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Abstract

The idea that matrices occuring in both
first and second order relativistic wave equations generate
(under comnutation) some finite Lie algebra, which contains

the Lorentz algebra, is considered. For first and second
order wave equations the minimal non trivial Lie algebras
are 4£5(32) and él&ﬁ% respectively.

The unique mass condition and the A6 (32)
algebra rule out all but the Dirac end Duffin Kemmer equations
» while the AQ@ﬁR} elgebra is associated to the Klein Gordan

» Proca and Joos Weinberg (spin 1) equations.

1. Introduction

ackobistic
The question of constructing single mass,wave equations for arbitrary spin,

°s, is essentially a straightforward matter. Since a unique mass is guaranteed by
the Klein-Gordon equation we need only select a representation, D , of SL{2, C)
for the wave function, make sure that the particulsr spin, S, which we want occurs
at least once in the reduction of D  with respect to SU(2), and then project out
this séin by applying to the wave function a suitable projection operator [1]. To
describe a single particle of mass, m, and spin, s, we must ascertain that our
projection operator projects onto a single irreducible SU(2) representation (with
Casimir invariant s(s + 1) ). t is for this reason that our projector operator
i§ different from \,J»\AJ'*— S(5+1) ?PP", where \»/» is the Pauli Lubanski vector,
except in the particular case where s occurs exactly once in the reduction of Do,
The wave equation constructed using this projection operator is just a covariant
stateﬁent of the fa¢t that, in the rest frame, the wave function has exactly 2s + 4
independent components.

At any rate the very existence of this projection operator is the price we

pay for having covariant wave functions. The reason we use covariant wave Tunctions

rather than, say, Wigner wave functions [2] is that they facilitate the intreduction of

Lorentz covariant local interactions. - Well known examples of this are the elsctro-
magnetic and Yang-Mills [3] interactions which are usually introduced by wav of a
"minimal" principle. Since our initial free particle is described by two equations,
namely the Xlein-Gordon equation and the projection operator equation, we have.the
problem of introducting interactions into this system of eauations in a consistent
manner. Although, as is well known, there is no general solution to this problem,
one would at least wish to avoid situations which would "obviously" forvid non-
trivial interactions [4]. One possibility in-this respect is to drop the Klein-
Gordon equation completely and introduce interactions directly into the projection

operator wave equation. This suggestion, however, has its own troubles as can be
'
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seen from an examination of the Joos-Weinberg spin % equation in an external

electromagnetic field [5]. A second, more aesthetically pleasing, alternative is
to first combine the Klein-Gordon equation and the projector operator equation into
a single wave equation and then introduce interactions directly into this new
equation. Although this latter alternative still has its own problems [6], it is
the one which is most generally accepted and it is this point of view which we shall
take here. Namely, we shall consider & particle of mass m and spin s which is
described by a single wave equation in which all components are initially independent,
The only equations of this type known to us are for spins € 3 [7] and, although there
is a general recipe known for constructing such equations [8], the explicit construc-
tign is an extremely laborious business as can be seen from, say, the spin 2 case.
Not all the aforementioned equations are first order equations and although they may
all be linearized in a straightforward manner the number of superfluous components

in the wave function increases considerably. Also, not surprisingly, little work
has been done on many of these equations, especially spins g > 5 and, to a lesser
extent, spin 2 as far as either external interactions or the properties of the
matrices occurring in these equations are concerned [9].

Vhat we wish to examine here is some properties of the matrices occurring in
these equations. More precisely we wish to consider the effect of assuming that
these matrices generate (under commutation) some finite Lie algebra which contains
the homogeneous Lorentz algebra. This idea is not new and is in fact implicit in
thé early work of Bhabhba. The hope here was, presumably, that all the then known
wave equations could be grouped in a simple manner according to the various Lie
algebrae which the matrices occurring in these equations closed. A killer blow was

seemingly dealt to this hope by Gupta [10] who found that the expression for the

Lorentz generators in terms of the wave equation matrices for the Fiertz-Pauli-Gupta

spin % field was exceedingly complicated and certainly did not correspond to a simple

Lie algebra.  We take up this idea again here and shall examine, for both first and

.second order wave equations, the simplest non-trivial Lie algebra which can be

generated by the wave equation matrices. In all these cases the wave function
space carries an irreducible representation of the Lie algebra in question. Equations
of ‘this type have been called irreducible wave equations by Castell [11].

For first order wave equations we are led to the Lie algebra.so(3, 2) which,
together with the unique mass condition, rules out all but the Dirac end Duffin-
Kemmer wave equations.  The relation of the Dirac and Duffin-Kemier wave equations
to 80(3, 2) is of course well known. As & result there are few new results here.
On the other hand, previously known results are derived in a general and, hopefully,
more transparent manner. For second order wave equations we find that the well-
known spin O and spin 1 equations also have an associated Lie algebra. This time
it is 6€(%; R ) and we show how the Klein-Gordon equation; the Proca equation and
the Joos-Weinberg [12] spin 14 equation all fit neatly into irreducible representations
of this algebra.

We use the metric I = diag (1, <1, -1, =1) and units where & = ¢ = 1.

2. General Formalism.

Consider the general first order linear equation of the form

(+pI" - wm)ype = o (2.1)

where the F|~ are four finite dimensionel matrices and \p is a column vector.

Under Poincaré transformations of the form

= Az o+ oA

QJ is assumed to transform according as

P = Ped = SA) P
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Here S(A) is a representation of the homogeneous Lorentz group ‘in the space of the

wave function 4) . The representation S(4) has generators § which satisfy

'Y
g = s . - s . (2.2)
'L[Slw ’ po'] 3\*{’ v 3\7 W 3‘.,55»‘: ¥ awsﬁ,
The invariance of equation (2.1) under Poincaré transformations <i.e. so that
also satisfiea (2.1))requires that the matrices F* satisfy
(2.3)

SN p, S(AY = A

v

for every Lorentz transformation A. The condition in turn puts severe restrictions
on the universal enveloping algebra 1LQﬂ of the P-matrices, i.e. the algebra

consisting of all quantities of the form

= r * LR
c c‘LP * Cx**’P ’*-cWFfp +

where C»~- are compléx numbers. In particular Harish-Chandra has shown [13] that
if the B-matrices form an irreducible set, and we shall assume here that they do,
then 1) is finite, simple and its defining relations may be put in the form of
Lorentz tensor equations.

Next we assume that the wave eguation (2.1) describes & particle with unique
mass m > 0. Tt can be shown [13, 14] that sufficient and, under very general
assumptions, necessary conditions for this to hold are that the B-matrices should

satisfy

za (ﬁhu: F».Pp} F,\,"" FN =0 (2.4)

where n is some integer > 2 and Q denotes any permutation of the indices (RN S

—

For n > 3 the abstract algebra defined by equation (2.4) is not finite. Thus the

f-matrices must satisfy some other stronger Lorentz tensor condition compatible
with equation (2.4) in order to make the algebra finite. Let us suppose also that
PP , or some scalar multiples thereof, generate (under commutation) & finite

dimensional Lie algebra L(F) , [which contains the homogeneous Lorentz algebra

A6(3, 1)], and consider the asbstract algebra of the B-matrices subject to this

condition and to equation (2.4). In an irreducible representation of this algebra
anything which commutes with all the B-matrices is a multiple of the identity. The
Casimir invariants of L(p) commute with all the B-matrices. Thus the representation
of the P-matrices in question is also an irreducible representation of the Lie

algebra L(P) . Tor a large number of choices of I(P)~ 81l finite dimensional

representations are known. Thus, for a given Lie algebra I&P) ,'to find out which
wave equations are allowed we simply have to select out (by hook or by crook) those

irreducible representations of IJP) which have the property that Pe

A

acts as a

projection operator in the sense that This last condition is just

another version of equation (2.4).
Lipy = Ao (3.2)

In the next section we shall examine the choice and show

that this condition, when combined with equation (2.4) forces the abstract algebra
of the P-matrices to be finite. There we shall make mse ‘of ‘the infinitesimal version
of equation (2.3). It is

L[F‘“’S“F] R T R T (2.5)

where S‘P are the generators of the representation S(A).



3. First order eguations.

We shall now consider a couple of simple choices for the Lie algebra ‘(“P)'

The simplest choice is clearly the case where

L[F,,_)PJ -0 (3:1)

This case, however, is known to lead to nilpotent matrices ﬁl,_ which are only

consistent with m = O so we shall rule it out. The next simplest possibility is

that

Lx [pr, pY = Sw

where X is some non-zero constant [15]. Now I_(p\ consists of the homogeneous

korentz algebra together with a vector F‘,& which has been added in a minimal way.

L(p) is thus either A&6(k, 1) or A0(3, 2). The possibility of 56(k, 1) is ruled

out since in this case f, corresponds to a noncompact generator and is consistent

only with m pure imaginary. We are thus led naturally to the case of 46(3, 2).

Here P,, corresponds to a compact generator so there is a representation of the

B-matrices in which f, is hermitian. Setting all indices egqual to O in equation

(2.4) we find that the only eigenvalues of Po are O and £1. Thus equation (2.8)

holds with n = 3. In particular we have

3
= 3.7
i {ir N (3.3)
for any p = 0, 1, 2, 3. Combining equations (2.5) and (3.2) we have
- - = L - L
0 P N 1 R 1Y A O il ) N (3.4) .
Setting =« and B £ 1 this gives (no swmmation)
(3.5)

F;FP “ZF,,F,FP ) FP?; ) 5\5 SHLPP

(3.2) -

_/-

Multiplying this equation on the right and on the left by P'_ and using equation

(3.3) we find that

Juld =) BB B = LR

r (3.6)
la= L) - =
[- 2= %) ‘1'] Prpy?\» O
Thu e L L
us X v or K # pe and
= 0o
F'upp Pf" (3’7)
for p £ B. . Consider first the case where & # -'-‘f and equation (3.7) holds.

Multiplying equation (3.5) by PF and using (3.7) we obtain
K =1,

When p, @ and B are all different equation (3.4) may be written as

Pfufy v PP = BB PO Bopp,

Multiplying this equation on the right by P,’: and using (3.5) we find easily that

PBB * PP B, T O

'S

is symmetric in @ aend pu and venishes when p, o and P

Thus prppp“ + anppr-

are all different so there exist quantities o, a)‘\ such that

- I
pPpPP* AN 3“0‘; S et Z,u“p (3.8)
Setting u = @ £ B  and using (3.7) we obtain @3 = 0. Finallyp =a =B gives
ozp =B b Thus equation (3.8) becomes
FV'PP Pg * P*PPP"‘ = ﬂl"P F‘_ ¥ %?'KP@ (3’9)
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which are easily recognized as the defining relations of the Duffin Kemmer algebra
[9]. This algebra is semi-simple and has 126 elements. Its irreducible represen-—
tations have dimensions 4,. 5 and 10 respectively. The 1 dimensional representation
is trivial (ﬁu = 0) while the 5 and 10 dimensional representations describe particles
with unique spins C and 1 respectively.

Let us now turn to the case & = + .,

i Equation (3.5) now gives, for p# B

PR AN R TR W

Multiplying this equation to the right and to the left by ﬁuz and using (3.6) with

K = -# it is easy to derive
L =
Fb P\‘- Pi“PP pY‘ (3.10)
N = -
M3 AN
It follows easily that, for all p, B we have
L =
Ce, .0 0
Thus, since we have assumed that the P-matrices are irreducible, each ﬁpe is a
multiple of the identity. . This multiple is fixed to be one by equation (3.3).
Combining this with equation (3.10) we have
(3.41)

[:Pt»’ pp]-\— i} z'ﬂre

which are of course the defining relations of the Dirac algebra. - This algebra is
simple ana consequently has only one irreducible representation which is 4 dimen-
sional. This representation describes a particle with spin %.

Although the relationship betweéEiDirac and Duffin Kemmer equations to the
Lie algebra456(3, 2) has been discussed at length in the literature we shall

summarize briefly for the reader's convenience some of these properties. Despite

the fact that the group SO(}, 2) is noncompact all its finite dimensional represen—

tations can be specified by the values of the two Casimir invariants [16]

T = 5 5" & ayyr
z |~v v

I = L (8 5™ 3P Y gerey (3.12)
W lb (o = b

where 5 = L) *P. The required S0(3, 2)
r-‘\l

. 3 i
4 [\J\L’Vy] and slh’ =3 e
properties may be read directly from the table.

B lLP

| Dirac Duffin-Kemmer
Representation (4,0) +(a,%) 3,4+ (0,0 (0} + (&%) + (0,1)
Dimension of representation s 5 lo
N 1B B By
1 & v oy T
>
T a3 o o
o YA

The S0(3, 2) representations are given in terms of their irreducible Lorentz
components.

As already mentioned in section 2, we have made the (strong) assumptioﬂ that
the B-matrices formed an irreducible set. The manipulations described here are
novel in that they demonstrate how this assumption works in practice. Despite this

fact, all the main results of this section were known to Harish Chandra [17] and to

Bhabba [15], although no proofs were presented.
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L. Second order eguations.

In contrast to the previous section our results for second order wave equations
will be somewhat incomplete. This is partly due to the fact that, while the matrix
algebras which turned up in our analysis of first order equations were well known,

herdly any work at all of this nature has been done for second order wave equations.

Thus we have little to fall back on here. Nevertheless we shall discuss as best we

can the problems which arise in this case and, hopefully, make some inroads into their

solutions.

Consider then the simplést possible type of second order wave equation, namely,
one containing no term linear in ap . This is

2,
(/\\wm\“n“ + W ) p = o (&e1)
where Apv are 16 finite dimension matrices which we may take, without any loss of
generality, to be symmetric in p and v. . The matrices Apv may be analysed in a
manner similar to that used to discuss the P-matrices in section 2. In this respect
we shall only quote, without proof, those results which we need. The Poincaré
invariance of equation (4.1) is guaranteed by the requirement that the A-matrices

satisfy

v[n s ] =

! wxp

q/\ -3/\+<3A—3/\ (4.2)
oo (8 By VP K pg

where Spv are the generators of homogeneous Lorentz transformations in the space of

As in section 2 we shall assume that the matrices A generate

the wave function LP B

a Lie algebra L(A) under commutation. Clearly Ly

must contain the homogeneous
Lorentz algebra and a symmetric second rank tensor. If we wish to choose [(A) in
e minimal manner as in section 3 we are led naturally to the Lie algebra {4, R ).

Thus we have

. - L3
LK’EA %Q)Aer-] %\;G‘S-bf ¥ %Mgs)\r‘\. %or SV,? + %vfs‘xr ( )

where X. is some non-zero. constant.
Using the fact that Aoo corresponds to a compact operator in AL(L, R ) it
can be shown, in a way similar to that used in section 3, that the unique mass

condition here becomes DS:\

['\w’,\ql +E/\\“U A”P X +[A?P’A’“~- (4o1)
= %‘Nl\tp * 3‘PI\\W 3\.3/\9? + QvPAM ¥ 3‘;?/\;& + %vv.A\\r'
What we would hope for is that the equations (4:2), (4.3) and (4.4) force X to

take only a few distinct values and that the algebra generated by these equations is

finite. At eny rate two particular irreducible representations of this algebra are
given by
A (4.5)
ln' (o
which just gives us the Klein Gordon equation for spin O, end
A = -4 + (4.6)
( r‘).(p %\L"%“p 2 (S\uc%op 9‘?‘3«‘)
which leads to the Proca equation,
(7)

[ wd g, _m‘mp] pt = o

for spin 1. This latter case corresponds to ¥ - = 4 in equation (k.3).
Besides these two well known equations there is another wave equation which
fits neatly into this framework and which, perhaps, is not'as well known. This is

the Joos-Weinberg spin 1 equation
(Y 2™ - w) g =0 (4.8)
2

where Yuv are the generalized Dirac matrices which satisfy
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rad (g, -¥ 5 <0

Faby Pafter

where Q denotes any permutation of the indices Hys By us, p4 . The representation
space of the wave function %J is (10) + (01) so the Tyy & 6 x 6 matrices. As

it stands equation (4.8) does not describe a particle with unique mass m. In fact
it describes a particle with mass m or im. It is easy however to modify [19]
equation (4.8) so that it does describe a particle with unique mass m. The modified

version of (4.8) is just equation (4.1) with

Aos x (g =) - 9)

[2d o g

‘Using the explicit representation of the y-matrices given in ref. [12] it is quite
straightforward to verify that Auv as given by equation (4.9) satisfies both
equations (4.3) and (4.4) with & = 1. Thus the modified Joos-Weinberg spin 1
equation is also eccommodated by an irreducible representation of the algebra defined
by equations (4.2), (4.3) and (4.4). We do not know whether or not these three
representations we have found are in fact all the allowed irreducible representations

of this algebre. TWhat is needed is a detailed analysis of the algebra in question.

-1 9=

5. Conclusions and Summary.

We have investigated in this paper, for both first and second order wave
équations, the possibility that the matrices which occur in these equations generate
under commutation a finite Lie algebra and in each case we examined the smallest non-
trivial Lie algebra possible. - For first order wave equations the Lie algebra in
question turned out 4o be A9(3, 2). This together with the unique mass assumption
was sufficient to rule out all but the Dirac and Duffin-Kemmer equations. It is
interesting to note here that both of these equations describe particles with a single
spin, although no unique single spin assumption was made.[ﬁilA

For second order wave equations the Lie algebra to which we were led was
AL(, R ) and we found that different irreducible representations of it accommodated
the Klein Gordon equation, the Proca equation and the Joos-Weinberg spin 1 equation.
Again all wave equations which we examined described particles with single spins <€ 1.
Much work remains to be done on the algebra describing these equations. Tinally we
note that the usual spin 2 equation [20] is not a AL{4,R ) type equation since in
which is incompatible with equation

. A . 2
this case it is easy to verify that A_ £ A

(ol
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