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Abstract

The Corrigan-- Goddard conditions for the parameters describing a system
of n SU(2) monopoles in static equilibrium are solved for small values of the
parameters. The 4n independent parameters are exhibited explicitly, and turn

out to have a simple group theoretical interpretation.
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(1)
As shown by Ward and Atiyah the solutions to the Bogomolnyi equations

for static SU(2) monopoles may be formulated in terms of an SL(Z,c¢) transition

(2)’

have proposed an Ansatz for the transition matrix to describe any possible

matrix, and recently, building on some earlier results Corrigan and Gaddard(z)
configuration of n monopoles.  Thé Ansatz is non-singular for at least small
monopole separations. But it contains n(n+2) parametérs satisfying n(n=2)
conditions (most of them transcendental) and so it is not easy to extract a

set of 4n independent parameters or to identify the parameters with the

physical properties of the system. Indeed it has not even been shown that

the n(n-2) conditions really do admit solutions with 4n independent pacvameters = »
Accordingly, it may be of dinterest to simplify the conditions so that they can

be examined in more detail. In a previous papor(S) the simplifications that
arise by imposing special symmetries on the system were considered, and in the
present note we(wish to consider the simplifications that arise for small values
of the parameters, that is, for linear perturbations of the superimposed
(axisymmetric) solutions. It turns out that for small values of the parameters
the n(n-2) conditions can be completely solved and the tiransition matrix
exhibited explicitly. Furtherwore, all 4n independent'pnrametors and all the
symmetries of the system are already present, and so the linear approximation
gives some insight into the meaning of the parameters.. The group~theoretical
meaning becomes immediately clear. They are the excitations belonging to the
(1-dimensional) irreducible representations of the extended group of rotaticns
around the z-axis Ce X parity i.e. (m,t) where lml=n=1,0."" The relationship of
the parameters to the coordinates of the monopoles (zeros of the Higes field §ix))
requires further study, but apparently all 4n parameters appear in the gauge-
invariant quantity éﬁ?u and so have a direcs spatial intevpretation.

To obtain our results we use the Ward  form of the solutions to the
Bogomolnyi equation, in which the transition matrix is determined by a single
function f=N/H where N and H are defined as follows. Let xtux:fy, be the space
coordinates, ¥ the Ward-Atiyah variable and ¥ =24 #+x,3} —Y_tj.'Then

h m) [ k_‘
H = i +g;qk 5% where Ket-om , imlignn-k (1)
]
m)
the Q:h are constant, and N is chosen so that f is entire in x,y and z.
The CG Ansatz for N is that

kK o ~IK A Vi -
N= € +by e where K:Z V!_T[ ( ws) s H= TT(Y‘Q') (2)
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the roots &, are assumed distinct and ny are the values taken by @« for the
axisymmetric Ansatz(z) inp=0,72, ...%(n-1) for odd n and inp=*1,%3 ...*(n-1)
for even n. The only parameters in (1) and (2) are the n(n+2) parameters

(3)

and these are required to satisfy the n(n-2) conditions

K =b,+b, Ya4... +b.?fh" ’ (3

r m

3,%._! b,3 =o where
and & =l,«,n-2, ~(n-1-a){m{(n-1-8), leaving 4n independent parameters.
Our results will be based on the following two properties of K.

First, because of the identity

o, (4)

]

n
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K can be written in the form

w ¥ 0,
K=Y + 3 (n-w) Er(,&,v_ws) , (5

rwl

(A simple method to establish (4) is to note that the left-hand-side is a
polyncmial of degree n-1 in ¥ and vanishes at the n distinct points ¥= W),

Second, if we expand K as

v n-g '
K = Z bs (w) ¥ Wr/qh(wr"wq) y GS=le N (6)
Y5 *
then the nxn matrix b; (w) can be written in the form
ol - 7 1 0 o --0jft o T
_elw ~e\lz) . . -e | 0 - -0 W, W, - W,
v , W 2 T 4
\os(u) = e,w e‘: =|€ - i . ' > n = s‘_(“)») 7
. N~ -1
L { W, b))_ P b)n
- L <L |

where the €, are the elementary symmetric functions((J) of order p of the Wy
and e:; the elementary symmetric functions of order p obtained by omitting ®g.
Note that the matrix elements of Tsq vanish for ¢>s. The first equality in (7)
follows directly from (2) and the second equality from

tr) v}

{
er = eF - w,. Q ’,_‘ (8)
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So far there is no question of small separations, or -even small variations
. tm) . . . .
in the a: . But let us now consider such small variations. On comparing
. . . (4 . . .
(1) and (2) we see that small variations in the ka induce small variations

in the roots ®.  given by

Sm /Tr (Dv— w—")

(X b"
sy = = ) 8 an (1)
ey S7e

In particular if the small variations are around the axisymmetric values

of the (1‘:') (and therefore correspond to small separations) we have

et wm
tm)
bw, - -% sann) s/a@ vwhere g, = gr(""“’)

Furtheremore, we see from (5) that in this case

ko ¥-) 8% TT{¥-n) = x-i 50“;; }3:(") ¥

T, S¢Ev et

and the n(n-2) conditions (3) become

" r m
T b_tn) %—1 "‘% SW, 5 = 0, el m| < feanl
vy .

But then from (10) we see that the n(n-2) conditions reduce to the purely

algebraic conditions
) R
| (m)
Z bq(ﬂ)gi(nv) qu =0,

Furthermore by using (11) (and the triangular nature of Tsq) we see that {13)
can be written in the more symmetrical form
Ll =2

ZE Fir 80" =o Pin =2 () /o

* where

and . .
=l nd=ml 5 GR=ln+i=iml for In#0

of="] v -1 (";h="l,'w, h. . for m=0-

(Note the modification in the range for m=0). We thus see that for small
separations the n(n-2) conditions on the parameters reduce to the set of
linear conditions (14). 1In particular we see that the conditions are
independent for each m. In other words if we array the 0(:) as in Fig. 1a

the conditions apply to each column separately. Indeed since the matrices

{9}

(10)

(11)

(12)

(13)

(1)
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.P"iz in (14) are manifestly non-singular, we may solve (14) explicitly and
write
-

A = (o )y Ea™ , (15)
where A takes only the two end—values A= fi-Wwl n-W\-l for the generic
case V¢M{N~1 and the values A = n-\, n and A= for the special cases
m=0 and m=n, respectively. Thus in each column the vector sqr)is
completely determined by the 2-vectors 5:\“) in the 2-spaces at the foot
of the column (Fig. 1b). - Since there are just 4n parameters f:‘)in (15) we
see that, even for small variations we obtain the full set of independent
parameters allowed by the index theorem. Using (15) and (9) we also have

H =F<\(‘“v) where W, =N, -;:Z m_")h_if_’) S(:’g"' (16)

m=] R=| O Ra
for small wvariations. '
One can actually go a little further with (15) by noting that fk in

{(14) has no elements connecting even and odd values of i,k. It then follows

that (15) can be decomposed into

o - tm . ;' [
’;(f’ £ ) and SCIM) -(f ) EM) (17)

O‘;{ )1{,1‘ * 2l 2, T -

where €+ are even and odd integers taking only a single end-value each.
In other words the n(n-2) conditions (14) not only apply separately to each
column m, but also apply separately to even and odd components within each

column (Fig. 2). Thus the effect of the conditions is to fix the directions
tm)

Mot

of the vectors & Q::Jand §a , leaving only their magnitudes as free
rarameters.

A simple group theoretical interpretation of these results may be obtained
by considering the group Ce* P of rotations around the z-axis and parity
transformations. In fact one sees at once that the E:.“) and 30::) belong to
the irreducible representations (m,’) of this group for m=n,n-1. Note that
the 5‘3;.“;) belong to the same irreducible representation (m,* ) for all k,
because the axisymmetric solutions, and hence the fy—matrices, are C,*P—invariant.
One sees therefore that the parametrization of H according to the 4n parameters

corresponds to a decomposition of H according to Cu*P .

Lp

One might then ask how the other symmetries of the superimposed case,
such as reflexions in the coordinate planes, affect the solutions (16).
Clearly the other symmetries cannot decompose the E(:w further, since the
latter are one-dimensional, but what they do is to relate the 5‘;, and Sa:’z
for different m. - Since the fk—matrices are invariant with respect to these
symmetries, the relationships will be the same for the ftm’zmd the SCl:i_‘
for all k, and so may be formulated in terms of the E;w alone. The relation-
ships for the general C(Lw have been tabulated in ref. (5) and it is trivial
to transfer them to the 51;“ .- For example, hermiticity and invariance under

reflexions in the (yz) and (xz)-planes imply that

- (-
™ g el e w -m)

= ™
E™ 2y * and * =ty Es ’ (18)

respectively. In particular, hermiticity and xz-reflexion invariance together
require that the 5?) be real.

An important question is how the 4n parameters appear in the Higgs field @0‘)
and how they are related to the 3n monopole coordinates (zeros of §(") ).
Unfortunately, the answer to this question requires a computation of §(’0
from the transition matrix, to order X" at least, and such a computation is
very difficult. The best we can obtain at present are some qualitative features.
First, we note that if all the Eg-“ are zero except one, then that one breaks the
continuous axial symmetry of the function H down to the discrete axial symmetry Cm
given by rotations through 2rr/m, r=1...m. Thus each E\r)scparately describes
a ring (or rings) of monopoles as discussed in ref. (3) (although the ensemble
of E¥'will not describe a superposition of rings). It is then clear that, to

{ 2
first order in E.:} $ ««) takes the form

le): JC((‘,31)+Z EL:’Z 3m(s"1"5l)(e"w}ms + 5 Z E;zm Z mp‘,s‘/((,euup)"‘+c. C. (19)
™ Sz m 5=

where the coefficients :;((731) ,g(f’;§> ,g((’;gl ) are independent of E‘w <o If

the rings do not collapse to peints to first order in E"(which we have proved

for m=n in vef. (5) and is plausible for .all m) then the coefficient of none

of F/M; in (19) is zero. For this reason, and also because there is no reason

to discriminate against any particular set of 5“_:_) it is plausible that all 4n paramete-
rs, 8?’ wil} actually occur in (19). If this is the case, the gauge-invariant

quantity §(><] will depend not only on the 3n parameters describing the positions
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of the monopoles, but also on the n 'internal' parameters(4). With regard to m :

the 3n monopole coordinates themselves; a preliminary study of (19) indicates

that the separations between the monopoles will not be of uniform order in €. 1
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More precisely, if all the C;“ are of order £, the study indicates that the

: */n | XX | x| X{Xx}Px|Ix|{xix
separations are of all orders € , -for r=1...n. !
XIxix|x|x|xfx
XPXEPx|x|x

XXX

f ' Fig. la
i Diagramatic representation of the n(n+2) parameters
which occur in the definition of H in (1).. Note that the
' } range of m for each k is limited to =(n-k+1) {m {(n-k+1).
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Fig. 1b L

Diagrammatic representation of the 4n independent

(m) fwm) 5!
parameters €, in (15), where$ q: =(® )kAE‘;, and all

. L. O'Raifeartaigh and S. Rouhani, DIAS preprint DIAS-STP-81-31. the £ are zero except the 1ast two in cach column.
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Fig. 2

The manner in which each column in Fig. 1a splits into
entries of alternating parity is illustrated. . The §£-matrix
in 'SCIUM = (g.’) Em) connects only entries of

= RNEA
same parity. The non-zero E —entries are circled and it is

evident that there is just one € for each column (each m)

and each parity.



