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Abstract

The idea that matrices occuring in both

first and second order relativistic wave equations generate

(under comnutation) some finite Lie algebra, which contains

the Lorentz algebra, is considered For first end second

order wavo equations the minima], non trivial Lie algebras

are M(3i) and respectively.

The unique mass condition and the ,‘s(3Z)

algebra rule out all but the Dirac and Duffin Kemmer equations

, while the A9.&,1R) algebra is associated to the Klein Gordan

Proca and Joos Weinberg (spin 1) equations,

1. Introduction

The question of constructing single rnassAwave equations for arbi trary spin,

s, is essentially a straightforward matter. Since a unique mass is guaranteed by

the Klein—Gordon equation we need only select a representation, ) . of SL(2, C)

for the wave function, make sure that the particular spin, a, which we want occurs

at least once in the reduction of D with respect to SU(2), and then project out

this spin by applying to the wave function a suitable projection operator ti]. To

describe a single particle of mass, m, and spin, a, we must ascertain that our

projection operator projects onto a single irreducible SU(2) representation (with

Cnsimir invariant s(s + i) ). It is for this reason that our projector operator

i different from ‘I W— s- V P’, where W is the Paui Lubanski vector,

except in the particular case where s occurs exactly once in the reduction cf

The wave equation constructed using this projection operator is just a covariant

statement of the fact that, in the rest frame, the wave function has exactly 2s + I

independent components.

At any rate the very edstence of this projection operator is the price we

pay for having covariant wave functions. The reason we use covenant wave functions

rather than, say, Wigxier wave functions [2) is that they facilitate the introduction of

Lorentz covariant local interactions. Well known examples of this are the electro

magnetic and Yang—Mills [3] interactions which are usually introduced by wa:i of a

“minimal” principle. Since our initial free particle is described by two equations,

namely the Klein—Gordon equation and the projection operator equation, we have.the

problem of introducting interactions into this system of ecuations in a consistent

manner. Although, as is well known, there is no gene-al solution to this p-oblem,

one would at least wish to avoid situations which would “obviously” forbid non

trivial interactions LZ]. One possibility in this respect is to drop the Klein—

Gordon equation completely and introduce interactions directly into the projection

operator wave equation. This suggestion, however, has its own troubles as can be
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seen from an examination of the Joos—Weinberg spin 4 equation in an external

electromagnetic field [5]. A second, more aesthetically pleasing, alternative is

to first combine the Klein-Gordon equation and the projector operator equation into

a single wave equation and then introduce interactions directly into this new

equation. Although this latter alternative still has its own problems [6], it is

the one which is most generally accepted and it is this point of view which we shall

tale here. Namely, we shall consider a particle of mass n and spin s whici is

described by a single wave equation in which all components are initially independent.

The only equations of this type known to us are for spins 3 [7] and, although there

is a general recipe known for constructing such equations [8], the explicit construc

tion is an extremely laborious business as can be seen from, say, the spin 2 case.

Not all the aforementioned equations are first order equations and although they may

nil be linearized in a straightforward manner the number of superfluous components

in the wave function increases considerably. Also, not surprisingly, little work

has been done on many of these equations, especially spins , 3 and, to a lesser

extent, spin 2 as far as either external interactions or the properties of the

matrices occurring in these equations are concerned [9].

V/hat we wish to examine here is some properties of the matrices occurring in

these equations. More precisely we wish to consider the effect of assuming that

these matrices generate (under commutation) sone finite Lie algebra which contains

the homogeneous Lorentz algebra. This idea is not new and is in fact implicit in

the early work of Bhabha. The hope here was, presumably, that all the then known

wave equations could be grouped in a simple manner according to the various Lie

alfebrne which the matrices occurring in these equations closed. A killer blow was

seemingly dealt to this hope by Gupta [ic] who found that the expression for the

Lorentz generators in terms of the wave equation matrices for the Fiertz—Pauli—Gupta

spin field was exceedingly complicated and certainly did not correspond to e simple

Lie algebra. We take up this idea again here and shall examine, for both first and

second order wave equations, the simplest non—trivial Lie algebra which can be

generated by the wave equation matrices. In all these cases the wave function

space carries an irreducible representation of the Lie algebra in question. Equations

of this type have been called irreducible wave equations by Castoll [11].

For first order wave equations we are led to the Lie algebra ise(3, 2) which,

together with the unique mass condition, rules out all but the Dime and Duff in—

Kemmer wave equations. The relation of the Dirac and Duffin—Kemmer wave equations

to SO(3, 2) is of course well known. As a result there are few new results here.

On the other hand, previously known results bra derived in a genera]. and, hopefully,

more transparent manner. For second order wave equations we find that the well—

known spin 0 and spin I equations also have an associated Lie algebra. This time

it is ) and we show how the Klein—Gordon equation, the Proca equation and

the Joos—Weinberg [12] spin I equation all fit neatly into irreducible representations

of this algebra.

We use the metric = diag (1, —1, —1, —i) and units where tI = c = 1.

2. General Formalism.

Consider the general first order linear equation of the form

(iv-
—

v.) qi o

where the are four finite dimensional matrices and is a column vector.

Under Poincar& transformations of the form

s:.’ Ax. ÷ .4.

is assumed to transform according as

(2.1)

()) - J’0’ 5(A LjJ h()
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Here S(A) is a representation of the homogeneous Lorentz group in the space of the

wave function . The representation s(A) has generators which satisfy

S q S-q S -q S #q S
. ds )p d’

The invariance of equation (2.1) under Poincar transformations (i.e. so that

also satisfiet (2.1 )) requires that the matrices satisfy

S’U) S(A) A

(2.2)

(2.3)

for every Lorentz transformation A. The condition in turn puts severe restrictions

on the universal enveloping algebra U4) of the13—matrices, i.e. the algebra

consisting of all quantities of the form

C. C 4- C. -4-C
H

where C are complex numbers. In particular Harish-Chandra has shown [13] that

if the13—matrices form an irreducible set, and we shall assume here that they do,

then tL(ç) is finite, simple and its defining relations may be put in the form of

Lorentz tensor equations.

Next we assume that the wave equation (2.1) describes a particle with unique

mass m > 0. It can be shown [13, 11+] that sufficient and, under very general

assumptions, necessary conditions for this to hold are that the3—matrices should

satisfy

13—matrices must satisfy some other stronger Lorentz tensor condition cow’ atible

with equation (2.14) in order to make the algebra finite. Let us suppose also that

or some scalar multiples thereof, generate (under commutation) a finite

dimensional Lie algebra L() , [which càñtmins the homojeneous Lorentz algebra

S(3, 1)], and consider the abstract algebra of the 3—matrices subject to this

condition and to equation (2.1j). In an irreducible representation of this algebra

anything which commutes with all the 13—matrices is a multiple of the identity. The

Casimir invariants of L(s) commute with all the 13—matrices. Thus the representation

of the13—matrices in question is also an irreducible representation of the Lie

algebra L(p) . For a large number of choices of all finite dimensional

representations are known. Thus, for a given Lie algebra L(p , to find out which

wave equations are allowed we simply have to select out (by hook or by orook) those

irreducible representations of L(p) which have the property that acts as a

projection operator in the sense that = . This last condition is just

another version of equation (2.1+).

In the next section we shall examine the choice £(p) ‘6e(3Z) and show

that this condition, when combined with equation (2.1+) forces the abstract algebra

of the 13—matrices to be finite. There we shall make ieof bhe ihfinitesjnal ‘rersion

of equation (2.3). It is

S 1
I

‘
J Is. —

where are the generators of the representation s(A).

(2.5)

ZQ.(q -PH--P = 0
d,jL,, . jr..

(2.1+)

where n is some integer 2 and Q denotes any permutation of the indices -

For n 3 the abstract algebra defined by equation (2.1+) is not finite. Thus the
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which are easily recognized as the defining relations of the Duffin Kemmer algebra

[9]. This algebra is semi—simple and has 126 elements. Its irreducible represen

tations have dimensions , 5 and 10 respectively. The I dimensional representation

is trivial (13 = 0) while the 5 end 10 dimensional representations describe particles

with unique spins 0 and I respectively.

Let us now turn to the case 4c- -
. Equation (3.5) now gives, for j/ 13

lY-Lpr ?— P

Multiplying this equation to the right and to the left by and using (3.6) with

= 4 it is easy to derive

It follows easily that, for all , 13 we have

0

Thus, since we have assumed that the 13-matrices are irreducible, each
132

is a

multiple of the identity. This multiple is fixed to be one by equation (3.3).

Combining this with equation (3.10) we have

which are of course the defining relations of the Dirac algebra. This algebra is

simple and consequently has only one irreducible representation which is L. dimen

sional. This representation describes a particle with spin .

Although the relationship betweenDirac and Duffin Kemmer equations to the

Lie algebra £6(3, 2) has been discussed at length in the literature we shall

summarize briefly for the reader’s convenience some of these properties. Despite

the fact that the group S0(3, 2) is noncompact all its finite dimensional represen

tations can be specified by the values of the two Casimir invariants [16]

I 5 S
a

I. _L ($
a

+ V V
i. _9

p.
r. r

=
—

—

(3.12)

where 5
-.

[J ‘I ] and
5)

5 ‘ . The required s0(3, 2)

properties may be read. directly from the table.

Dirac

(jo) -(n,j)Representation

_______

Dimension of rreqjg___.

(3.10)

__________ ______

-
- S

——— __I__

Duffin—Kemmer

1ii) j:-
(o,i)

S

S

0

The so(3, 2) representations are given in terms of their irreducible Lorents

components.

As already mentioned in section 2, we have made the (strong) assumption that

the 13-matrices formed an irreducible set. The manipulations described here are

novel in that they demonstrate how this assumption works in practice. Despite this

(3.11) fact, all the main results of this section were known to Harish Chandra [17] and. to

T3habba [is], although no proofs were presented..
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where Q denotes any permutation of the indices 13 . The representation

space of the wave function if is (io) + (01) so the are 6 x 6 matrices. As

it stands equation (4.8) does not describe a particle with unique mass m. In fact

it describes a particle with mass m or in. It is easy however to modify [19]

equation (4.8) so that it does describe a particle with unique mass m. The modified

version of (4.8) is just equation (4.1) with

A

Using the explicit representation of the y-matrices given in ref. [12] it is quite

straightforward to verify that A as given by equation (4.9) satisfies both

equations (4.3) and (4.4) with 1. Thus the modified Joos—Weinberg spin I

equation is also accommodated by an irreducible representation of the algebra defined

by equations (4.2), (4.3) and We do not know whether or not these three

representations we have found are in fact all the allowed irreducible representations

of this algebra. That is needed is a detailed analysis of the algebra in question.

5. Conclusions and Summary.

We have investigated in this paper, for both first and second order wave

equations, the possibility that the matrices which occur in these equations generate

under commutation a finite Lie algebra and in each case we examined the smallest non—

trivia]. Lie algebra possible. For first order wave equations the Lie algebra in

quesbion turned out to be,(3, 2). This together with the unique mass assumption

was sufficient to rule out all but the Dirac and Duffin—Kemmer equations. It is

interesting to note here that both of these equations describe particles with a single

spin, although no unique single spin assumption was made.

For second order wave equations the Lie algebra to which we were led was

,.LQ1-,1R ) and we found that different irreducible representations of it accommodated

the Klein Cordon equation, the Proca equation and the Joos—Weinberg spin I equation.

Again all wave equations which we examined described particles with sinitle spins 1.

Much work remains to be done on the algebra describing these equntions. Finally we

note that the usual spin 2 equation [20] is not a4.(4,1R ) type equation since in

this case it is easy to verify that A0 / A which is incompatible with equation
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