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ABSTRACT
Recent numerical and analytic work has highlighted some shortcomings in our understand-
ing of the dynamics of H II region expansion, especially at late times, when the H II region
approaches pressure equilibrium with the ambient medium. Here we reconsider the idealized
case of a constant radiation source in a uniform and spherically symmetric ambient medium,
with an isothermal equation of state. A thick-shell solution is developed that captures the
stalling of the ionization front and the decay of the leading shock to a weak compression wave
as it escapes to large radii. An acoustic approximation is introduced to capture the late-time
damped oscillations of the H II region about the stagnation radius. Putting these together, a
matched asymptotic equation is derived for the radius of the ionization front which accounts
for both the inertia of the expanding shell and the finite temperature of the ambient medium.
The solution to this equation is shown to agree very well with the numerical solution at all
times, and is superior to all previously published solutions. The matched asymptotic solution
can also accurately model the variation of H II region radius for a time-varying radiation source.

Key words: ISM: bubbles – HII regions – ISM: kinematics and dynamics.

1 IN T RO D U C T I O N

Massive stars are an important source of mass and energy to the
interstellar medium (ISM), through the radiation they emit, the
strong winds which they drive, and the supernova explosions by
which they end their lives. Feedback from massive star formation
can redistribute matter, sculpting the ISM, and potentially inhibit-
ing or promoting star formation (Dale 2015; Walch et al. 2015).
Supernovae are the dominant feedback agent driving turbulent gas
flows in star-forming regions (Mac Low & Klessen 2004). For a
given star-formation episode, however, ionizing radiation starts to
be emitted as soon as the first massive star reaches the zero-age
main sequence. We do not consider the role of stellar winds, which
can have an important role in driving the expansion of H II regions
as a result of the bubbles of hot gas internal to them driven by
the shocked stellar wind material (Freyer, Hensler & Yorke 2003).
Some studies have suggested that turbulent mixing may allow much
of this energy to be radiated (e.g. Toalá & Arthur 2011; Rosen et al.
2014; Mackey et al. 2015). There is some observational evidence
for this loss of energy (Toalá et al. 2016a,b), although due to limited
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observational coverage, and uncertainty in the amount of energy
injected and the effects of foreground absorption, it is difficult to
be certain whether such emission is a significant sink of energy. If
cooling in the shocked stellar wind material is indeed efficient, then
heating by the ionizing radiation may be the dominant feedback
process before supernovae commence for all but the most massive,
compact star clusters where the escape velocity is above 20 km s−1

(Henney 2007; Dale et al. 2014; Ngoumou et al. 2015). In this paper,
we consider only photoionization-driven expansion of H II regions
and do not address this issue further. Similar analytical techniques
to the ones which we develop could be applied to the case where a
significant hot bubble remains.

The simplest model of the effect of photoionization on the ISM, a
spherically symmetric expansion of a bubble of ionized gas around
point source of ultraviolet photons with constant flux, is a classical
problem in ISM physics (Spitzer 1978; Dyson & Williams 1997;
Osterbrock & Ferland 2006). This system develops through a num-
ber of stages. At first, each photon emitted leads to an additional
ionization, so the speed of expansion of the ionization region is
determined by the ionizing luminosity. Soon, the ionized material
starts to recombine, and an increasing fraction of the luminosity is
taken up in maintaining the level of ionization. The expansion of
the front slows as a result both of geometric dilution of the ionizing
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radiation and the increasing rate of recombinations in the ionized
region. Within the ionized region, the pressure increases due to both
the larger number of free particles and the higher material temper-
ature. As a result, when the rate of expansion of the ionization
front slows to approximately twice the sound speed within the ion-
ized region, a strong shock is generated at its surface which moves
ahead of the ionization front into the surrounding neutral material.
As time progresses, this shock weakens and its separation from the
ionization front increases. The ionization front slows and eventually
relaxes to an equilibrium radius at which the pressure in the rarefied
ionized region balances that in the unshocked external medium.

While clearly an idealization of the expansion of an H II region
around a young massive star, this model captures many essential
features of its dynamics. The analytic formulation of this problem
follows classic work on ionization fronts (Kahn 1954) by taking
the ionized gas to be isothermal with a temperature T ≈ 104 K and
the neutral gas also isothermal, but with a far lower temperature
(T ≈ 10–100 K).

Early analytic and numerical studies of a spherically symmetric
H II region are summarized by Mathews & O’Dell (1969), by which
time ground-breaking numerical simulations had been performed
(Lasker 1966) but an analytic form for the expansion as a function
of time had not been obtained. An analytic solution for the spher-
ical expansion of an H II region was presented by Spitzer (1978)
by assuming the equality of total pressure on either side of the
swept-up shell, and this became the standard solution (e.g. Dyson
& Williams 1997). It was, however, missing an essential concept:
the inertia of the swept-up shell (Hosokawa & Inutsuka 2006), as
had already been treated by Elmegreen & Lada (1977), albeit for
a planar rather than spherical front. Simulations by Raga, Cantó &
Rodrı́guez (2012b) found that the ionization front overshoots the
equilibrium radius at late times and relaxes back, a behaviour that
the Spitzer and the Hosokawa and Inutsuka solutions do not capture.

Bisbas et al. (2015) compared results for this problem for multi-
ple time-dependent flow dynamics codes, finding good agreement
between them. This paper also compared these computational re-
sults with a number of analytical and semi-analytical models for
the expansion of the H II region. At early time, where the shocked
shell is thin, much better agreement was found with the model
of Hosokawa & Inutsuka (2006) than that of Spitzer (1978). Al-
though Raga’s modification of the Spitzer solution (Raga, Cantó &
Rodrı́guez 2012a), referred to below as Raga-II, relaxes to the cor-
rect radius of the H II region as t → ∞, none of the available models
provides a good description of the later time development of the H II

region as it comes into pressure equilibrium with its environment.
The intention of this paper is to remedy this.

While the late-time relaxation of an H II region is more subject to
details such as the changing ultraviolet radiance of the central star
and the density distribution of the ISM environment, the idealized
problem which we consider is not without practical relevance. H II

regions form an important component of the ISM in the discs of late
type galaxies. The shells that they drive are a source for the turbulent
motions within this medium (e.g. Gritschneder et al. 2009; Medina
et al. 2014; Arthur, Medina & Henney 2016). The nature of their
response to variations in the pressure of the ISM will also have
important effects, for example, on the nature of the response of
the medium to supernova explosions (e.g. Rogers & Pittard 2013)
and density waves in galactic discs. It is also very useful to have
reference solutions which capture the full evolution of an H II region
for the purposes of validating computer algorithms.

In this paper, we first discuss the dimensionless parameters which
characterize the problem. We then present our reference numerical

calculation, before developing a range of analytic and semi-analytic
treatments for the structure of the evolving H II region, which we
compare to the numerical solution. The most detailed of these is
compared to additional numerical calculation where the ionization
source is changed during the evolution. Finally, we summarize our
results, including the potential for their application as a sub-grid
model in larger scale simulations of the ISM.

2 C O N T RO L L I N G PA R A M E T E R S

To define how wide a parameter space must be covered by an
analytic treatment for the problem of expansion of an H II region, it
is helpful to determine the dimensionless parameters which control
the process, as this will determine whether cases can be scaled to a
single common solution.

We consider the dimensional controlling parameters for the ex-
pansion of a dust-free H II region in an isothermal environment free
of magnetic fields. These are the particle density of the environ-
ment, n0, the source rate of ionizing photons Q0, and the hot and
cold material sound speeds, ci and c0. We use the sound speeds and
particle density to capture the dependency of the system on molec-
ular mass. The relevant atomic physics is captured by the ionization
cross-section a and the case B recombination coefficient αB, into
excited states only. Applying case B implies that the H II region is
assumed to be very optically thick to Lyman continuum photons,
and hence that the photons emitted by direct recombinations to the
n = 1 level will ionize some neighbouring atom, leading to no net
recombination (known as the ‘on-the-spot’ approximation, Oster-
brock & Ferland 2006). Williams & Henney (2009) explicitly treat
the radiation transfer of the diffuse Lyman continuum, and confirm
that this will typically have a negligible effect on the structure of
the H II region compared to the case B approximation.

With six parameters, we are looking for four dimensionless pa-
rameters for the problem. The forms we will consider for these
parameters are

ci

c0
;

Q0

nαB
; U ∼ n1/3Q

1/3
0 α

2/3
B

ci
;

aci

αB
. (1)

The first two of these parameters have obvious interpretations: the
ratio of sound speeds determines the initial overpressure (and even-
tual underdensity) of the H II region, and the second parameter is
the total number of particles in the initial nebula.

The third parameter U is proportional to the ratio of the ionizing
photon flux to the thermal particle flux at the initial Strömgren
(1939) radius, RSt, if absorption were neglected. RSt satisfies

Q0 = 4π

3
αBn2R3

St . (2)

Equivalently, U is the ratio of the sound-crossing time of the nebula
to the characteristic time for ions to recombine. It may also be
related to the column density through the ionized nebula, N, by

U ∼ αBN

ci
. (3)

This is a typical ionization parameter.
The fourth parameter is dependent only on atomic physics, so will

not vary substantially between observed nebulae. The product of
the third and fourth parameters is independent of ci, and determines
the ratio of the Strömgren radius to the ionization front thickness,
∼ naRSt, as well as the mean level of ionization within the nebula,
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since locally

x2

1 − x
= aJi

nαB
, (4)

and 〈Ji〉 ∼ Q0/4πR2
St: ionization fronts are geometrically thin for

the same reason that their cores are almost fully ionized, and what
matters most for dynamical studies is that both these statements are
true.

Typical values of Q0 	 1049 s−1, αB 	 2 × 10−13 cm3 s−1, a 	
6 × 10−18 cm−2, ci = 10 km s−1, and c0 = 0.3 km s−1 give

ci

c0
	 30, (5)

Q0

nαB
	 5 × 1061

n/cm−3
, (6)

n1/3Q
1/3
0 α

2/3
B

ci
	 74

(
n/cm−3

)1/3
, (7)

aci

αB
	 30. (8)

The second parameter is so overwhelmingly large that the behaviour
of nebulae will almost always be in the asymptotic regime which
means that the structure of the nebula can be well modelled as a
continuum fluid. The first and fourth parameters are weakly depen-
dent on the circumstances of a particular nebula, but have a similar
scale to the third parameter. Hence the structure and evolution of
H II regions are only to be significantly affected by the value of the
third dimensionless parameter.

The structure may pass through a number of regimes through
the lifetime of an individual nebula, as the value of this parameter
varies with respect to that of the first and fourth parameters. How-
ever, these effects will generally be quite weak, as long as the mean
ionization within the region remains close to complete (and if the ra-
diation pressure due to the ionizing continuum is ignored). Varying
the ionization parameter will affect the spectrum of emission line
radiation more significantly than it does the gross hydrodynamics
of the expansion of the H II region.

3 N U M E R I C A L C A L C U L AT I O N

We will use the Early Phase test of the STARBENCH project presented
in Bisbas et al. (2015) to compare with a number of analytical
approximations that will be discussed in detail in Section 4. We
have run the calculation beyond the latest time considered in the
previous paper, to allow the asymptotic behaviour to be studied.
A larger domain has to be considered to ensure that the outgoing
expansion wave remains on the mesh.

For reference, in this problem the density of the neutral
medium (consisting of pure hydrogen) is taken to be ρo = 5.21 ×
10−21 g cm−3. We consider a source emitting ionizing photons at
a constant rate of Q0 = 1049 s−1. The resulting two-phase media
have temperatures Ti = 104 K and T0 = 102 K for the ionized (μ
= 0.5) and neutral (μ = 1) regimes, respectively, corresponding to
sound speeds of ci = 12.85 km s−1 and c0 = 0.91 km s−1. The initial
Strömgren radius is RSt = 0.314 pc and we evolve for t = 200 Myr,
which allows for several oscillations of the H II region about the
stagnation radius of RStag = (ci/c0)4/3RSt = 10.75 pc (Raga et al.
2012a).

We use the results of numerical calculations performed by the
GLIDE code. GLIDE is a spherically-symmetric Lagrangian code which

Figure 1. Ionization and shock front positions from a fluid dynamical cal-
culation with GLIDE, compared to several approximations. The vertical axis
is the radial distance as a fraction of RStag, the horizontal axis the time as a
function of the neutral-phase sound crossing time RStag/c0.

Figure 2. As Fig. 1, but scaled to emphasize early- to mid-time expansion
of the ionization front.

participated in the STARBENCH project, and is described in Bisbas
et al. (2015). While this code has not been widely applied, its
results agree well with other codes in the STARBENCH comparison,
and its algorithm minimizes the effects of numerical mixing on the
evolution of the H II region compared to solving on a mesh fixed in
space.

To capture the different phases of evolution of this system, we
show three separate plots, Figs 1, 2, and 3, which, respectively, cap-
ture the thickening of the shocked shell, ionization front overshoot,
and late-time relaxation of the ionized bubble. The results from the
GLIDE calculations are shown as black curves with x-shaped glyphs,
a solid line showing the shock and a dashed line the ionization front.
These plots also show a number of analytical and semi-analytical
models for the position of the ionization and shock fronts, which we
will discuss in the following section. Fig. 1 shows how the leading
shock and ionization front initially move together. As the ioniza-
tion front approaches the equilibrium expansion radius, both fronts
slow, and the shell between them becomes geometrically thick. The
speed of the shock front reduces asymptotically to the sound speed
in the neutral medium. Fig. 2 shows that the ionization front does
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Figure 3. As Fig. 1, but scaled to emphasize late-time relaxation. The lower
panel shows the fractional residual between each of the approximations and
the simulation result.

expand beyond its equilibrium radius by a small amount, as a re-
sult of the inertia of the material within the shell, but subsequently
relaxes back towards its equilibrium radius. Fig. 3 shows that this
relaxation is in fact a strongly damped oscillation.

4 A NA LY TIC MODELS

The development of an H II region passes through a number of
regimes with time, as different flow parameters become dominant.
In this paper, we concentrate on the expansion of the region once
the ionization front has reached the weak D-type phase, where
the shocked neutral material ahead of the front is close to pressure
equilibrium with the ionized material around the central star. We will
extend well-known solutions in two asymptotic limits, the initial thin
expanding shell and the late-time pressure equilibrium between the
ionized gas and its environment, towards an intermediate bridging
regime. At early time, this requires the extension of the analysis
by Hosokawa & Inutsuka (2006) to allow for the thickening of the
shocked shell as its expansion slows towards the sound speed in
the neutral environment; at late time, we generalize the model of
oscillations of an explosively-driven bubble by Keller & Kolodner
(1956) to the boundary conditions appropriate for a photoionized
bubble. A similar approach was applied by Shabala & Alexander
(2009) to sound wave oscillations in galaxy clusters.

4.1 Thin shell equations

The early-time behaviour of the H II region was studied in detail by
Bisbas et al. (2015) using a wide range of numerical hydrodynamic
codes. That work confirmed that the solution at early times was well
described by the analytic solution of Hosokawa & Inutsuka (2006).

The motion of the shell is treated using rate of change of the
total momentum of the swept-up shell (Elmegreen & Lada 1977;
Hosokawa & Inutsuka 2006). Assuming that the shell is thin, this
gives

d

dt
(MṘ) = 4πR2(P1 − P0), (9)

which also includes the correction for the effect of the pressure
in the external medium introduced by Raga et al. (2012b), and in

which

M = 4π

3
ρ0R

3 (10)

P1 = ρ1c
2
i (11)

P0 = ρ0c
2
0 (12)

ρ1 = ρ0

(
RSt

R

)3/2

(13)

are the equation of mass conservation, the isothermal equations of
state assumed in the ionized and neutral material, and the condi-
tion for ionization equilibrium. The initial (constant) background
medium has density ρ0 and pressure P0; and the isothermal sound
speeds in neutral (c0) and ionized (ci) gas are constant parameters
of the model, as is the initial Strömgren radius of the photoionized
region.

Substituting in, we find an equation equivalent to the system
derived by Raga et al. (2012a), and referred to as ‘Raga-II’ by
Bisbas et al. (2015),

d

dt

(
R3Ṙ

) = 3R2

[
c2

i

(
RSt

R

)3/2

− c2
0

]
. (14)

This equation has been constructed so that a static bubble at the
stagnation radius is an equilibrium solution. However, it is symmet-
ric in time, so its solutions must also be symmetric, either repeating
with a finite period or extending to t → ±∞. This explains the
periodic oscillating behaviour of the solutions in the limit of rapid
recombination found by Raga et al. (2012a).

Multiplying equation (14) by R3Ṙ, it can be integrated to give

1

2

(
R3Ṙ

)2 =
[

2

3
c2

i R
3/2
St R9/2 − 1

2
c2

0R
6

]
+ const. (15)

If we assume that both c0 and the integration constant are zero,
then the equation can be integrated again to give the Hosokawa &
Inutsuka (2006) solution

R = RSt

(
1 + 7

4

√
4

3

cit

RSt

)4/7

, (16)

where we have taken R = RSt at t = 0 to define the constant of this
second integration (which is simply a time offset of the solution).

Ignoring the term in c0 is reasonable so long as Ṙ 
 c0. The
assumption that the constant of integration in equation (15) can be
taken as zero is more arbitrary, being a requirement in order for
the system to have a simple closed form solution, rather than being
determined from the initial conditions of the system. Equation (16)
gives an initial velocity of 2ci/

√
3 at R = RSt. Numerical integration

of equation (15) shows that for reasonable initial conditions, e.g.
0 < Ṙ < 2ci at R = RSt, the solutions rapidly converge towards the
analytic particular solution given by equation (16) when c0 = 0, as
is apparent from the late-time scaling of the leading-order terms in
equation (15) as ∝ t18/7.

In Fig. 1, this approximation, shown as a blue dash–dot curve, is
compared to our numerical solution. At early time, the expansion
rate agrees well (as already demonstrated by Raga et al. 2012a;
Bisbas et al. 2015). At later time, however, the shock wave moves
away more rapidly than equation (16), while the expansion of the
ionization front stalls. Clearly, a more detailed model for the struc-
ture of the H II region is required to derive a more accurate analytic
approximations for the expansion of shock and ionization fronts.
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4.2 Thick shell approximation

Equation (16) does not differentiate between the radius of the ion-
ization front and that of the shock front, i.e. it assumes that the
swept-up shell of material between them is thin. This is a reason-
able assumption when the outgoing shock speed is far greater than
the sound speed in the neutral material, as the isothermal equation
of state means that the shocked material compresses by a factor
the square of the shock Mach number. However, as the H II region
develops, the region of swept-up neutral material thickens and these
fronts move apart. To improve the accuracy of the formulation at
later times, this distinction must be taken into account.

We consider the expansion of the swept-up shell as it becomes ge-
ometrically thick. Assuming that the material within it has approxi-
mately constant velocity, the rate of change of its radial momentum
can be modelled by generalizing equation (14) to become

d

dt

(
M(RSF)Ṙshell

) = 4πR2
SFρ0

[
c2

i

(
RSt

RIF

)3/2

− c2
0

]
. (17)

where the terms in R in equation (14) have been modified to dis-
tinguish RSF as the radius of the shock, RIF as the radius of the
ionization front, and Ṙshell as the velocity of material in the shocked
shell. From the isothermal jump conditions, we take

Ṙshell = ṘSF − c2
0

ṘSF
, (18)

which can be substituted in equation (17) to derive a second-order
equation for ṘSF. This relation between the shock velocity and shell
expansion rate was also used by Raga et al. (2012b).

Equation (17) assumes approximate pressure balance through the
shell. The outward force on the shell includes both the force at the
ionization front 4πR2

IFP1 and the hydraulic amplification through
the shell, i.e. it is

F 	 4πR2
IFP1 +

∫ RSF

RIF

[
2P (r)

r

]
4πr2dr 	 4πR2

SFP1. (19)

The shell thickness can be derived from mass conservation and
approximate pressure balance at the ionization front, assuming that
the shell has constant density, so

R
3/2
IF = 2c2

i R
3/2
St

c2
0 +

√
c4

0 + 4c2
i

(
c2

i − c2
0

)
(RSt/RSF)3

. (20)

If RSF = RSt, or c0/ci → 0, RIF = RSF as expected. If RSF → ∞,
RIF → (ci/c0)4/3RSt, which is also the late-time equilibrium solution.
This equation for the ionization front radius in terms of the shock
front radius allows the equation for the shock front position to be
integrated.

From Figs 1 and 2, we see that the thick shell equations, shown
as red curves with +-shaped glyphs, capture the overall behaviour
of the ionization front and shock front quite well, in particular the
eventual expansion of the shock front at the sound speed in the
neutral medium, and the final equilibrium radius of the ionization
front. However, in the numerical calculations, the inertia of the
shell leads the ionization front to overshoot, an effect which cannot
be captured as a result of the simplified model of the structure of
the swept-up shell. We will now develop a more detailed model to
capture the overshoot and relaxation of the ionization front radius.

4.3 Late-time behaviour of the H II region

At late time, the leading shock expands to a distance RSF 
 RStag

= (ci/c0)4/3RSt, so the behaviour of the H II region may be treated

independently of the leading shock. The resulting system is similar
to the oscillation of a spherical bubble in a dense fluid, which
was studied by Keller & Kolodner (1956). However, the boundary
conditions at the inner edge of the dense fluid are determined by
jump conditions at a weak D-type ionization front, rather than by
a material discontinuity. In this section, we generalize Keller &
Kolodner’s approach to the late-time behaviour of an H II region.

The equations governing the motion outside the ionization front
are as given by Keller & Kolodner, but here we adapt them to the
case of isothermal flow. The Euler equations for isothermal flow are

ρ̇ + ∇ · (ρv) = 0 (21)

ρv̇ + ρv · ∇v = −∇p = −c2
0∇ρ, (22)

which in the limit v � c0 are solved by a velocity derived from a
velocity potential φ defined by

v = ∇φ (23)

which satisfies the isothermal acoustic wave equation

∇2φ = 1

c2
0

∂2φ

∂t2
. (24)

Assuming purely radial flow, as a result of the symmetry of the
problem, we take φ = φ(r, t), where the radial velocity is given by
v = ∂φ/∂r. Then the momentum equation becomes

∂

∂t

(
φ′) + 1

2

∂

∂r

(
φ′)2 = −c2

0

∂

∂r
log ρ, (25)

which may be integrated to give

φ̇ + 1

2

(
φ′)2 = −c2

0 log ρ + g(t), (26)

where g(t) is an arbitrary function of t alone. Since as φ → const, ρ
→ ρ0, the density of the external medium, we have g = c2

0 log ρ0.
Hence the density can be determined from φ using the isothermal
Bernoulli equation

− log

(
ρ

ρ0

)
= 1

c2
0

[
φ̇ + 1

2
(φ′)2

]
. (27)

The solution to equation (24) satisfying the boundary conditions
of the problem is a general outgoing wave

φ = 1

r
f (t − r/c0) . (28)

Here f is an arbitrary function which is determined by the matching
conditions at the ionization front jump conditions for mass and
momentum flux

− ρiṙi = ρ (v − ṙi) (29)

ρi

[
ṙ2

i + c2
i

] = ρ
[
(v − ṙi)

2 + c2
0

]
, (30)

where we assume that the velocity of the ionized gas in the rest frame
of the system as a whole can be taken as zero. When the ionization
front is reducing in radius, it will become a recombination front, but
the same jump conditions will apply in the D-type limit. In the limit
v � c0, the boundary conditions at the D-type front at the edge of
the ionized region will be

v = βṙi (31)

ρic
2
i = ρc2

0, (32)
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where we define

β =
(

1 − c2
0

c2
i

)
	 1. (33)

We also assume the Strömgren condition applies with uniform
density in the ionized region

Q0 = 4

3
πr3

i αB
ρ2

i

μ2
i

+ 4πr2
i

ρi

μi
ṙi, (34)

so

ρ

ρ0
= 1

ξ +
√

1 + ξ 2

(
RStag

ri

)3/2

, (35)

where

ξ = 3

2

(
ri

RStag

)1/2
c2

i

c2
0

μi

αB
ṙi (36)

is typically small.
Given these boundary conditions, together with the definition of

the velocity potential, equation (23), the Bernoulli equation (27)
and the wave-like solution, equation (28), we have

βṙi + f ′

ric0
= − f

r2
i

, (37)

β2ṙ2
i + 2

f ′

ri
= 3c2

0 log

(
ri

RStag

)
− 2c2

0 sinh−1 ξ. (38)

In what follows, we will ignore the higher-order term in ξ for
simplicity. Eliminatingf ′ between these equations gives an equation
for f in terms of ri and ṙi

2c0f

r2
i

+ 3c2
0 log

(
ri

RStag

)
= (βṙi − 2c0) βṙi. (39)

To eliminate f from this equation, we can differentiate with respect
to t, and substitute for f ′ in the result using equation (38). Note that
as these expressions are evaluated at the ionization front,

∂f

∂t

∣∣∣∣
ri

=
(

1 − ṙi

c0

)
f ′, (40)

and that RStag can vary in time if Q0 is not constant. The result is a
non-linear second-order ordinary differential equation for ri,

2

3
ri (c0 − βṙi) βr̈i + c2

0 ṙi + c2
0 (c0 + ṙi) log

(
ri/RStag

)
= 1

3
βṙi

2 [β(c0 + ṙi) − 4c0] + 1

3
c2

0ri
Q̇0

Q0
. (41)

When this is solved, equation (39) can be used to determine f, and
hence the full solution for ρ and v between the ionization front and
the leading shock.

We will first look for the linear solution to the system with a
constant ionizing flux, in the limit c0 � ci, which will capture the
asymptotic behaviour of the front as it relaxes to its equilibrium
stagnation radius. Writing ri = RStag + δ, using Taylor expansions
for power and logarithmic terms, and ignoring terms of higher than
linear order in perturbations from equilibrium, we find that the offset
of the ionization front from its equilibrium position satisfies

2

3
R2

Stagδ̈ + c0RStagδ̇ + c2
0δ = 0, (42)

and hence

δ = δ0 cos(ωt + ψ) exp(−λt), (43)

with ω = (15/16)1/2c0/RStag, λ = (3/4)c0/RStag, and where the am-
plitude δ0 and phase ψ are arbitrary constants.

As β is close to 1, the major effect causing the rapid damping of
oscillations for an H II region seen in Fig. 3, compared to an isother-
mal bubble with a constant mass of hot gas (Keller & Kolodner
1956), must be the different manner in which the pressure within
the H II region varies with radius, rather than the mass flux through
its surface.

As seen in Fig. 3, the linear asymptotic solution shown as a green
dotted curve gives an excellent fit to the relaxation of the ionization
front at late time found in the numerical calculation, but Fig. 2
shows that it diverges at earlier times. We will now investigate what
modifications can be made to the system to improve the fit to the
ionization front radius at all times.

A first approach would be to include the higher-order terms in
equation (41) which were ignored in deriving equation (42). How-
ever, equation (41) has a singular point, where the factor multiplying
the highest derivative becomes zero, when βṙi = c0. Continuous so-
lutions passing through this speed are possible only at the ionization
front radius

ri = RStag exp

(
− 6 − β

3(β + 1)

)
	 0.368RStag. (44)

However, in numerical simulations, the outward velocity of the front
is substantially larger than c0 when it reaches this radius, suggesting
that the loss of accuracy of the approximations used when deriving
equation (41) is a more immediate limitation to the accuracy of the
solution than the presence of the critical point.

To the order of accuracy of the derivation leading up to equation
(41), we can approximate

1 − βṙi/c0 	 1

1 + βṙi/c0
, (45)

which removes the singularity. Fig. 3 includes a comparison with
the numerical solution of equation (41) with this modification to
the leading term (a green dot–dashed curve labelled as the ‘Full
asymptotic’ case). While including additional terms in the approx-
imation makes the semi-analytic solution more accurate at inter-
mediate times, it diverges from the results of the full dynamical
simulation rapidly at earlier times. This behaviour is fairly typical
when a higher-order solution is based on expansions at a single
time, where increasing accuracy around this point can lead to more
rapidly divergent behaviour away from it. As we will see next, a
better representation may be derived by considering the asymptotic
behaviour of the solution both at early and late times.

As equation (41) is a second-order autonomous ordinary differen-
tial equation, it may be converted into a system of two independent
first-order ODEs, one of which is formally independent of time.
Taking q = ṙi/c0, the second time derivative may be replaced by
r̈i = c2

0qdq/dri, to become

2

3
(1 − βq) βq

dq

dri
+ q + (1 + q) log(ri/RStag)

= 1

3
βq2 [βq − (4 − β)] . (46)

Plotting q = ṙi/c0 against ri thus allows the results of the various
approximations to be compared independent of any arbitrary time
offset. Fig. 4 shows the velocity of the ionization front as a function
of its radius, derived from the simulated data and for various ap-
proximations. The linear approximation to the late-time behaviour
forms a logarithmic spiral, while the full asymptotic solution di-
verges from the numerical results in the opposite direction.
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Figure 4. As Fig. 1, but showing front velocity as a function of radius.

4.4 Matched asymptotic solution

We will now look for an equation for the position of the ionization
front which can capture its behaviour throughout its evolution with
good accuracy, by modifying equation (41) with terms which are
small at late time, but which will mean that it agrees with the thin
shell system, described by equation (14), at early times.

Equation (14) can be expressed as

RR̈ + 3Ṙ2 = 3c2
0

[(
RStag

R

)3/2

− 1

]
, (47)

and we will now look to match terms at the same order in equation
(41) while we can still assume R 	 ri. Adding lower-order terms
to equation (47) so that it matches the behaviour of the solution at
late time, term-by-term in Taylor expansions, in particular requiring
that the linear-order terms which control the late-time behaviour in
equation (41) are exact, gives

βrir̈i + 1

2
β(7 − β)ṙ2

i + 3

2

ṙic0

1 + Cṙ2
i /c2

0

+

= c0 + 3Bṙi

c0 + Bṙi
c2

0

[(
RStag

ri

)3/2

− 1

]
+ 1

2
c0ri

Q̇0

Q0
, (48)

where B = (1 + β)/2 and C = 2.25, and we have included the source
term required if the luminosity of the source varies. This modi-
fied form accounts for both the effects of the finite temperature
of the neutral material, and the late-time relaxation to equilibrium.
The constant B is determined by the matching procedure, but the
reduction of the damping term linear in ṙi controlled by the dimen-
sionless parameter C is not. This reduction in the linear damping
term is found to be necessary to obtain a good fit to the full numeri-
cal evolution, even though the quadratic term is larger at early time,
when the expansion velocity of the ionization front ṙi > c0.

As can be seen from the dashed green curve in Fig. 3, the so-
lution of this matched asymptotic system for the ionization front
position, equation (48) fits the data from the numerical solution
with good accuracy throughout. A small phase-shift is apparent in
the behaviour at late time compared to the linear solution, as the
phase is no longer a free parameter which can be varied to optimize
the agreement. Fig. 4 shows excellent agreement, showing that this
phase-shift corresponds to a small time offset in the late-time be-
haviour.

Figure 5. As Fig. 1, but scaled to emphasize late-time relaxation, with
ionizing luminosity linearly increasing to 120 per cent of its initial value
between 100 and 125 Myr (i.e. tc0/RStag(0) = 8.6 and 10.8). Note that the
time and radius are scaled to the initial stagnation radius, RStag(0). The
change in luminosity is not implemented in the linear asymptotic form or
thick shell forms, which are included simply for cross-reference.

Equation (48) is general enough to allow for the variation of the
ionizing luminosity of the source with time, by varying RStag to
reflect the changing value of Q0. To illustrate this, in Fig. 5, we
compare the results of equation (48) with the variation of ionization
front radius when the ionizing photon rate is assumed to increase
linearly to 1.2 × 1049 s-1 from 100 Myr = 8.64RStag/c0 to 125 Myr.
The agreement between the model and the numerical solution as
the ionizing flux varies is excellent, as expected so long as the
relative rate of change of ionizing flux is slow compared to the
sound crossing time of the ionized bubble. While the 100 Myr time-
scale we have assumed for illustrative purposes is about twenty
times longer than the lifetime of a ∼30 M� O5.5 V dwarf star
which will have an ionizing luminosity comparable to that we have
assumed (Meynet et al. 1994; Simón-Dı́az & Stasińska 2008), as
discussed in Section 2, the flow time-scales will be shorter for higher
ambient densities, scaling as n

−2/3
0 , so the behaviour we show here

may be directly relevant in the ultracompact H II region regime.

5 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have extended the analytic study of the expansion of
an H II region in the idealized case of a constant source and uniform
ambient medium. The agreement between model and simulation
during the D-type expansion phase has been improved compared to
previous works, to within 2 per cent relative error at all times. A
thick-shell approximation allows for the stalling of the ionization
front and decay of the leading shock to a weak compression wave as
it escapes to large radii. An acoustic approximation, modifying the
work of Keller & Kolodner (1956) to take account of the different
boundary conditions at the ionization front, captures the late-time
oscillations of the H II region about the stagnation radius, and its
response to variations in ionizing luminosity.

We have examined the dynamics of H II regions in significantly
greater depth than previous work; the thick-shell solution and the
asymptotic solutions give considerable physical insight that allow us
to understand all features of the numerical solutions. This work also
resolves all of the small disagreements that we are aware of in the
literature comparing numerical simulations with analytic solutions,
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once again showing the importance of having benchmark analytic
solutions to test problems for validation of simulation codes. The
dynamical response of the system on the crossing time of the ionized
bubble at the sound speed of neutral material, and the rapid decay
in intensity of radial oscillations, are likely to be general features of
the response of H II regions to external and internal perturbations.

The mathematics and physics of spherically expanding H II re-
gions turns out to be significantly richer and more complex than
initially thought before the STARBENCH project (Bisbas et al. 2015).
We anticipate that the inclusion of multi-dimensional effects such
as dynamical instability will be even more interesting, even using
the dramatically simplified thermal physics considered here.
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