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Endomorphism rings of torsion-from modules over §1 • Introduction.

a complete discrete valuation ring
Our interest here will be to characterise the endomorphism rings of

torsion—free reduced modules over complete discrete valuation rings, i.e.

B. Goldsmith commutative principal ideal rings with exactly one prime element up to unit

factors. A complete characterisation in ring—theoretic terms has been given

College of Technology by Liebert [8] but with a view to possible applications (see Goldsmith [5]) we

Kevin Street, approach the problem from the module-theoretic position making use of the

Dublin 8, Ireland concept of a basic submodule. We remark that in this approach, as in Liebert’s,

we require a certain topologIcal property. In section 5 we show how to obtain

and a characterisation in ring-theoretic terms. This is, of course, equivalent to

the characterisation in [8], but the conditions appear in somewhat different

School of Theoretical Physics form.

Dublin Institute for Advanced Studies We close this introduction by establishing some terminology. Through-

Dublin 4, Ireland. out P will denote a complete discrete valuation ring with prime element p. If

X is any torsion—free P-module then X may be topologized by taking the submodules

as a basis of neighbourhoods of zero. This topology will be Hausdorff

precisely if (Th prX = D since X is torsion—free this is equivalent to X being

reduced. (For undefined terms we refer to Fuchs [3],[4] and Kaplansky [6].)

A

The completion of X in this topology will be denoted by X.

§2. Some properties of the endomorphism ring of a reducari torsion-free R-modu’e.

We begin with a well—known result which shows the importance of a basic

submodule of a reduced torsion-free R-module.

Lemma 2.1. If 0 is a reauced torsion-free R-module then G is a pure submodule

of the completion B of any basic submodule B of G.
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Proof:

By the proof of a theorem of Kaplansky ([6] Th. 22) we know that 0 = B for any

basic submodule B of 0. Since 0 is reduced, 0 is pure in 0 and hence we have

the result.

There is nothing canonical about the choice of the basic submodule B.

We will just select end fix one basic submodule throughout end refer to this

fixed basic submodule as B.

Lnmma2.2. I-P 0 is a iure submodule of B which contains B. then any cndomo-

phisjii • of C extends uniquely to an endomorphism of B.

Pro’d:

This is standard. See e.g. Fuchs [3] lh. 13.8.

In view of Lemma 2.2 we ma, and do, regard endomorphisms of C as endomorphisms

of B. Let E = ER(B) and set 1(B) = {4 a EB4 B}. It is clear that 1(B) is

a left ideal of 8. 1(B) will play a crucial role in our characterisation of

endomorphism rings of reduced torsion-free R-modules. Recall that the finite

topology on the andomorphism ring of an R-module is the topology introduced by

Szele [13].

Lemma 2.3. If G is a pure submodule of B containing B then

(ii 1(B) 8(0)

(ii) E(G) is a p-pure subalgebra of C

(iii) E(G) is complete in its finite topology.

Remark: Since endomorphic images of csmplete R-modules are complete and B

only contains complete modules of finite rank, we can see that every endcmorphism

in 1(6) has finite rank. However, if 0 x B, there will be endomorphisms of 0

with finite rank which are not in I(S).

§3. A Galois Connection.

Let I be a p-pure subalgebra of C which contains I(S) and set

0(Z) {bqj4) a I, b a B}.

Lemma 3.1. If x a 0(5) then there exista lii in I and b in B such that

B = < b> K and bi = x, K4 0.

Proof:

Choose any element b in B such

a direct summand of B i.e. B =

let 6 be the endomorphism of B

6 a 1(B). Set 4) = 64), then 4)

the required properties.

A
Lemma 3.2. 0(1) is a p-pure submodule of B containing B.

Proof:

We show firstly that 0(1) is a

Z = b1 w = b2
•2

where 4).

torsion—free R-module is fully transitive we can find an endomorphism 6 with
Proof:

(1) is trivial while (ii) follows immediately from the fact that 0 is torsion-

free and pure in B. (iii) is well known, see e.g. Fuchs [4] Th. 107.1.

b15 = b2 or b25

Then W = b1Sc2

a 0(Z). If r

is a submodule

= b1 . 11oreover 6 can be chosen to

and since I is a subalgebra c I.

a R then for any x a 0(1) it is clear

and it is clear that it contains B.

be in I(S). Say b16 = b2

Hence Z — W = b1[4)1
- 64)2)

that xr a 0(Z). Thus 0(Z)

that b has p-height zero. Then clearly < b> is

< b> S K, some K. Now if x = a4), a € B, 4) €

sending b to a and annihilating K. Clearly

is in I since I is a subring and clearly 4) has

submodule. Let Z and w be in 0(5) and suppose

is in I and b. is in B (i = 1, 2). Since a
1
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proof:

Finally to show that 0(z) is p-pure, suppose y € 0(Z)
k

say

=
pk<

Now epl’/ing Lmmm 3.1 to y we get y = bi = for some b € 6,

ii I. Now defire a homomorphism C by setting bC = x, KC = 0. Then clearly

pk z pkE
=

pk1•
It follows by torsion-freeness that C € I, so that

k
x € 0(Z). Thus y € p 0(Z) and this complotes the proof.

4. The Firzt Characterisation.

Before proceeding to the characterization we introduce a -Further

topoogical concept.

Defihition: An idempotent ii in a ring I is said to be a finite dcmpoten if

it is possible to write it = it + .... + it where the it. (1 i n) are
I n

indecomposable mutually orthogonal idempotents in I.

We denote by (Z) the set of finite idempotents in the ring I. We now

define a topology it on I by taking as a basis of neighbourhoods of zero the sets

N = {o s Zlitn = 0} where it € (Z). For an arbitrary ring there is no reason to

suppose that this definition would yield a topology, however, in the case we are

interested in viz. 1(B) I E, we do in fact get a basis for a topology as is

shown below.

Lemma 4.1. If 1(B) I E then the sets N(it € (Z)) form the basis of a

neighbourhood system for a topology it on I

Proof:

If it , it € (Z) we must find it € (I) such that N N n N However
1 2 it it1 it2

Bit ÷ Bit2 is clearly a finite rank submodule of 0(1) and so if K is the pure

submodule of 0(1) containing Bit1 + Bit2 , then the projection it of B onto K

satisfies N N n N . Moreover it follows from the fact that 1(B) I,
it it1

2

a subring, that it € ‘HZ). Indeed the topology is T1 since

i’Th N = 0 for if • € fl N
then

it € )(I) it € (I)

B = 0 and so by density of B in p-adic topology, • = 0 on B also.

Lemma 4.2. If 0 is a p—pure submodule of B containing 6, then E(0) is complete

in the it—topology which coincides with the Szele finite topology.

Proof:

The proof is similar to the result for p-groups, see o.g. Liebert [7] Proposition

3.2, or Fuchs [4] Th. 107.2.

In the light of Lemma 4.2 we may call the topology it the finite topology.

Theorem 4.3. Let I be a p-pure subring çf E containing 1(B), then if I is

complete in the finite topology, I = ER(G(E)).

Since 0(1) is clearly a faithful right I-module we can identify I ER(O(I)).

Let C € ER(O(I)) and let {FiIi € o} be the set of finite subsets of 0(Z) ordered

so that i j if and nnly if F. F The aim is to construct a net
€ 0

in I such that FJC — C) = 0. For then the net {C.} is Cauchy in the finite
1 1 1

topology and so has a limit ii € I. But then B(C — n) 0 and so C = n € I.

Thus it will suffice to construct the net with the above properties.

Now given F. we can embed it in a direct summand 0. of 6 where 0. 0(I)
1 ]_ 1

and has finite rank. Let it denote the projection of 6 onto . Then we have

Fi(C — it.C) = 0 (1)

But F. it 0. = < g,> <‘g2> @ < g> , say. Now € 0(1) and so
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g. = b.4. some b. a B, 4. a ). But since a reduced torsion--Free P—module is

fully transitive, there exist endomorphisms X with g. b. and x annihilates
1

K
the complement of g.> Clearly x a 1(B) for each i. Let F. x4

i=1
. a Z and we have

1

FTr.(. — C) = 0 (2)

Let = ir.F. , then
.

a Z and from (1) and (2) we get

F.(C — i.) = 0.

Thus the net {c.} has the required property and the result -Follows.

Combining Lemma 2.3 and the above result we obtain our first character—

isation.

Theorem 4.4. A ring I is the endomorphism ring of a reduced torsion-free

R-module if and only if there exists a free R-module B such that I is isomorphic

to a p-pure subring of ER(B) containing 1(B) and I is complete in its finite

topology.

5. A ring theoretic characterisation.

From the viewpoint of constructing examples the condition in Th. 4.3

that I(S) I E(B) is reasonably satisfactory but from the viewpont of abstract

ring theory the left ideal I(S) is totally unnatural. We can however give ring

theoretic rondit.ona which ensure that we are working only with subrings of the

endomorphism ring of a complete module B which contain 1(B). For this section

we shall suppose that E is a unital associative ring.

See Liebert [9], Lemma 2.3.

Lemma 5.2. Let E be a ring such that

(i) If e is a minimal idempotent of E then eEe is a complete discrete

valuation ring.

(ii) If e and f are any two minimal idempotents then eE

(iii) E contains a set of minimal orthogonal idempotants

set of nilpotent elements {e..Ii,j a i} such that

(a) e.a. = 5. e , £ S = 5 . (3 . a Kronecker delta)
1 jk ik K ii KR. jk ie

(b) e.E (B E e.)’ , the completion being with respect to the p-adic

topology, where p is the generator of the Jacobson radical of eEe.

(iv) (fl ann (e ) = 0 where ann (e.) = {f a Ee.f = 0)
r i r 1 1

is I

Then there exists a free module F over a complete discrete valuation ring R

such that 1(F) < E ER(F).

Proof:

Choose a minimal idempotent a and set F = B sEe. . Clearly F is a free
ial

R-module since by Lemma 5.1. sEe, is a free R-module of rank 1. Let F denote

the p-adic completion of F. Condition (iv) ensures that F is a faithful

E-module so we may regard E as a subring of ER(F).

Now if 4> a 1(F) then 4> has finite rank and so 4> = e1 4> + ... + e4>

some k. Iloreover for each i, there is an n(i) in I such that e.4> has image

n(i)
contained in B eEe. . Choosing a maximum such n(i) for i = 1, ... k we see

i=1
that -

—7—

then eEf is u free eEe-module in one generator. Floreover eEfE = sE.

Proof:

fE as E-modulas.

{e,Ii a i} and a

Lemma 5.1. If E is a ring with idempotents e and f and eE -FE as E-modules,
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where thio sumation is finite.
1J

So by (iii) e.4 e E and hence • € E. Thus 1(F) E as required.

Theorem 5.3. An abstract ring E is isomorphic to the endomorphism ring of a

torio,i--ree module ovcr a complete discrete valuation ring i-F and only i-F

(ii If e is a minimal idempotent of E then eEe is a Domplete discrete

valuation ring.

(iiP If a and f are any two minimal idempotents then eE fE as F—modules.

(iii) E contains a set of minimal orthogonal idempotents {e[i a 1) and a

set of nilpotent elements {a..Ii,j a I) auch that

(a) a. a. = ó. e • C.. C = . t.
1 JR ik K ij R9 JR ii

(b) e.E ( Fe.)” , the completion being with respect to the p—adirD

topology where p is the generator of the Jacobson radical of eEe.

(iv) F is complete in its finite topology.

(v) If I denotes the ideal of finite endomorphisms of E’ eFe. then if C a E
1

K K
and CI p I then C a p 6.

Proof:

Since completeness of the finite topology includes the Hausdorff condition tben

(iv) above contains part (iv) of Lemma 5.2. In view of Th. 4.4. it will be

sufficient for the “if” part of the proof to show that (v) guarantees the p—purity

of F.

The necessity is clear except that

subring E of ER(F) implies condition (v).

the following result.

Lemma 5.4. If F is a free R-module and 1(F) 6 ER(F then E is p-pure in

“S K kE(F) if and only if for any in F, CI(F) p 1(F) implies € p F.

Proof:

K A K “SLet C € p 6(F) n E, then CI(F) = p xI(F) for some x a E(F). Since 1(F) is a

k Kleft ideal of 6(F) we have CI(F) p 1(F) and so by assumption a p E. Thus

kE() n F = RE

Conversely supposeE is p—pure and CI(F) pKI(F)

K

71. denote the

projection of F onto the i summand of F. Then (xC)ir = p xx for some

x a 1(F) since a 1(F). But this is true for any x € F and each i, so FC

A A —kIf we define p : F - F by xi = p (xC) thon the torsion-freeness of F ensures

that i is well defined. Clearly pp C . Thus C
= k,

a F n pkE(F) =

So a
Remark: The techniques used so far do not depend on the commutivity of the

complete discrete valuation ring and all arguments can be easily generalisad to

include non-commutative complete discrete valuation rings.

§6. Further topological considerations.

Since the charactorisatibn we have obtained requires the use of one

topological property we try to eyploit this to the full. The situation is

remarkably similar to the corresponding problem for endomorphism rings of p-groups

(see Pierce [10]) but is simpler in that we require no topology other than the

finite topology of annihilators already introduced.

Let ji be an infinite ordinal and set B = §1 R e. Let m. denote the
i<p

projection B -÷ R

Lemma 6.1. If ;€ 1(B) then lim lrC = C where the limit is taken with
K-’ij sk

respect to the finite topology of 1(B).

N
ieEe.) € eEe. and so

1
i=1

KA
p F.

we must show that p-purity of a

The proof is therefore completed by
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value of ii. for k n(ir). Then = it. is a well defined
id

element of E(B) It is clearly the limit of the Cauchy net and so it remains

to show that e B 5 1(G) But for any x e B there is a in the Cauchy

net such that x(C
—

= 0. (This follows from density of G in B in the p—-dic

topology.) So for each x e B We have x
= xCx = x(r

+ °x
some rx e R,

e 1(0). However the maximality of G and its invariance under ; imply that

we need only choose one such r, call it r, so that y(C - r) e G for all y € B.

Thus € R 5 1(G).

Remark: The situation here is easier than the problem for p-groups since the

ideal occurring in the splitting here is not as tightly prescribed as the ideal

of small endomorphisms for p-groups. This result has been modified by the

author in [5] to deal with the case where B is countable but no results analagous

to Shelah’s results [12] on p-groups have yet been found.
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Remark: It is clear that 1(B) is in fact the ideal of finite endomorphisms

of the free R-module B and so we could extend Theorem 6 3 to give a mnre ring

theoretic flavour to the result. This could be achieved by using techniques

similar to Liebert [9] We leave the formulation of this result to the reader

§7. An Example.

The similarity between the characterisetion of endomorphism rings of

torsion-free modules over a complete discrete valuation ring and endomorphism

rings of p-groups is clear (cf. Pierce [10]). Now in the theory of p-groups

Pierce, Beaumont and Corner (see [ii], [1] and [2]) have exhibited groups with

endomorphism rings which are ring split extensions of a prescribed ideal by a

complete discrete valuation ring. We use Theorem 4.3. to yield a similar

result here.

Example: We remark that the ring split extension R 5 1(B) cannot be the

endomorphism ring of an R-module containing a free R-module B. However, by

I’
analogy with 1(B), we define, for each pure submodule 0 of B which contains B,

an ideal 1(0) in the endomorphism ring of 0 by setting 1(G) = fq € E(G)IB, G}

(Here denotes the unique extension of • to B.)

In the particular case when 0 is a maximal pure submodule of B containing

B we show that R 6 1(G) is the endomorphism ring of some R-module. (Incieed it

is the endomorphism ring of G itself.) Trivially 1(B) S R 6 1(G) S E(B), while

• k k
if r -‘ 0 p x orne X € E(B), 0 € 1(G) and r € R, then p r (otherwise 0 would be

a unit). It follows easily that o €
k10

and so R 6 1(G) is p—pure in E(B).

Finally if fc} is a Cau,y net i9 B S I we show that it has a limit in

R S I Let {it }i € I denote the projections of B onto the rank one basis elements

of B Then ir(k — = 0 for all j K n(s) Let ir1 denote the common
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