0000 1.0000 1.9048 0.6554 0.9801 0.9836 0.9039 1.0000 1.0000

2  3.1325 0.8382 0.9674 0.9858 0.9305 0.9857 0.9995 3.7508 0.7584 0.9779 0.9861 0.9331 0.9925 0.9990
3  4.4164 0.8961 0.9666 0.9892 0.9552 0.9768 0.9997 5.5421 0.8086 0.9762 0.9879 0.9479 0.9843 0.9984
4  5.5307 0.9311 0.9670 0.9908 0.9700 0.9738 0.9998 7.2807 0.8399 0.9748 0.9893 0.9572 0.9765 0.9981
5  6.4857 0.9535 0.9682 0.9909 0.9793 0.9750 0.9998 8.9678 0.8620 0.9736 0.9905 0.9638 0.9696 0.9981
6  7.2917 0.9670 0.9702 0.9899 0.9850 0.9788 0.9997 10.6040 0.8786 0.9726 0.9915 0.9688 0.9634 0.9982
7  7.9597 0.9729 0.9729 0.9879 0.9880 0.9836 0.9995 12.1901 0.8918 0.9717 0.9923 0.9728 0.9581 0.9983
8  8.5017 0.9716 0.9762 0.9855 0.9890 0.9885 0.9991 13.7265 0.9026 0.9710 0.9930 0.9760 0.9536 0.9986
9  8.9306 0.9625 0.9797 0.9835 0.9888 0.9925 0.9986 15.2137 0.9117 0.9704 0.9937 0.9787 0.9500 0.9988
1 9.2604 0.9448 0.9834 0.9838 0.9887 0.9955 0.9982 16.6519 0.9195 0.9699 0.9942 0.9810 0.9470 0.9990
1 9.5059 0.9642 0.9871 0.9869 0.9903 0.9974 0.9984 18.0415 0.9262 0.9695 0.9947 0.9830 0.9447 0.9992
1 9.6821 0.9780 0.9905 0.9907 0.9929 0.9984 0.9990 19.3829 0.9321 0.9692 0.9951 0.9847 0.9431 0.9994
1 9.8035 0.9871 0.9934 0.9939 0.9953 0.9989 0.9994 20.6763 0.9374 0.9689 0.9955 0.9863 0.9421 0.9995
1 9.8836 0.9929 0.9957 0.9964 0.9972 0.9990 0.9997 21.9221 0.9420 0.9688 0.9958 0.9876 0.9417 0.9996
1 9.9340 0.9962 0.9974 0.9979 0.9984 0.9991 0.9998 23.1205 0.9463 0.9687 0.9961 0.9888 0.9418 0.9997
1 9.9642 0.9981 0.9985 0.9989 0.9992 0.9991 0.9998 24.2718 0.9501 0.9687 0.9964 0.9899 0.9424 0.9998
1 9.9814 0.9991 0.9992 0.9995 0.9996 0.9991 0.9999 25.3764 0.9535 0.9688 0.9965 0.9909 0.9434 0.9998
1 9.9908 0.9996 0.9996 0.9997 0.9998 0.9992 0.9999 26.4346 0.9567 0.9690 0.9967 0.9917 0.9449 0.9998
1 9.9956 0.9998 0.9998 0.9999 0.9999 0.9993 0.9999 27.4466 0.9595 0.9692 0.9968 0.9925 0.9468 0.9998
2 9.9980 0.9999 0.9999 0.9999 1.0000 0.9994 0.9999 28.4130 0.9621 0.9695 0.9969 0.9932 0.9490 0.9998

AVe 8.0958 0.9537 0.9841 0.9915 0.9814 0.9920 0.999516.5459 0.89470.9714 0.9931 0.9736 0.9567 0.9991 
 

Again, in general, dynamic pricing heuristics offer important improvements over FP and 
OFP heuristics and perform close to optimal. RR heuristic performs better than OFP heuristic except 
one instance and its worst performance is 97.98% when 1and ∗ 	 	10. When ∗ 	 	40, RR 
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has a near-optimal performance with minimum performance at 98.36%. 
RA heuristic has an outstanding performance for the linear demand case. It performs better 

than FP, OFP and RR heuristics for all instances. Its minimum performance is 99.81% when n=5 
and ∗ 	 	40. RA leads to an average of 5.42% and 12.65% improvement over FP heuristic for 
∗ 	 10 and ∗ 	 	40 cases, respectively. The improvement over OFP heuristic is, on the 

average, 1.58%, and 2.85% for these cases.  
Finally, in Table 4, we report the results for the logit price response function. We use 

	 	 1/ 	1	and 	 	1	 / / / , again leading to ∗ 	 	1 and ∗ 	 	1.  
The performances of FP and OFP heuristics are usually similar to what is observed for the 

exponential price response function. The worst performances of FP and OFP heuristics for ∗ 	
	10 are 85.06% and 94.52%, respectively, when n = 1. Increasing the demand potential has a 
negative effect on the performance for both heuristics. Worst performances go down to 78.27% and 
93.50% for FP and OFP heuristics, respectively. On the average, increasing the demand potential 
∗  from 10 to 40 reduces the performance by 3.63% and 2.80% for FP and OFP, respectively. 

Once again, dynamic pricing heuristics offer significant improvements over fixed-price 
heuristics. RR heuristic performs better than OFP heuristic in all instances except for three. 
When ∗ 	10, the worst performance of RR heuristic is 97.64%. When ∗ 	 	40, the 
performance is very close to optimal with minimum at 99.53%.  

RA heuristic has a remarkable performance with the logit price response function. Once 
again, it performs better than FP, OFP and 

RR heuristics in all instances. The minimum performance is 99.83% when ∗ 10 and 
n=10. RA heuristic offers an average performance improvement of 3.97% and 7.99% over FP 
heuristic for ∗ 	 	10 and ∗ 	 	40 cases, respectively. The improvement over OFP heuristic is, 
on the average, 2.20%, and 5.15% for these cases.  

In order to better understand the impact of demand potential on performance of heuristic 
pricing policies, we provide Fig. 5, which shows the performance of FP, OFP, RA and RR heuristics 
as a function of t for the three demand functions with n=5 and ∗ ∗ 1.  

For all demand functions, when t is very small, the performance of all heuristics are close to 
optimal. This is expected since all four heuristics tend to use an intensity that minimizes the 
instantaneous revenue rate and this is optimal. The performance of FP heuristic first goes down and 
after 	 	 / ∗ 	 	5 (when the intensity switches from ∗to AD) goes back up again. However, 
after a threshold, the performance of FP is a decreasing in t. The performance of OFP heuristic tends 
to deteriorate as t increases for an extended range of t values. When t is considerably large, the 
performance is rather flat and then increases as t increases. RR heuristic performs better than FP, but 
the impact of t is similar for the initial part. The performance dips at 	 	 /	 ∗ 	 	5. However, 
unlike FP, performance of RR is monotone increasing in t after this point. RA heuristic has a 
consistently very strong performance for all demand functions and all values of t again with 
minimum at 99.8%. It performs better than all heuristics for all demand functions and all values of t. 

Larger problems  
The numerical analysis so far shows that FP and OFP heuristics have important regrets, 

especially for small and moderate values of starting inventory. In contrast, dynamic pricing 
heuristics and especially RA heuristic, perform very close to optimal dynamic pricing policy. A 
critical question is whether these results are valid when n is larger, as in certain problems 
experienced in practice. In order to answer this question, we use a continuous price version of an 
example used in GvR (Section 4). Consider a flight with n=300 seats on sale t=360 days prior to 
departure.  
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Table 4. Performance of dynamic and fixed price heuristics, logit 

n A*t       A*t       

 J* J FP / J OFP / J RR / 	/	 ∗ / ∗ J RA J* J FP / J OFP / J RR / 	/	 ∗ / ∗ J RA / 
1  1.6667 0.7206 0.9695 0.9798 0.8811 1.0000 1.0000 1.9048 0.6554 0.9801 0.9836 0.9039 1.0000 1.0000

2  3.1325 0.8382 0.9674 0.9858 0.9305 0.9857 0.9995 3.7508 0.7584 0.9779 0.9861 0.9331 0.9925 0.9990
3  4.4164 0.8961 0.9666 0.9892 0.9552 0.9768 0.9997 5.5421 0.8086 0.9762 0.9879 0.9479 0.9843 0.9984
4  5.5307 0.9311 0.9670 0.9908 0.9700 0.9738 0.9998 7.2807 0.8399 0.9748 0.9893 0.9572 0.9765 0.9981
5  6.4857 0.9535 0.9682 0.9909 0.9793 0.9750 0.9998 8.9678 0.8620 0.9736 0.9905 0.9638 0.9696 0.9981
6  7.2917 0.9670 0.9702 0.9899 0.9850 0.9788 0.9997 10.6040 0.8786 0.9726 0.9915 0.9688 0.9634 0.9982
7  7.9597 0.9729 0.9729 0.9879 0.9880 0.9836 0.9995 12.1901 0.8918 0.9717 0.9923 0.9728 0.9581 0.9983
8  8.5017 0.9716 0.9762 0.9855 0.9890 0.9885 0.9991 13.7265 0.9026 0.9710 0.9930 0.9760 0.9536 0.9986
9  8.9306 0.9625 0.9797 0.9835 0.9888 0.9925 0.9986 15.2137 0.9117 0.9704 0.9937 0.9787 0.9500 0.9988
1 9.2604 0.9448 0.9834 0.9838 0.9887 0.9955 0.9982 16.6519 0.9195 0.9699 0.9942 0.9810 0.9470 0.9990
1 9.5059 0.9642 0.9871 0.9869 0.9903 0.9974 0.9984 18.0415 0.9262 0.9695 0.9947 0.9830 0.9447 0.9992
1 9.6821 0.9780 0.9905 0.9907 0.9929 0.9984 0.9990 19.3829 0.9321 0.9692 0.9951 0.9847 0.9431 0.9994
1 9.8035 0.9871 0.9934 0.9939 0.9953 0.9989 0.9994 20.6763 0.9374 0.9689 0.9955 0.9863 0.9421 0.9995
1 9.8836 0.9929 0.9957 0.9964 0.9972 0.9990 0.9997 21.9221 0.9420 0.9688 0.9958 0.9876 0.9417 0.9996
1 9.9340 0.9962 0.9974 0.9979 0.9984 0.9991 0.9998 23.1205 0.9463 0.9687 0.9961 0.9888 0.9418 0.9997
1 9.9642 0.9981 0.9985 0.9989 0.9992 0.9991 0.9998 24.2718 0.9501 0.9687 0.9964 0.9899 0.9424 0.9998
1 9.9814 0.9991 0.9992 0.9995 0.9996 0.9991 0.9999 25.3764 0.9535 0.9688 0.9965 0.9909 0.9434 0.9998
1 9.9908 0.9996 0.9996 0.9997 0.9998 0.9992 0.9999 26.4346 0.9567 0.9690 0.9967 0.9917 0.9449 0.9998
1 9.9956 0.9998 0.9998 0.9999 0.9999 0.9993 0.9999 27.4466 0.9595 0.9692 0.9968 0.9925 0.9468 0.9998
2 9.9980 0.9999 0.9999 0.9999 1.0000 0.9994 0.9999 28.4130 0.9621 0.9695 0.9969 0.9932 0.9490 0.9998

AVe 8.0958 0.9537 0.9841 0.9915 0.9814 0.9920 0.999516.5459 0.89470.9714 0.9931 0.9736 0.9567 0.9991 
 

 

 

Fig. 5. Performance of fixed price heuristics, n=5, p* = ∗= 1. 

If the price is 	 	$198, the demand rate is 	 	1 passenger per day. If the price is 
	 	$358, the demand rate is 	 	0.5 passenger per day. These data points correspond to 

parameters a=2.35790 (and a scaling factor ( 	0.004332), (a,b) = (518/320,1/320), and (a,b) = 
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(3.87534,0.00533) for the exponential, linear and logit demand functions, respectively. The expected 
revenues for the optimal policy and FP, OFP, RR and RA heuristic are provided in Table 5. For each 
demand function, we also provide results for three other problems in which, (i) the period length is 
twice, (ii) the initial inventory and the period length are half, (iii) the initial inventory is half, of  
those of the original problem. 

As expected, the performances of FP and OFP heuristics are better since the expected sales is 
larger than the problems considered in Tables 2-4. However, the performance of FP heuristic varies 
around 97-98%. When the expected sales is not large compared to starting inventory, i.e., when (n,t) 
= (300,360) or (n,t) = (150,180), using OFP heuristic instead leads to significant improvements and 
near-optimal performance. However, when the expected sales is larger, i.e., when (n,t) = (300,720) 
or (n,t) = (150,360), OFP heuristic provides only slight improvements over FP heuristic and its 
performance remains around 98%. RR and RA heuristics offer important improvements over fixed-
price heuristics for these problem instances. RR performs better than OFP heuristics in all but two 
instances. RA heuristic, on the other hand, has a truly outstanding performance. It performs better 
than other heuristics in all instances and very close to optimal, with a maximum regret of 0.06%. We 
believe that the additional revenue gains in the range of 2-3% over FP and OFP heuristics through 
dynamic pricing are important in practice 

 
Table 5. Performance of pricing heuristics for large n and t. 

Demand n t J* J FP J FP / J J OFP / J RR J RR / JRA JRA / 
Exponential 300 360 $71,76 $70,36 0.9805 $71,4 0.9954 $71,6 0.9981 $71,74 0.9998

 300 720 $119,3 $117,2 0.9829 $117, 0.9832 $119, 0.9996 $119,3 1.0000
 150 180 $35,78 $34,84 0.9736 $35,5 0.9933 $35,6 0.9967 $35,77 0.9996
 150 360 $59,37 $58,05 0.9779 $58,0 0.9784 $59,3 0.9991 $59,36 0.9999

Linear 300 360 $75,30 $74,59 0.9905 $75,1 0.9973 $75,2 0.9988 $75,28 0.9996
 300 720 $114,6 $112,7 0.9834 $112, 0.9851 $114, 0.9997 $114,6 1.0000
 150 180 $37,54 $36,96 0.9843 $37,3 0.9954 $37,4 0.9976 $37,52 0.9994
 150 360 $57,03 $55,82 0.9788 $55,9 0.9811 $57,0 0.9995 $57,03 0.9999

Logit 300 360 $72,58 $71,14 0.9802 $72,2 0.9960 $71,8 0.9906 $72,55 0.9997
 300 720 $118,2 $116,2 0.9830 $116, 0.9831 $118, 0.9991 $118,2 1.0000
 150 180 $36,19 $35,22 0.9733 $35,9 0.9939 $35,5 0.9834 $36,17 0.9995
 150 360 $58,86 $57,57 0.9782 $57,5 0.9782 $58,7 0.9983 $58,85 1.0000

 
 Frequency of price changes  
The numerical results so far show that the dynamic pricing heuristics, particularly RA 

heuristic, dominate the performance of fixed-price heuristics and the revenue gains through these 
heuristics can be very important in practice. A practical consideration is the impact of frequency of 
price changes. In many applications, one may find it impossible or impractical to alter the prices 
continuously over time and choose to use a version of these heuristics in which the prices are 
changed in a periodic manner. In these cases, the season is divided into a pre-specified number of 
periods and prices can be updated only at the beginning of these periods. For RR heuristic, the 
deterministic problem can be resolved and the prices (or the intensities) are changed only at the 
beginning of each period, and this frequency of price changes corresponds to the resolving 
frequency. For RA heuristic, the prices (or the intensities) can be determined periodically using Eq. 
(2) (We should note that one can attempt to solve the periodic problem optimally using a dynamic 
program. However, the problem becomes intractable quickly. The prices that will be used by 
periodic versions of RR and RA heuristics are easily computable and in most cases, are closed-form 
expressions).  
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Table 6. Frequency of price changes: exponential demand 
λ*t n   Dynamic revenue rate:      

    2  3  4  5  6  7  8  9  10   

10   1  0.8706 0.9591  0.983 0.9921 0.9953 0.9961 0.9959 0.995 0.994 0.9934 0.9866 

  2  0.9259 0.9667  0.977 0.9818 0.9834 0.9853 0.9857 0.985 0.984 0.9841 0.9841 
  3  0.9452 0.9658  0.971 0.9756 0.9768 0.9790 0.9799 0.980 0.979 0.9787 0.9817 
  5  0.9564 0.9584  0.963 0.9670 0.9678 0.9707 0.9718 0.972 0.972 0.9711 0.9769 
  8  0.9460 0.9508  0.956 0.9596 0.9602 0.9637 0.9651 0.966 0.966 0.9646 0.9720 
 10  0.9248 0.9465  0.957 0.9616 0.9629 0.9665 0.9680 0.969 0.969 0.9680 0.9753 

40   1  0.7981 0.9093  0.948 0.9675 0.9779 0.9843 0.9885 0.991 0.993 0.9948 0.9976 
  2  0.8654 0.9329  0.957 0.9701 0.9776 0.9818 0.9849 0.987 0.989 0.9907 0.9973 
  3  0.8938 0.9426  0.961 0.9711 0.9773 0.9806 0.9833 0.985 0.987 0.9886 0.9971 
  5  0.9209 0.9528  0.964 0.9712 0.9759 0.9783 0.9804 0.982 0.983 0.9849 0.9967 
  8  0.9393 0.9537  0.960 0.9649 0.9682 0.9697 0.9710 0.972 0.973 0.9743 0.9960 
 10  0.9463 0.9463  0.949 0.9519 0.9537 0.9543 0.9550 0.955 0.956 0.9570 0.9956 

AVe   0.9111 0.9487  0.962 0.9695 0.9731 0.9759 0.9775 0.978 0.979 0.9792 0.9881 

λ*t n   approximation: number of periods used   
    2  3  4 5 6 7 8 9  10  

10   1  0.8461 0.9354  0.964 0.9772 0.9841 0.9883 0.9911 0.992 0.994 0.9953 1.0000 
  2  0.9162 0.9550  0.969 0.9774 0.9822 0.9854 0.9876 0.989 0.990 0.9916 0.9998 
  3  0.9376 0.9610 0.971 0.9780 0.9821 0.9849 0.9870 0.988 0.989 0.9909 0.9998 
  5  0.9561 0.9688  0.976 0.9809 0.9841 0.9863 0.9880 0.989 0.990 0.9913 0.9995 
  8  0.9698 0.9774  0.982 0.9853 0.9875 0.9891 0.9904 0.991 0.992 0.9927 0.9987 
 10  0.9717 0.9814  0.986 0.9886 0.9903 0.9914 0.9923 0.993 0.993 0.9940 0.9984 

40   1  0.7908 0.9007  0.940 0.9594 0.9704 0.9774 0.9821 0.985 0.987 0.9897 1.0000 
  2  0.8813 0.9342  0.954 0.9658 0.9729 0.9778 0.9813 0.983 0.986 0.9876 0.9996 
  3  0.9096 0.9440  0.959 0.9680 0.9739 0.9782 0.9813 0.983 0.985 0.9871 0.9993 
  5  0.9304 0.9528  0.964 0.9715 0.9763 0.9798 0.9824 0.984 0.986 0.9874 0.9993 
  8  0.9427 0.9606  0.969 0.9755 0.9794 0.9822 0.9843 0.986 0.987 0.9885 0.9994 
 10  0.9475 0.9644  0.972 0.9776 0.9810 0.9835 0.9855 0.987 0.988 0.9893 0.9996 

AVe   0.9167 0.9530  0.967 0.9754 0.9804 0.9837 0.9861 0.987 0.989 0.9905 0.9995 

 

Table 7. Frequency of price changes: exponential demand 
λ*t n   Dynamic revenue rate: number   

    2  3  4  5  6  7  8  9  10   

10   1  0.720 0.8626  0.916 0.942  0.9556 0.9633 0.9675 0.969 0.970 0.971 0.9798 
  2  0.838 0.9228  0.951  0.9638 0.9701 0.9758 0.9786 0.979 0.98  0.9795 0.9858 
  3  0.896 0.949  0.964 0.9733 0.9769 0.9812 0.9835 0.984 0.984 0.9834 0.9892 
  5  0.953 0.9675  0.975 0.9795 0.9807 0.9842 0.9857 0.986 0.986 0.985 0.9909 
  8  0.971 0.9689  0.972 0.975 0.9751 0.9786 0.98 0.980 0.981 0.979 0.9855 
 10  0.924 0.9448  0.957 0.9671  0.9711 0.9722 0.97 0.9772 0.978 0.9789 0.977  

40   1  0.655 0.8005  0.862  0.8955 0.9163 0.9303 0.9402 0.947 0.953 0.9578 0.9836 
  2  0.758 0.8587  0.899 0.9215 0.9357 0.9427 0.9489 0.954 0.958 0.9622 0.9861 
  3  0.808 0.8864  0.917 0.9329 0.9437 0.9482 0.9527 0.956 0.960 0.9636 0.9879 
  5  0.862 0.916  0.932 0.9411 0.9485 0.9505 0.9533 0.955 0.958 0.9612 0.9905 
  8  0.902 0.9206  0.927 0.9323 0.9368 0.937 0.9384 0.939 0.940 0.9435 0.993 
 10  0.946 0.9195  0.907 0.9075  0.9084 0.9103 0.90 0.9099 0.910 0.9109 0.9127 

AVe   0.852 0.9099  0.932 0.9447 0.9518 0.9564 0.9597 0.962 0.963 0.9647 0.9875 

λ*t n   Revenueapproximation:number      

2  3  4 5 6 7 8 9  10  
10   1  0.892 0.9294  0.958 0.9799 0.9922 0.9944 0.9958 0.996 0.997 0.9979 1.0000 

  2  0.948 0.9545  0.966 0.9803 0.9901 0.9919 0.9932 0.994 0.994 0.9953 0.9995 
  3  0.953 0.9612  0.970 0.9807 0.9892 0.9910 0.9923 0.993 0.994 0.9947 0.9997 
  5  0.960 0.9688  0.976 0.9834 0.9891 0.9908 0.9921 0.993 0.993 0.9944 0.9998 
  8  0.976 0.9798  0.983 0.9877 0.9905 0.9918 0.9927 0.993 0.994 0.9945 0.9991 
 10  0.971 0.9775  0.983    0.9870 0.9897 0.9914 0.99     0.993 0.9942 0.9946 

40   1  0.872 0.9150  0.948 0.9741 0.9903 0.9930 0.9947 0.995 0.996 0.9973 1.0000 
  2  0.950 0.9536  0.965 0.9795 0.9907 0.9925 0.9937 0.994 0.995 0.9957 0.9990 
  3  0.962 0.9643  0.970 0.9804 0.9897 0.9914 0.9926 0.993 0.994 0.9946 0.9984 
  5  0.966 0.9707  0.975 0.9812 0.9888 0.9904 0.9916 0.992 0.993 0.9937 0.9981 
  8  0.965 0.9715  0.976 0.9823 0.9886 0.9902 0.9914 0.992 0.993 0.9936 0.9986 
 10  0.947 0.9645  0.97    0.9771 0.9827 0.9887 0.99       0.992 0.9931 0.9937 

AVe 0 949 0 9602 0 971 0 9818 0 9899 0 9917 0 9929 0 993 0 994 0 9950 0 9991
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Table 8. Frequency of price changes: exponential demand 

λ*t n   Dynamic revenue rate:       

2  3  4 5 6 7 8 9  10  
10   1  0.7206 0.8626  0.916 0.942  0.9556 0.9633 0.9675 0.969 0.970 0.971 0.9798 

  2  0.8382 0.9228  0.951  0.9638 0.9701 0.9758 0.9786 0.979 0.98  0.9795 0.9858 
  3  0.8961 0.949  0.964 0.9733 0.9769 0.9812 0.9835 0.984 0.984 0.9834 0.9892 
  5  0.9535 0.9675  0.975 0.9795 0.9807 0.9842 0.9857 0.986 0.986 0.985 0.9909 
  8  0.9716 0.9689  0.972 0.975 0.9751 0.9786 0.98 0.980 0.981 0.979 0.9855 
 10  0.9248 0.9448  0.957 0.9671  0.9711 0.9722 0.97 0.9772 0.978 0.9789 0.977  

40   1  0.6554 0.8005  0.862  0.8955 0.9163 0.9303 0.9402 0.947 0.953 0.9578 0.9836 
  2  0.7584 0.8587  0.899 0.9215 0.9357 0.9427 0.9489 0.954 0.958 0.9622 0.9861 
  3  0.8086 0.8864  0.917 0.9329 0.9437 0.9482 0.9527 0.956 0.960 0.9636 0.9879 
  5  0.862  0.916  0.932 0.9411 0.9485 0.9505 0.9533 0.955 0.958 0.9612 0.9905 
  8  0.9026 0.9206  0.927 0.9323 0.9368 0.937 0.9384 0.939 0.940 0.9435 0.993 
 10  0.9463 0.9195  0.907 0.9075  0.9084 0.9103 0.90 0.9099 0.910 0.9109 0.9127 

AVe   0.8526 0.9099  0.932 0.9447 0.9518 0.9564 0.9597 0.962 0.963 0.9647 0.9875 

λ*t n   Revenueapproximation:n      

2  3  4 5 6 7 8 9  10  
10   1  0.8922 0.9294  0.958 0.9799 0.9922 0.9944 0.9958 0.996 0.997 0.9979 1.0000 

  2  0.9481 0.9545  0.966 0.9803 0.9901 0.9919 0.9932 0.994 0.994 0.9953 0.9995 
  3  0.9530 0.9612  0.970 0.9807 0.9892 0.9910 0.9923 0.993 0.994 0.9947 0.9997 
  5  0.9601 0.9688  0.976 0.9834 0.9891 0.9908 0.9921 0.993 0.993 0.9944 0.9998 
  8  0.9761 0.9798  0.983 0.9877 0.9905 0.9918 0.9927 0.993 0.994 0.9945 0.9991 
 10  0.9717 0.9775  0.983    0.9870 0.9897 0.9914 0.99     0.993 0.9942 0.9946 

40   1  0.8724 0.9150  0.948 0.9741 0.9903 0.9930 0.9947 0.995 0.996 0.9973 1.0000 
  2  0.9509 0.9536  0.965 0.9795 0.9907 0.9925 0.9937 0.994 0.995 0.9957 0.9990 
  3  0.9624 0.9643  0.970 0.9804 0.9897 0.9914 0.9926 0.993 0.994 0.9946 0.9984 
  5  0.9663 0.9707  0.975 0.9812 0.9888 0.9904 0.9916 0.992 0.993 0.9937 0.9981 
  8  0.9654 0.9715  0.976 0.9823 0.9886 0.9902 0.9914 0.992 0.993 0.9936 0.9986 
 10  0.9475 0.9645  0.97    0.9771 0.9827 0.9887 0.99       0.992 0.9931 0.9937 

AVe   0.9491 0.9602  0.971 0.9818 0.9899 0.9917 0.9929 0.993 0.994 0.9950 0.9991 
 

Table 6 shows the impact of the number of periods used on the performance of RR and RA 
heuristics for exponential demand function when ∗ 	 	 ∗ 	 	1. For the upper part of Table 6, the 
third column is the performance (as a ratio of the optimal dynamic policy) of FP heuristic (no 
resolving). The last column is the performance of RR heuristic with continuous resolving. Columns 
4-12 show the performance of RR heuristic when 2-10 equal length periods are used. For the lower 
part of Table 6, the third column is the performance of RA heuristic when the price is set at the 
beginning and never changed. The last column is the performance of RA heuristic when the prices 
are continuously adjusted. Columns 4-12 show the performance of RA heuristic when 2-10 equal-
length periods are used.  

The results in Table 6 are important. First, while resolving periodically generates better 
performance than FP heuristic, the impact of resolving is not monotone, i.e., resolving more often 
does not necessarily lead to better performance. This is especially true when starting inventory (n) 
and demand potential ( ∗ ) are both small. For moderate n and large ∗ , resolving may provide 
important gains over FP heuristic (consider, for example, n = 1 0 and ∗ 	 	40). However, in order 
to realize these gains, resolving has to take place very frequently; infrequent resolving generates 
only modest improvement. One important observation is that for n = 1 and ∗ 	 	10, the 
performance of continuous resolving is worse than resolving 4-10 times throughout the horizon. 
Similarly for n = 2 and ∗ 	 	10, the performance of continuous resolving is worse than resolving 
5-10 times throughout the horizon. 

Table 6 shows that RA heuristic behaves better with respect to the frequency of price 
changes. Updating prices more often always leads to better performance for RA heuristic. One can 
quickly get close to the full revenue potential of RA heuristic by introducing a limited number of 
opportunities to update prices, especially when the expected demand is small ( ∗t = 10).  
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Table 7 extends the analysis to the linear demand function. In this case, we have negative 
results similar to one provided in [91 for RR heuristic. For example, when n= 10 and  ∗ 	 	40, 
resolving, if not frequent enough, leads to a performance worse than that of FP heuristic. Note that 
for this instance, continuous resolving provides more than eight percent improvement over FP 
heuristic. One can also observe the non-monotonicity of the RR heuristic's performance with respect 
to resolving frequency in Table 7. With linear demand function, RA heuristic continues to behave 
nicely with respect to the frequency of price changes. Increasing frequency always leads to better 
performance. With linear demand, for all problems, a performance around 99% can be obtained by 
using five opportunities to change the price. Table 8 shows the results for the logit price response 
function. Again, RR heuristic's performance is not monotone in resolving frequency. Resolving may 
lead to a performance worse than FP heuristic, and resolving continuously may lead to a 
performance worse than resolving periodically. On the other hand, the performance RA heuristic is 
monotone in the frequency of price changes also for the logit function.  

We conclude that in practical settings where continuously changing prices is not possible, 
one should carefully fine-tune the resolving frequency for RR heuristic for each problem setting as 
there does not seem to be any universal relationship between the resolving frequency and solution 
quality. The performance of RA heuristic, on the other hand, is monotone in the frequency of price 
changes. One can obtain the desired performance by setting the frequency sufficiently high.  

 
Conclusion  
In this paper, we investigate the use of fixed and dynamic pricing policies for selling a fixed 

amount of inventory over a finite horizon. We propose two simple and computationally feasible 
dynamic pricing heuristics that can be used to update prices as uncertainty is resolved throughout the 
horizon. The first heuristic, the revenue approximation heuristic, is based on approximating the 
value function that arise in the dynamic programming formulation to determine optimal prices. The 
second heuristic, the dynamic run-out rate heuristic, is based on continuously resolving the 
deterministic version of the problem. Through a detailed numerical study, we demonstrate that fixed 
price heuristics lead to serious shortcomings in revenue with general demand functions for moderate 
and small values of starting inventory when the demand potential is large. We show that these are 
precisely the settings in which the dynamic pricing heuristics that we propose can be effectively 
used to obtain near optimal performance. In particular, the revenue approximation heuristic has a 
consistently remarkable performance, leading to a maximum 0.2% optimality gap in all problems we 
consider. We also study the impact of changing prices periodically rather than continuously using 
these heuristics. We show that the revenue approximation heuristic's performance is monotone in the 
number of periods used and one can quickly get close to the full revenue potential of continuous 
price changes. Our main conclusion is that dynamic pricing heuristics lead to near-optimal 
performance and can provide important gains over fixed-price heuristics even when there is only 
normal statistical variation in demand and that their use should be given more consideration in 
theory and practice.  
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