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Abstract

The methods of Lie Algebras are used to construct and solvse

o generailzation ~F the XY model.
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1. Introduction

In this paper we apply the methods of Lie Algebras to solve and generalize the
XY Model (Lieb, Schultz and Mattis 19C1, Xatsura 1962). The methods employed
originate in the Spectrum Generating Algebras of particle physics - which are
non-symmetry algebras of the Hemiltonian, and provide elegant solutions for
quantum statistical problems (Sclomon 1971, 1974).  We briefly outline the

approach we adopt in the present context.

In equilibrium statistical mechanics the thermodynamic behavivur of a system,

whose Hamiltonian is H, follows from evaluation of the partition function

Q. = ‘trace {exp (=BH)},

where B8 is the inverse of the absolute temperature times Boltzmann's constant.

Classically, the trace may be interpreted as the sum over all the allowed

configurations of the system; ~in guentum mechanics, as the ususl Hilbart space

trace.

In our slgebraic treatment we shall consider H to va an element of a suitable
Lie algebra of rank 2. This means that one can. find a Cartan basis for the
h

algebra which includes the & mutually commuting elements, h o hoe

qrohos ees i
The solution of the problem is obtained by finding an automorphism of the algebra,

implemented by U say, such that

L
HerUH U = Y A h (1:4)

where the Am are known scalars (elements of the underiying fizld). Since in

principle the spectra of the hm are known, such an automorphism effects diagonal-

isation and clearly leavaes the partition function Q unchanged.



. in € to that of a system of uncoupled spins, to which the mocdel is tharefore
Trerefore the strategy to be adopted is in thres parts: n Q y P pins, ! e

. . equivalant in an algebraic sense, wa now briefly treat such a Frea Spin Model.
A. Determina o suitable Lie algebra which is to generate the spectrum of

H. The Hamiltonian H will be an element of the algebra in some

(usually large) representation. 2. Free Spin Model

B. Choose a small-dimensional, faithful reprasentation in which to implement !

Consider tha following Hamiltonian, reprasenting a system of N uncoupled spins:
the automsrznhiem (1.1). i

o)

: ' N
. Now return to the original representation, in which (1.1) remains true : H = -] Am Zm (2.
m=1
and in particular the values of the scalars A_ are unchangad, to svaluate ‘
m The Am ara positive scalars and
the spectrum of H and the partition functicn.

zZ. = A®1Q -6 O;@ﬂ@.aaﬂ}

In the casz of the XY model, on a cyclic lattice of N points, the application of

the three-part strategy gives

A. The Hamiltonien is an element of a 2N X 2N dimensional representation whare the matricas occurring in the direct product are all 2 x 2, and oz + whic
of s0(2N) @ so(ZN). This is é rank 2N algebra. ; occurs at tha mth position, 1s the third of the thres Pauli spinors,

3. We implement the automorphism (1.1) in the faithful 4N x 4N dimensional [0 1 ‘ (h _{] 4 o
representation, determining the values of the 2N constants Am . i . ?X - L1 o Gy " l; 0} UZ T -1’ .

C. V2 return to the 2N X 2N representalion to evaluats the partition function. ; X . :

L]
The ovarall negative sign in (2.1) ensures thac 3lignment along tha positive

TRaSOr o= 1 ad o~ “th XY M 'I‘ O ne . .
The rasson tha% the solution of'the XY Mode! is so’ readily obtained, in spite of ‘ A z-direction lowers the energy.

the seemingly cumberscme neture of fhe machinery outlined alove (nobody can

The partition function

Ciegonalizz even a 4N x 4N matrix in general!) is that the translaticnal

N
Q(N, B) = trace (exp m§1 BAm ZmL

@ mu:n ewaller ons, and effectively reduces the computation in may be evaluated as a stralghtforward matrix trace, using the properties of

all such cases to the clagonalizetion of a small (in our casa, 2 X 2) matrix. direct products, as
: »

The generalizad XY Model we treat is in fact the most gensral translationally- j' N .

' | O(N, 8) = T {2 cosh 8A }.
inverisnt model consistent with the so(2N) @ so(2N) algebra of the original XY ! m=1
Mocdel.

The free enargy per particle f is given in the thermodynamic limit by

Since the automorphism (1.1) reduces the computation of tha partition function



-l -

i
-'3f = 1lim N log Q(N,B)
N 9

; aTe
3?~j\ log{2 cosh8Al¢),dé
o
where we replace the discrete valued Am by the continuous function A(¢), where

Ao ) = A et g =2m/N  (m=1,2, ..., N)

A.l quantities of thermadynamic’intarest may be calculated from f.

In the model we shall be considering, the Hamiltonian can in fact be rotated to
the somewhat more general form
N

1 o + 'v - ’
H= - m§1 (301 - YA+ 300+ YA )27 ’ (2.2)

where Ai are positive scalars and
Yy = Z1 Z, wews- 2 .

The partition functior corresponding to this Hamiltonian may be equally readily

svaluated,

N-1. - ' -
Q(N,8) = 2" {1 cosh BA’ + T cosh BA_ + T sinh BA® - T sinh BA” } .
m m- m m

The free energy per particle determined from this partition function will depend
on the relative magnitudes of A; and A; 3 for example, when A+ > A the first
. m m

term will dominate.

3. Algebra of the XY Model

We consider a one-dimensional lattice of N sites, labelled 1, 2, ..+« , N. The

XY Model is given by the following Hamiltonian of nearest-neighbour type:

= - XX vy
H DR SINED SD SSPEE IS bAd S AEORS B (3:1)

The notation for Xm and Ym 1s analogous to that of Zm in the previous section,

80 that, for example,
[Xm. Yn] =24 Smn Zn f
We may also include additionally a contribution from an external magnetic field h

: N
H = -h ] zZ . (3.2)

The XY Model descfibed by H = HO + H,1 is exactly solvable, and although it does
not exhibit a phase transition in the thermodynamic limit for finite B, its

‘
thermodvnamic behaviour has been extensively studied. fPurther, the XY Model is
intimately related to the solution of the two-dimensional Ising Model in tremsfer
matrix form (Suzuki 1871)3  this connection is evzn more explicit in the casa of

the generalized model we shall describe in the next secticn, of which . the Xv Model

is only a special case.

We now implement Part A of our strategy by determining the Spectrum Generating
Algebra for the XY Model. Define the following matrices Yr

Yr = Z1 22 N Zr_1 XP

r=2,3 vee, N

=2,y 02 Y

Y -1 'r

Yot X Y T Y



The matr-ices Yr (r=1,2, «o. , 2N) then gensrate a Clifford aslgebra with
anti-commuteticn relations given by R

{le YS} = 2 61"5 .

The transformation from {Xm, Ym. Zm} to {Yr} is sometimes called the Jordan-
Wignar transformation. Using the Y. we may construct the N(2N - 1) matricas

L
Trs

rs

which close under the commutation relations of the Lie algebra so{(2N)

L. L 1=4(6 L -8 L -+& L =& L ). (3.4)
rs’ pg psq sp rg rq ps sq pr

(We retain the 1 in expressions such as (3.3) and (3.4) only when we wish to
maintain the hermiticity of tha operators concernad. The algebras, such as
so(2N), that we are interested in are of course real Lie algebras whosa dsfining

- )
relations do not involve 1.} N

From the fullcwing expressicns, which hold for m = 1, 2, ... , N-1,
. \ ; '

mem+1 2 2“‘vam, m+1 YmYm*’! by 2‘LN+m+1, m Zm y 2Lm. N+m "

We see that in the case of the XY Model with free ends, whers the summation in
(3.1) goes from 1 to N-1, we may immediately express H as an element of sa(2N).

In the cyclic case, howeaver, we require ths additional terms XNX1 and YNY1

and 50 must enlarge the algebra. . This is readily dons as follows.

Introduce the matrix y = 2122 ZN . This obeys

- 2 a -
iy, Yr} o ¥ 1 Ly, LrSJ 0.

L = - i/4[yr. ys] (r, s %1, 2, aue , 2N) (3.3)

Then the operators

L(a) -

1 - - i
s 101 ay)Lrs a

closa on the algebra so(2N)} @ so{2N)

[L(az L(b) .15 (6 L(a) e LA, )L ()
s Pq ab "rs sq sp rq rq ps sq pr

This enlarged algabra now contains all the previously required guantities

L =L + L
-rs s rs

as well as the cyclic terhs

and so wa may write ths XY Hamiltonian H = Ho + H, , eguations (3.1) eng (3.2]

1

explicitly as an alement of sa(2N) & so(2N). This¢*completes Part A of our

L]
strategy.

4. Trenslational Invariance
The most general elemant of our so(2N) 8 so(2ZN) algebra may be written

2N ;
R S A e ' 4
a=t m,n=1 - '

or, more compactly,

H o= - tred



with @ and .,Z’ defined as blocked 4N x 4N matrices

™ k o) DZ, l_‘” O
O w[v) o L.‘-)

where the elements of wt are real numbers and those of .I_' ars the matrices
L(;‘s , L{;)S . We now impose translational (more precisely, cyclic) invariance
by demanding that H be invariant under the action of the unitary operator y
defired by i

! . =1 ” -1 - -1
Xor = gxr.j Yo Jvr'd Z,4°92.7 3

TR ; (4.2)

The operatorffwhich obeys ﬁN = 1 and generates a ZN S ZN dimensional represen-

tation of the cyclic subgroup C,, of SO(2N) & SO(2N}, is implemented on o( by

JZuT' = (BLDh: (94 = 1)

where .3 is the 4N x 4N (numerical} matrix defined by

9 = 10 4° O J
' O {ﬂ@A“‘J

and tilde denotes matrix transpose.

) ‘ {-) ’
The cyclic N X N matrix APr , and the anti-cyclic A, are given by

‘ ! -I S 0! -7%
A(*é = ch A(. = Oé

~
(<IN
and obay A9 A = _ﬂ_, A= 1 (ﬂ'i)- Imposing the condition (4.2)

an the Hamiltonian (4.1) leads to the équatian
=1, =) <) &)
(1ea”) 0 (4®4°) = % (4.3

whose general solution, with m‘e') anti-symmetric, is

: (=) & gy s :
oo = 2 (TeATT- TEe a0 ta.e
where the Jﬁ_a) are arbitrary, real 2 x 2 matrices. This set of coefficients

w in the Hamiltonian (4.1) therefore gives the most general translationally

dnvariant model consistent with the so(2N) 8 so(2N) algebra.

5

al refers to an interaction which :

The subscript r in the expression (4.3) for m(

Cﬂ‘l)-hody and of range r.  For example, taking‘J; = J; , we may rewrite the

Hamiltonian (4.1) as

Ni'l
H = H
r=0 r
with N
Hy = -h ] z
m=1
and
N XX X
Ho= = T zx  «a¥ 2y o+ 0%zy v a¥¥y 2x ) r = 4LZaa.0N
r meq T momer r m m*r r “m" mr rom Tmer
(8 ] e

whe t !a xx x -h = .

re we haves pu Jr -7 -T Y and h ’Jo + JD , and terms
like szxm+r are shorthand for szm+1 zm*r-"axm*r ' In this form we see

that we may recover the XY model, by choosing all the coefficients except h,



...’ID—

XX .Yy

95 and 93 as zero; as well as other generalizations such as that of Suzuki
(J;V - JZX = 0) (Suzuki, 1971) and Dzyaloshinsky (h, J?x , ny, J:y = - J¥X

(Siskens et al, 1974).  However, the form (4.1) and (4.3) 1s most suitable for
our purposes, and we now implement Part B of our general strategy, by choosing
a canvenient faithful represantation of so(2N) 8 so(2N) in which to implement

the automorphism (1.1).

5. Diagonalization of the Hamiitonian

A convenient representation of so(2N) 8 so(2N) in which to implemant the

automoiphism (1.1) 1s the standard representation of the rotation algebra

r -
[ . 3 = 6§ 3 +8§ S5 -8 S ~4_5
["rs'" “pg| ~ Tsp’rq ~ rq’sp sqrp . rposq
obtained by setting
S = g__-.8 (r, 821, 2, ves , 2N)
rs rs sr
5
where B, is the 2N x 2N matrix defined by
-3
M e gmgn colmon= 1, 2, e, 2N)
rs r s

We may use this representation for both the "+" and "-* algebras to obtain the

rapresentation for H(a}
Al L -2y (@ (a = 1)
as a 2N x 2N matrix.
Since the u[a] ara antisymmatric, there exlsts an eutocmorphism (rotation by

(a)
an orthogonal matrix) which sends w! to the canonical form

[nonzero)

-1~

) (a) (a)
= diag{A1 s ese s AN

where thes diagonal mpatrix A(a } may Se chosen tc have
positive entries which are reacily computed (Appendix). (This emounts to
choosing the commuting slements hm cf the Cartan basis {1.1) proporticnal tc

sm,me in this representation.)

Since the automorphism

N
Alel o 7 20 al8) g
me1 m m,N+m

"holds in the 2N-dimensional representation, it also holds in the ZN—dimansior

(Hermitian, S ~ if? reprasentation

Ala) )

N
H(a) = I 2 m m,N+m

m=1

so that the original Hamiltonian (4.1) takes tha form (?.2)

H = -

8 12

- 1;5(1 S I Z e R0 e A7)

of ths free spin model, and the partition function may immadiately ba eveluat
completing Part C of our strategy. The expraession for the free energy is gi

in the Appendix, (A5} and (AB).

6. Conclusion

We have descrited a generalization of tha spin-c XY model which is exactly
solvable, and tha most gensral within the context of the sol2N) & sol2N) alge

of the usual XY model and translational invarianca. The exprassion darivad
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the free energy, (A1) and (A2), may be chosen to have particularly simple,
closed forms; for in the infinite range limit the coupling constants in (A2}

can be taken as the Fourier coefficients of (fairly arbitrary) functions.

The Hamiltonian considered, though of doubtful direct physical interest, has
a .useful interpretation as the associated Hamiltonian of tha two-dimensional

Ising problem;  that 1s, an operator commuting with the transfer matrix.

Although we nhave only cofsidered translationally invariant models in this note,
it is a straightforward matter to proceed to the non-invariant case. For
example, if the Hamiltonian is invariant under v-translations, where v is some

positive integer dividing N,

v Y]

T HT = H

we obtain the general solution by solving the modification of (4.3)
U@ a) " w® (16 &°)° = wo

This modification will be the subject of another notsa.
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By substituting the expression (A1) for w

‘Hamiltonian matrix M

-13~

Appendix

We determine the aelemants A;a) of the canonical forn of

adnd Ja ) v ot A
v = = (K@ 4TS T.esY)

r=o (A1)

(a)

Assums that the eigenvalue egustion for w is of the form

A)(al(ﬂq@ﬁm) - "/A(.‘(@g‘)

-~
>
N

(a) (a) (a)

where is an eigenvector of 4 with eigenvalue A

=]
~

lik) éfhl = )(k)ef“J

-

(a) in {A2) we obtain

el @) |l g -
E?i ( U: A L ;Enu‘Aad v) &FCX>§?a - ‘r'ifé?fﬁu

so that i is the eigenvalue corresponding to the eigenvector lfof the Zx2
(a)

M[s\) . %l (I("X‘J"___ 3:(2)}\(-)")
- p=—r N A

(a)'.

(a) in terms of the four real numbers mu

Rewriting M

>
()_ (LY
nHe = Zomex
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the two eigenvalues of m[a) are immediately given by
. . x
/4 = m 4 z]’/il’fm P I Lt (AG’)
and
x
e T Mo ’L/ "'; +ﬁ1(“/‘1‘- M“)L
/
Sirce the eig2nvalues of w(a) occur in conjugate pairs, the N positive values
A;a) are enumereted by taking the modulus of (A5) corrasponding to each
{21
eigenvalue A(a) of Ataf
(a) _ (%)
)\H~WP?"‘ (m=1,2, vee , N)
with

Fo = 2mmp 4@ (2m+3 71 /7

L. - . a)
Defining tha energy function A{
\

($) ?V
(a) o 1’9}
NCn ) = AT

we hev explicitly

‘/’\('A)(cf()‘ - / m{(p) ,/M’“" Sk /1:(“(¢‘)'+ m(-){qgj\ {

(&)
"

(a)

with the functions in ~ {¢) given in terms of ths matrix elements of Jr by

N-f

mi () (TE"+ T2 gnvdh
P (@) = Z(TER L FENY shech

r=}

ﬂﬂfa'éﬁé) = é%i (’iﬁfllz 31," ) Cs f

(‘.) (qs) r%n.l ( T‘:)“—- :‘;‘(:)ll) s"h ‘_9;‘

The megnetic field tarm occurs explicitly as the r = O componant of J;a){¢3
(‘L) (~D, ®
h o= =4 (M oy + mE .c))

In the case J; = J; wa hava A;(¢) - A;(¢) as N+ o , and so the free ansrgy

may be written
~@f = ar f: ln {2 cnhprg}de

as in Section 2, with

AH) = F st ¢ [(Fbsird)' s (e conis)’

- (?ﬁcﬂ»$1;f¢92J *
writing

a, = F-T
h" I”*ﬁw
S+ T
o, = 3;*? + J:Yx

D
]

All ths thermodynamic quantities may be calculated from (A&} in the usual way



