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Lemma 2.1.

§1. Introduction.

Our interest here will be to characterise the endomorphism rings cf
torsion-free reduced modules over complete discrete valuation rings, i.e.
commutative principal ideal rings with exactly one prime element up to unit

factors. A complete characterisation in ring-theoretic terms has been given
by Liebert [8] but with a view to possible applications (see Goldsmith [5]) we
approach the problem from the module-theoretic position making use of the
concept of a basic submodule. We remark that in this approach, as in Liebert's,
we require a certain topological property. In section 5 we show how to abtain
a characterisation in ring-theoretic terms. This is, of coufsa, equivalent to
the characterisation in [8], but the conditions appear in somewhat different
form,

We close this introduction by establishing some terminology. Through=-
out R will denote a complete discrete valuation ring with prime element p. If
X is any torsion-free R-module then X may be topologized by tsking the submodules
p"x as a basis of neighbourhoods of zero. This topology will be Hausdorff
precisely if M an = 0; since X is torsion-free this is equivalent to X being
reduced. (For undefined terms we refer to Fuchs [3],[u] and Kaplansky [6].)

Il
The completion of X in this topology will be denoted by X.

§2, Some properties of the endomorphism ring of & recuced torsion-fres R-moduls.

We begin with a well-known result which shows the impDrtancé of a basic

submodule of a reduced torsion-free R-module.

If G is a reduced torsion-free R-module then G i1s a pure submodule

) N
of the completion B of any basic submodule B of G.



Proof:
By the proof of a theorem of Kaplansky ([6] Th. 22) we know that G = g for any
basic submodule B of G. Since G is reduced, G is pure in E and hence we have
thé result.

‘ There is nothing canonical about the choice of the basic submodule B.

We will just select and fix one basic submodule throughout and refer to this

fixed basic submodule as B.

Lamnma 2.2. If G is a8 pure submodule of % which contains B. thken any endomor-

DhiaT ¢ of G extends unigquely to an endomorphism $ of ﬁ_

This is standard. = See e.g. Fuchs [3] Th. 13.8.

In view of Lemma 2.2 we maj. and do, regard endomorphisms of G as endomorphisms
of g. Let E = ER[é) and set I(B) = {¢ ¢ E|%¢ < B}. It is clear that I(B) is
a left ideal of E. I(B) will play a crucial role in our characterisation of
ehdomorphism rings of reduced torsion-free R-modules. Recall that the finite
topology on the endomorphism ring of an R-module is the topology introduced by

Szele [13].

A
Lemma 2.3. If G is a pure submodule of B containing B then
(1) I(B) < E(G)
(ii)  E(G) is a p-pure subalgebra of E

(iii) E(G) is complete in its finite topology.

Proof:
(i) is trivial while (ii) follows immediately from the fact that G is torsion-

free and pure in B. (iii) is well known, see e.g. Fuchs [4] Th. 107.1.

Remark: ~Since endomorphic images of complete R-modules are complete and B

only contains complete modules of finite rank, we can see that every endemarphism
in I(B) has finite rank. Howaver, if G # B, there will be endomorphisms of G

with finite rank which are not in I(B).

§3. A Galois Connection.

Let £ be a p-pure subalgebra of E which contains I(B) and set

G(2) = {b¢|¢ € £, b ¢ B}.

Lemma 3.1. If x ¢ G(L) then there exists ¥ in & and b in B such that

§=<b>eKand by = x, K¢ = 0.

Choose any eleﬁent b in B such that b has p-height zero. Then clearly < b> is
a direct summand of é i.e. B = (b> 8 K, some K. Now if x = a¢, a € B, ¢ ¢ T,
let 8 be the endomorphism of B sending b to a and annihilating K. Clearly

§ € I(B). Set U = 8¢, then ¥ is in I since I is a subring and clearly ¥ has

the required properties.
N
Lemma 3.2. G(Z) 1is a p-pure submodule of B containing B.

Proof:
We show firstly that G(Z) is a submodule. Let z and w be in G(I) and suppose

z = b1 ¢q’ W =b where ¢i is in I and bi is in B (1 =1, 2). . Since a

2 ¢2
torsion-free R-module is fully transitive we can find an endomorphism § with

b,§ = b, or b26 =b

1 5 . Moreover § can be chosen to be in I(B). Say b16 =b_

2
Then W = b16¢2 and since I is a subalgebra 54)2 € L. Hence 2 - W = b1[¢1 - 6472)

1

€ G(Z). If r € R then for any x € G(I) it is clear that xr € G(EZ).  Thus G(Z)

is a submodule and it is clear that it contains B.
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Finally to show that G(f) is p-pure, suppose y € G(Z) n pkg. say
y = pkx. Now aoplying Lamma 3.1 to y we get v = by = pkx for some b e B,
P e L. Now defire a homomorphism t by setting bl = x, K& = 0. Then clearly
P =vpK; € I n pkE = pK2; It follows by torsion-freeness that £ ¢ I, so that

x e G(ZJ. Thus y € pKG(E) and this completes the proof. .

§4. The First Characterisation.

Before proceeding to the characterization we introduce a further

topoﬁogical concept.

«Q
Defihition: An idempotent w in a ring I is said to be a finite Zdcmpotent 1if
it is possible to write m = T Foeae. * T where the L (1 <12 n) are
indecomposable mutually orthogonal idempotents in Z.

We denote by ®(I) the set of finite idempotents in the ring Z. We now

define a topology T on I by taking as a basis of neighbourhoods of zero the sets

N7r = {n e E{wn = 0} where ™ ¢ ®(I). For an arbitrary ring there is no reason to

suppose that this definition would yield a topology, however, in the case we are
interested in viz. I(B) £ I < E, we do in fact get a basis for a topology as is

shown below.

Lemma 4.1. If I(B) £ I < E then the sets Nﬂ[w € ®(Z)) form the basis of a

neighbourhood system for a topology T on I .

Proof:

Ifm,, 7, € ®(Z) we must find 7 e @(Z) such that N.< N_n N_ . However
17 72 L m ,

A )

Bﬂ1 + sz is clearly a finite rank submodule of G(Z) and so if K is the pure

"N ~ A "
submodule of G(I) containing Bn1 + an » then the projection m of B onto K

satisfies NTT < N1T n NTT . Moreover it follows from the fact that I(B) < I,
1 2

a subring, that 7 e @(I). Indeed the topology is T1 since

) t
M N =0 forif ¢ ¢ [V N hen

m
e ®(I) e 9(Z)

A .
B¢ = 0 and so by density of B in p-adic topology, ¢ = 0 on B also.

Lemma 4.2. If G is a p-pure submodule of B containing B, then E(G) is complete

in the t-topology which coincides with the Szele finite topology.

Proof:
The proof is similar to the result for p-groups, see e.g. Liebert [7] Proposition
3.2, or Fuchs [4] Th. 107.2.

In the light of Lemma 4.2 we may call the topclogy t the finite topology.

Theorem 4.3. Let I be a p-pure subring of E containing I(B), then if I is

complete in the finite topology, I = ER[G(Z]J.
Proof:

Since G(Z) is clearly a faithful right I-module we can identify I < ER(G[ZJ].
let T e ER(G[EJJ and let {Fi‘i ¢ D} be the set of finite subsets of G(I) ordered

so that i £ j if and only if FiS F. o« The aim is to construct a net {Ci}

J ieD
in I such that Fi(E - Cil = 0. For then the net {Ci} is Cauchy in the finite
topology and so has a limit n e I. But then B(Z - n) = 0and se & =1n ¢ I.
Thus 1t will suffice to construct the net with the above properties.

Now given Fi we can embed it in a direct summand Gi of B where Gi < G(Z)

) A
and has finite rank. Let m denote the projection of B onto Gi . Then we have

F6-mt) = 0 1

But Fi LA Gi =< gﬂ) 8 <'g2) B vuees B C gk) , say.  Now giC e G(Z) and so



gic = bi¢i some bi € B, ¢i € L. But since a reduced torsion-free R-module is

fully transitive, there exist endomorphisms Xi with gixi = bi and Xi annihilates

=

the complement of ¢ gi> . Clearly Xy € I(B) for each i. Let Ei = z Xi¢i 3
121

Ei € I and we have
Fini[Ei -t} =0 (2)

Let ;= ﬂiEi , then ci e I and from (1) and (2) we get

Fi(C - CiJ =. 0.

Thus the net {ci} has the required- property and the result follows.
Combining Lemma 2.3 and the above result we obtain our first character-

isation.

Theorem 4.4. A ring I is the endomorphism ring of a reduced torsion-free
R-module if and only if there exists a free R-module B such that I is isomorphic
to a p-pure subring of ER(é) containing I(B) and I is complete in its finite

topology.

§5. A ring theoretic characterisation.

From the viewpoint of constructing examples the condition in Th. 4.3
that I(B) £ I < E[gl is reasonably satisfactory but from the viewpo.nt of abstract
ring theory the left ideal I(B) is totally unnatural. We cen however give ring
theoretic conditions which ensure that we are working only with subrings of the
endomorphism ring of a complete module g which contain I(B). For this section

we shall suppose that E is a unital associative ring.

Lemma 5.1%. If E is a ring with idempotents e and f and eE £ fE as E-modules,

then eEf is a free ete-module in one generator. Moreover eEfE = eE.

Proof:

See Liebert [9], Lemma 2.3.

Lemma 5.2. Let E be a ring such that A

(1) If e is a minimal idempotent of E then eEe is a complete discrete
valuation ring.

(i1) If e and f are any two minimal idempotents then eE £ fE£ as E-modules.

(1ii) E contains a set of minimal orthogonal idempotents {eili € I} and a
set of nilpotent elements {eijli.J € I} such that

(8, ., a Kronecker delta)

(a) e.e =8..e ., Eijskl = Sjkeie 1j

1%k ik k
(b) eiE < (B E ei]A » the completion being with respect to the p-adic

topology, where p is the generator of the Jacobson radical of ete.

(iv) Y ann_(e,) = 0 where ann_(e,) = {f ¢ Ele,f = 0} .
feT r i r i i

Then there exists a free module F over a complete discrete valuation ring R

such that I(F) < E < ER(QJ.

Proof:

Choose a minimal idempotent e and set F = 8 eEei . Clearly F is a free
ieI

N
R-module since by Lemma 5.1. eEei is a free R-module of rank 1. Let F denote
n .
the p-adic completion of F. Condition (iv) ensures that F is a faithful
A
E-module so we may regard E as a subring of ER(F].

Now if ¢ € I(F) then ¢ has finite rank and so ¢ = e, &+t cu. * ek¢

some K. Moreover for each i, there is an n(i) in I such that ei¢ has image
n(i)

contained in ® eEej B Choosing a maximum such n(i) for i = 1, ... Kk we see
i=1

that



N
{eEe,)l¢ € @ eEe, and so
i . J
i=1
ei¢ = z Eij where thic summation is finite.
So by (iii) ei¢ e E and hence ¢ € E. Thus I(F) £ E as required. *

Theorem 5.3. An abstract ring E is isomorphic to the endomorphism ring of a
torsion-<ree module over a complete discrete valuation ring if and only if
(1) If e is a minimal idempotent of E then eEe is a complete discrete
valuation ring.

If e and f are any two minimal idempotents then eE £ fE as E-modules.
(iii) E contains a set of minimal orthogonal idempotents {ei|i e I} and a

set of nilpotent elements {eij]i,j € I} such that

(a) ey ey = 85 B v Eiy B T S5k By

(b) eiE < (8 Eei]A , the completion being with respect to the p-adie
topology where p is the generator of the Jacobson radical of eEe.

(iv) E is complete in its finite topology.
(v) If I denotes the ideal of finitz endomorphisms of @ eEei then if & € E

and CI < pKI then & ¢ pKE.
Since completeness of the finite topology includes the Hausdorff condition then
(iv) above contasins part (iv) of Lemma 5.2. In view of Th. 4.4. it will be
sufficient for the "if"” part of the proof to show that (v) guarantees the p-purity
of E.

The necessity is clear except that we must show that p-purity of a
subring E of ER[?] implies condition (v). The proof is therefore completed by

the faollowing result.

~
Lemma 5.4. If F is a free R-module and I(F) < E < ER[F1 then E is p-pure in

E(?f if and only if for any ¢ in E, TI(F) < ka(F) implies ¢ € pKE.

Proof:

A Al
Let & ¢ pkE(F) n E, then CI(F) = pkxI(F] for some ¥ € E(F).  Since I(F) is a

left ideal of E(;] we have rI(F) < ka(F) and so by assumption r € pKE. "Thus
pRE(F) 0 E = pe.

Conversely suppose E is p-pure and gI(F) < pKI[F]. Let L denote the
projection of % onto the ith summand of F. Then (XC)Wi = pkxx for some

A
x € I(F) since m, o€ I(F). But this is true for any x € F and each i, so ?; < pk?.

~
k[xC] then the torsion-freeness of F ensures

that ¢ is well defined. Clearly pkw =7 ., Thus ¢ = pkw e En pKE[gl = pkE.

So ¢ € pKE.
Remark: The techniques used so far do not depend on the commutivity of the

A A -
If we define § + F > F by x¢ = p

complete discrete valuation ring and all arguments can be easily generalised to

include non-commutative complete discrete valuation rings.

§6. Further topological considerations.

Since the characterisation we have obtained requires the use of one
topological property we try to exploit this to the full. The situation is
remarkably similar to the corresponding problem for endomorphism rings of p-groups
(see Pierce [10]) but is simpler in that we require no topology other than the
finite topology of annihilators already introduced.

Let u be an infinite ordinal and set B = 8Re,. Let w, denote the

jen i i
projection B + R ei .
Lemma 6.1. If ge I(B) then 1lim Z L T = ¢ where the limit is taken with

k>u s<k
respect to the finite topology of I(B).
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Proof:
Let g be a finite idempotent in I(B) then there is k < u such that g dk =g

where § = Z ™
: s<k ©

Now' r - I ¢ = - dp . Thus
<

4lg - 'Z mL) = gqi-8Jr = g8 (1-68Jc = 0.

Theorem 6.2. Let ¢ be a ring which contains I(B) as a %aithful left ideal.
Suppése that the mapping ¢ + ¢¢, where ¢ € I(B), ¢ € I, is continuous in the
Fin;ée topology of I(B) for all [ e I. Then there is a ring isomorphism of
L. into E[%] which is the identity on I(B).

Proof:

For T ¢ I and X ¢ % define

X A = Z x[cnil

A
Since ht(x(Cwi]) > ht(xni] and x ¢ B has at most countably many non-zeroc

components, it is clear that the term on the r.h.s. represents an element of

A

B. Clearly A, is an endomorphism of B. Moreover if ¢ € I(B) then

4

X A = X x(%m,) = Z (x8)m, = xCL .
[ 1<u i i<n i

Y
Thus the mapping XA : I =+ E(B) acts as the identity on I(B).

By the distribution law in I we have that Ac_n = AC - An for any

Zyn e I, To show that A is a ring homomorphism it remains to show that
A= A A .
tn [

Now by definition we have x A = z x{gnw, ).
tn 1<n i

-11-

But by Lemma 6.1. lim nw, = yLA and since, by assumption,

k> u s

A~
E ]

multiplication is continuous we have that

lim Z L 1L
k =+ u s £k

So x A = ) x(cnniJ

o 2 x( lim E Cw nwi)

i<y i<y k+p s<k °
But if x € B then x has only finitely many non-zero components and so wg have

X A= E ) x{gm, d(nm.))

So ACn agrees with ACAU on B and so by density of B in 3 (in p-adic topology)

Thus A is a ring homomorphism. Finally suppose

have A = A A .
e et M
Ac = 0 for some L € I. Now if n ¢ I(B), we have zZn € I(B) and so
Zn = ACn = AC An = 0. Since I(B) is a faithful ideal we must have ¢ = 0.

Thus X is a ring isomorphism. This . completes the proof.

We may combine the results of §4 to obtain the following characterisation.

Theorem 6.3, Let B be a free R-module of infinite rank, where R is a complete

discrete valuation ring. Let I be a ring which contains I(B) as a faithful

left ideal. Assume the following conditions hold:-

(a) Left multiplication by elements of I 1s a continuous homomorphism of
I(B) in the finite topology on I(B).

(b) Ifrz e and I(B) < ka[B) then ¢ e ka.

(c) I is complete in its finite topology.

Then there is an R-module G with B £ G < 6, G p-pure in é and an isomorphism

of & onto E(G) such that A is the identity on I(B).
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Remark: It is clear that I(B) is in fact the ideal of finite endomorphisms
of the free R-module B and so we could extend Thenrem 6.3. to give a more ring
theoretic flavour to the result. This could be achieved by using techniques

similar to Liebert [9]. We leave the formulation of this result to the reader.

§7. An Example.

The similarity between the characterisation of endomorphism rings of
torsion;free modules over a complete discrete valuation ring and endomorphism
rings of p-groups is clear (cf. Pierce [10]). Now in the theory of p-groups
Pierce, Beaumont and Corner (see [111], [1] and [2]) have exhibited groups with
endomorphism rings which are ring split extensions of a prescribed ideal by a
complete discrete valuation ring. We use Theorem 4.3. to yield a similar

result here.

Example: We remark that the ring split extension R 8 I(B) cannot be the
endomorphism ring of an R-module containing a free R-module B. However, by
analogy with I(B), we define, for each pure submodule G of é which contains B,
an ideal I(G) in the endomorphism ring of G by setting I(G) = {¢ € E[GJ|§$ < G}.
{(Here $ denotes the unigue extension of ¢ to %.)
In the particular case when G is a maximal pure submodule of é containing
B we show that R 8 I(G) is the endomorphism ring of some R-module. (Indeed it
is the endomorphism ring of G itself.) Trivially I(B) <R 8 I(G) < E(%J, while
ifr+ 06 = pkx come X € E(gl, 6 ¢ I(G) and r € R, then pklr (otherwise 8 would be
a unit). It follows easily that 6 e ka(GJ and so R 8 I(G) is p-pure in E(gl.
Finally if {Ci} is a Caushy net in R 8 I, we show that it has a limit in
R @ I. . Let {nj}i e I denote the projections of é onto the rank one basis elements

of B. Then wi[ck ~ cj] =0 for all j, k = n[ni). Let ﬂiCl denote the common

-13-

value of “i Ck for k 2 n[ni). Then ¢ = I ni ci is a well defined
ielI
A
element of E(B). It is clearly the limit of the Cauchy net and so it remains
A
to show that ¢ ¢ R 8 I(G). But for any x ¢ B, there is a Cx in the Cauchy
net such that x(g - CX] = 0. (This follows from density of G in % in the p-~dic
R ,
topology.) So for each x € B we have xg = x;x = x(r + SXJ some r_ € R,
ex e I(G). However the maximality of G and its invariance under z imply that
we need only choose one such T call it r, so that y(z - r) € G for all 'y ¢ %.

Thus ¢ € R 8 I(G).

Remark : The situation here is easier than the problem for ﬁ—grnups since the

ideal occurring in the splitting here is not as tightly prescribed as the ideal
of small endomorphisms for p-groups. This result has been modified by the
author in [5] to deal with the case where B is countable but no results analagous

to Shelah’s results [12] on p-groups have yet been found.
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