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We describe a simplie method for calculating correlation

times and complex polarisabilities from the orientational autocorrelation

functions of molecules executing rotational Brownian motion. The

expression for the autocorreletion function is first rearranged to

displey explicitly its asymptotic form for large times. We apply the

method to recent results on the autocorrelation functions -for linear

and spherical-top molecules. \
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Calculations [1, 2, 3] of the normalized orientational autocorrelat
functions qé(t) of linear and spharical-top molecules yield expressions of

the form
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with P= k:r//IES 3 I is the moment of inertia and B is the frictio
relaxation time. The form (1) is inconvenient as it stands for the comput

tion [4] of quantities such as the complex polarisation and the correlation

times. It is the purpose of this note to show how by & simple rearrangemer
of the expression (2) one can readily obtain these quantities, and to give
explicit expressions for them. The point is that one must calculate integ

of the form
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which are intractable as they stand; wusing the power series for the expane
€ .
function does not help matters as j; f;(S)CLS increases linearly as t

increases. instead we use the identity
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to write (2) as
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where
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The exponent in (8) is bounded for all ¥ % 0 in the problems we are consider-
ing, and the series expansion of F:(i;) in powers of Q? can now ba integrated

term-by-term. We put
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and so on. ~ By using (8), the Integrals (3} can be carried out straightforward-

ly. .
The complex polarisability — ({L{(0)is given by
<« wwt 4
. - -
oy = (P73ETII1 = Lo foe @DctJ de] (12)
where JJ is the electrical dipole moment. The correlation times Q;j are
given by .
%] " 5 :

-y A4 ' . 13)

T o= S Q%) at. , (
J o ~0 ‘ . . .

t
- Here q;f is the autccorrelation: function of the spherical harmonic };m H
- .

w3

v X ¥
, "
Zj—?mﬁ;) = g 5 <Y3m( o), o) Y3 (9,92> sinbdody . (14)

‘
For spherical-top molecules the Q?ﬁ are independent of t ;  for linear
moleculss they depend on W', but only the M= 0 functions are of physical
jnterest. In the papers [1, 2, 3] the after-effect functions ,
<Dr?"m,(u\(lc))[5(t))'a“(t))> are calculated.  Here the D\:m’are the
matrix elements of the rotation matrices in the (Qd +1) -dimensional "
irreduc}ble representation of the rotation group ({as given in [6], for example).

The after-sffect functions are formally identical with the ccrrelatiop

functions; for sphericel-top moiecules we have
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‘Next we apply these ideas to the expressions for nSSCﬁ) for spherical-
top moleculas given in [1, 2]. After a considesrable amount of tedious but

elementary manipulation we obtain:
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In the expression for X{©) we have used (16) to eliminate %~ in favour of
(34 . The first term on the right hand side of (18) is of the same form
as the well-known Rocard empirical expression [5]; the second and third
% 3
terms are of order Q? and a\ relative to the first.
The calculation of f;(t) to a given order in ?A involves considerably
more labour for a linear molecule than for a spherical-top molecule. In [3]

the calculations of :Sftj for a linear molecule was carried through to order

/@3 ; from these results we have
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Many authors (see for example [5]) have pointed out that the leading
terms in the expression for {({(tDcan be cast in the Rocard form. However,
it does not seem to have been noticed that, by eliminating ’Kb in favour of
654, the Tirst correction can be made of relative order %\2. rather than of

order lF .

It is of interest to compare the expression (5) for the autocorrelation

function with the classical theory of Debye which neglects inertial effects,
corresponding to setting A='1 > G( = ?—TP) > F(’t):: 4 in (5). The theory
used to derive expressions of the form (1) uses a stochastic representation
of the medium surrounding the molecule. The state of the surrounding medium

(the heat:bath) is described by a single parameter, the temperature —r; the

interaction of the molecule with the heat bath is also described by a single
parameter, the rotational drag coefficient IEB . Two relaxation times
appear in the theory: IEyﬁiT- and E;‘ 3 the theory is valid when their
ratio ’5\’ = h,T/IE)?' is small. The autocorrelation functions fall
off exponentially on the scale of IEB/Q:T , .and the short-time correction
factor F:(ﬁ) tends to unity on the scale of Efﬁ . Thus the inertial
corrections to the Debye theory enter in two ways:

(1) There is a modified short-time behaviour described by FYtD.

(2) The long-time behaviour is still exponential but with a modified

-1
Debye time (3 and a modified normalization /q .
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