L* Convergence of Tertala Random
Walks cn Z9 and related Diffusions

One technique for studying the anp*‘oach to equilibrinm of a continuous time
Markov process is to consider tue restriction to the L% space of un favariant dis-
tribution. When the process is reversible with respect to this distribution, the

generator Is a selfacjoint operator. We study the L? spectrum of the generator
for certain random walks on Z¢, where the reversible invariant distribution is
concentrated near the origin and decays rapidly with distance to the origin. For

the related ’::1 18i01s on Rd we find that the generators are unitarily equivzlent
to Schrédinger operato:s.
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§1 Introduction. - One standard approach to continuocus time Markov pro-
cesses is to start with a generator D, construct a transition function Py{x,dy)
which in an appropriate sense satisfies

P: = exp(ID) {1

dznd thien study the pronerties of P, e.g. invariant measures. For certain

al systems it is more natural to start from a probability measure 4 and
¢velop processes which leave i invariant. Of particular interest are generators
iefy the detailed balance condition with respect to p. In terms of i

¥
s yields the relation
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#{dz)Pe(z, dy) = u{dy)Pi(y, dz) (2)
which is the condition of time reversibility for the Markov process with initial
distribution jt and transition function 7.

heass ufnpr\on of time reversibility introduces additional techniques for
the study of the process. The aspect we consider here is conv rergence in the
sense. Wiaen g nﬂ P snt’°f} {2}, P; gives rise to a selfadjoint contrac

.L ( u). The generator D acts as a necative semi-definite

selfadjolat operato L*{p) with eigenvalue zero corr esponding to the invari-
ant distribution. I* tﬂb spectmm of D is otherwise bounded away from zers,

1.

then convergeuce to equilibrivm is expenentially fast &
genee Lias been shown for a special dynaniic :
and is conjectured for dynatnic two-dimensio
region {sce [4], [5})

Here we nse the spectral approach to study the couverzence of some simple
random walk models. The original motivation i in the work of Bufet-Pulé-de
Smed! ou a boson system coupled to a Leat bath [1]. Arising in their studics
arliov process on the positive reals for which an estimate of she raie of

onvergence was desired. In "3) we gave estimates of convergence for processes
of this type and related Markev chains on the positive inwegerq fn the present

Tk we extend the analysis to certain random walks on Z9 and leck briefiy
at t‘ue diffusion Jimit which yields Schrédinger operators.
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§‘Z Formulation., The I apnroac_z is applicable to rather generzl continnons

imme Markov processes. We shall formulate bere in terms of 2 countable diserats
state space (I and later specialize to Z¢. To each z € 0 we sssocia ind
subset of {1 denoted &z called the neighbours of 2. We require that

d

Y& Iz <= 2 &0y
For Z4 we defin
e F LR Ve o
dr={zte;:i=1-.-d} (s

where {e;} are the standard unit vectors.
We assume that we arc given a stricily positive nroba
o » &

by
on 2. We shall construct the generator D from a matrix Q‘ which satisfes the
reversibility coudition :

iy e co
LY distr L‘ fion =

#(2)Q(=z,¥) = 7(¥)Q(y 2)

whenever y € dz. We define

glz) = E: Q=) (4)
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and for the real valued function f equal to zero except oa a fnite subset of

@) = 3 9=y | (5)

(D)=} = Q1)) — a(=)] (&}

D is densely defined and dissipative

—



in £2(7) where
(£,9)x = D F(2)g(2)(=).

We new introduce some particular generators in terms of Q;,i =0, 1,2, 3.
We need oaly define Q;(z,y) for y € 6z and take g;, Q; and D; as above:

Qo(2,y) = 7(y}/[x(2) + 7(y)]
Q1 (=, y) = min{1, ﬂ(_)_/:rr(:c)}
Q2(z,y) = V= (y)/w(z)

Qs (2, y) = max{1, (y) /7 (x)}

All of these are reversible for 7 and we have

(Dt—i-lf’f)ﬁ‘s (th1f)w (7)

fori=90,1,2,

Proposition 1. . The closure of Dy is the generator of a positive contraction
semigroup in ¢!{x} provided that the cardinality of x is uniformly bounded
for z € ().

Corclusions about the spectral properties of D presume that the closure
of I} is the generator of a positive contraction semigroup on £ (7). When 3z
is uniformly bounded, this obtains for Dy and D, as bounded operators and
for D, by Proposition 1. Related methods can prove that this property holds
for Dy in the case of 7 of the form in Theorem 2.

When the closure of D is the generator of & positive contraction semigroup
on £}{z), the associated P; is 2 Feller semigroup which extends to £, 1 < p <
oc. The action of the generator in £#{x), which we also denote by D, is a
negative semidefinite selfadjoint operator. We use the following notation:

A (D) = ix;z:){A € £*(r) spectrum of — D}

doo{D) = }g% {the [0, A] spectral projection of — D is infinite dimensicnal}
2

The value of X; is significant because it determines the rate of exponential
convergence to equilibrium in £#(x). In [6] we give direct estimates for Ay, but
for Z%,d > 1, the methods seem more suited for estimating Aoo. We note that
i Ao > 0, then A; > 0. From (7) we hav.

25(D:) £ Ai(Digr) (8)

forj=1,00,i=0,1,2.
For Z! we have the following

Theorem 1. Let n be a strictly positive probability distribution on Z. If

prmrorey

lim sup Z z(z)/x(n) < oo

o0
]imsupz 7(=z)/7(—n) < 0
n

=00
then we have Aoo(D;) > 0,1 =0,1,2,3. Conversely, if either limit superior is
infinite, then Ao (D;) =0,i=0,1,2.
In general the condition is not sufficient for Aoy (Ds) = 0, but this is the case
for = of the type in Theorem 2.

For D > 1, the results are for a specific family of examples. We consider
probability distributions on Z¢ of the form

#{z) = K exp —c|z|®

c,a>0 |z| =y/a}+---+2}

with K the normalizing constant,
Theorem 2. For w as given above we have

0<a<l=>Ao(D:)=0,i=0123 . - (9)
a=1=>0<Mo(Di) <00, 1=0,1,2,3 {10)
a>1=>0<A0{Di) <00, i=0,1 (11)
a>1== (D) =00, i=2,3 (12)

§8 The Diffusion Limit. Before proving the above results we shall take
an clementary look at the diffusion limit of operators like those above. The
limiting diffusion operators on L?(R%, #dz) when symmetrized to L2(R%) take
the form

A=V

with A denoting the Laplace operator and V' a multiplicative operator. Thus,
apart from irrelevant constants, the limiting operators are Schrédinger opera-
tors (see [3]).

We shall consider limits of operators based on D,. The reader may verify
that D; and Ds lead to these same limiting operators, while Dy yields half these
limits. Let 7 : RY — R be a strictly positive twice continuously differentiable

function such that
Y ow(afr) < oo



for each positive integer n, with the sum over z € Z¢, Define

]

log x{z)

|

e(x)

The generator , D is defined by the mairix , Q. where

a

br={zxefn:j=1..-d}

2z, v) = 7° Va(y)/7(z)
Proposition 2. Lei f: R? — R be twice continucusly differentiable. Then

“lim oD f=Af —2Ve-Vf (13)
n—GO
pointwise. This operator acting on f € L*(R%, xdz) is formally unitarily equiv-
alent to
Ag = (Ve ~Ad) g (14)

acting on g € L*(R%).

Proof. To get {13), expand f to second order in a Taylorseries and take limits.
The mapping taking S € L?(R%, ndz) to g € L*(R%) is given by

=) = J{z) Vr(a). (15)

Expression (14) follows from a straightforward calculation.

Thus we obtain Schrédinger operators which can be expressed with V' of
orm

V = |Ve|* — Ae.

= |z|® corresponds to the harmonic oscillator potential.
following s -hov,s that quite a broad class of Schrédinger operators can be
expressed in this way.

Proposition 3. Let the Schrédinger operator —A + V possess a strictly
positive twice continuously differentiable eigenfunction y:

—AY+Vi =2y
for the real constant A. Then V ¢an be expressed in the form
V=X2+|Vef -

with e = —log .,
FProof. Cealeulation

§4 Remaining proofs.  Tor Proposition 1: If {0z 1s unhormiy bounded in
2 & 0, then @, acts 25 a bounded linear cperator in f'\r) viultiplication by

~¢ is the generator of a contraction semigroup in £(x). By Theo;un 13.2.1of
Tille-Phillips [2], the closure of Dy generates a contraction semigroup iu £ &2 ().
Thex for A > 0 and any f € €%(x) there exists ¢ € £2(x) with

(A-=D2)g = f

Now &#(r) C &) and is dense. We verify that the above holds in £(r) ezd
the result Iollows from the Hille-Yosida Theorem.

Proof of Theorem 1. If we have for all n 2 0 and some o >0
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an adaptation of the proof of Theorem 1 of [6] shows that
M(Ds) 2[4

s) 2
M(D2) 2 Va1 = aja? [t
(D) 2 [a/(1 - a)]a® /4
Ai{Do) 2 a-a? /4.

As the null space of D is one dimensional
Aoo > A1 >0

in cach case

Tor the case where one of the inferior limits is mﬁmte— for definiteness
we assume

lim inf = (n) /Z (15)

e+ 0D

consider the fuactions
fulz)= Oforzy <n, = liorz, >n (17)

Asd=1,2z; =z, but the above definition will be used again below. We have
oo
(_Dﬂfm fn)w,/(fm fn)ﬂ = 7:'(73 = 1)71'(73)/ E 7-'(2)
113
It is not difficult to deduce from {16) and the above that

im inf(-szm fn)zr/(fm fn):r =0,

N~—~+0C



50 Ao {D2) = 0 by Lemma 1 below. The result for Dy and D; follows from (8).

Lemma 1. If there exists a constant a and a sequence of functions {f,} €
£2 () such that
fulz) =0for |z <n

lim inf(=Dfa, fo)r/(far Ja)e < a (18

then oo < a.

Proof. Ifb < Ao, then the [0, b] spectral projection of —D is finite dimensional,
so the contribution of this part of the spectrum to (18) goes to zero as n — oo,
hence b < a.

Lemma 2. If there exists a constant a and a positive function o such that
with :
Q(2:y) = Ql=, )V 7(2)o(u)/(o(2)7(¥))

o(z) = 3 Qlzy)

yEoz

we have that

liminf ¢(z) — s(z) > qa,
a|—o0

then Ao > a.
Proof. Assume that for all |z| > n

g(z) — s(z) 2 b.

r vh that ff:c) =0for |[v] < nand {z: f(z) # 0} is finite, with g(z) =

\/ z}f(z) we have
(£, )z = (9,9),

(—Df1 f)ﬂ‘ = ([Q’ - S]fl f)ﬂ‘ -+ (SQ, g)p =+ (_Qg) g)ﬂ’

By an adaptation of Lemma 1 of [8], the last two terms together are nonnegative
0

(_Dfaf)

T
This 1nerm:ahtv extends to all j' in the #

¥ aa e

for |z| < n, which implies Ao > b.

Proof of Theorem 2. For 0 < & < 1, if we apply Ds to f, given by (17) for
n>0

2 (/s )
*7)

7) domain of D which satisfy f(z) =0

(-Dsffn fn)rr/(frn fn)vf < 7"{371 = n}/”{xl > n}

For fixed integer k we hav.

Jim d{zy=n}/r{z1=n+k} =1.

Then
l_iln ("-Dsfm fn)?r/(fns fﬂ)" =0

and Lemma 1 together with (8) gives conclusion (9).
For Dy and a > 1 we employ Lemma 2 with p(z) = 1. for this case we
have

—o(e) +ale) = =24+ S lele + et +alz —e)d/r(a)} (19

For a > 1 the right hand side of (19) approaches +co as |z| — co. Hence
we have (12). For o = I the right hand side of (19) can for large |z| be
approximated arbltranly closely by a sum of d terms of the form r+ 1/r — 2
with at least one value of r satisfying r < exp[~c/(2d%)]. Also for a = 1,

Qz < cosh(e/2) Qo ,

so we have conclusion {10).
Now we cousider D; for o > 1 and take

p{z) = exp|—c|z|* + 28|z

with § > 0 constant. Then ¢(z) — s(z) can be represented as the sum of 2d
terms of the following two types. With y = z % ¢; for 1y] lz| the term is of
the form 1 — exp #(ly| — ||}, while for |y| > |z| the term is of the form

2l = lyl*]) (1 - exp Blle] - o]} (20)

It is not difficult to deduce that terms of the form (20) go to zero as |z] — oo
so that

(expe]

liminf ¢(z) — s(z) > 1 - exp(—B/d7,.

|z|—o0
Since § > 0 is arbitrary, Aoo (D) 2 1. Also 2Qo > @; and both D, and D,
are bounded so we have (11).

Conecluding remarks.  The random walks on Z¢ we considered showed the
fellowing behavior. If the reversible invariant distribution 7 decays as |z] — o0
at a rate less than exponential, then 0 is an accumulation point of the spectrum
of the generator. If the rate of decay is exponential or greater ,-then O is an
isolated point of the spectrum.

We have given a very elementary approach to the diffusion limit. With
a bit more effort it is possible to relate the spectral properties of the Limit
to those of the discrete approximations. For this to be useful we need better
estimates on the spectra of the discrete models. Since Schrédinger operators



have received such considerable study, it mighi be more useful to be able to
make assertions about the spectra of the discrete modeis based on the properiies
of the diffusion limit.
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