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L2 Convergence of CertaIn Fatidom
VJaiks on Za and related Diffusions

One technique for studying the approach to equilibrium of a continuous time
Markov process is to consider sne restriction to the Er space of an invariant dis
tribizion. When the process is reversible with respect to this distribution, the
generator is a seifadjoint operator. We study the £2 spectrum of the generator
for certain random walks on Zd, where the reversible invariant distribution is
concentrated near the origin and decays rapidly with distance to the origin. For
the related dinsions on Rd we find that the generators are unitariiy equivalent
to Schrödinger operators.
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then convergence to equhbr:nni is expcuentiaily fast in L2 (;I. Such conver
gence has cen shown for special :iyiianic spin system having distinct phases
and is conjectured for dynamic two-Qlmcnsional ising models in the two ohase
region (see 4], 51).

Here we use the spectral approach to study the convergence of some simple
random wall: models. The original motivation is in the worh of i3aEet-Puld-de
Smedt on a boson system coupled to a heat bath ]. Arising in then su’lies
was a Markov process on the positive reals for which an estimate of die rat: of
convergence was desired. ifl 61 we gave estimates of convergence for processes
of this type and related Markcv chains on the positive integers, in the present
work we extend the analysis to certain random walks on Zd and lock briefly
at the diusion limit which yields Schrbdinger operators.

§ Formula tom The £2 approach is applicable to rather general continuous
time Markov processes. We shall formulate here in lerrus of a countable discrete
state space i and later specialize to Z5. To each I2 we associate a inirc
subset of fl denoted z called the nesghbours of . We require mat

I) ‘S ‘SOy.

For Zd we define
§1 introductiorn One standard approach to continuous time Markov pro
cesses is to start with a generator D, construct a transition function Pt(, d)
which in an appropriate sense satisfies

= exp(tD) (1)

dz={z±e:i=1.”d} (3)

where {e1} are the standard unit vectors.
We assume that we are given a strictly positive probability distribution

on . We shall construct the generator D from a matrix Q which satisSes the
reversibility condition

and then study the properties of P, e.g. invariant measures. For certain
physical systems it is more natural to start from a probability measure p and
develop processes which leave p invariant. Of particular interest are generators
which satisfy the detailed balance condition with respect to p. In terms of p
and lb this yields the relation

whenever i E ôz. We define

r(z)Q(z, y) = r(y)Q, )

= :; Q(z,z,)
y Eö

(4)

tqdz)P(z,dy) = p(dy)Pt(y,dz) (2)

which is the condition of time reversibility for the Markov process with initial
distribution p and transition function P,

The assumption of time reversibility introduces additional techniques for
the study of the process. The aspect we consider here is convergence in the
La sense. When p and lb satisfy (2), lb gives rise to a seladjoint courrac
rim semigrou in L2(p). The generator D acts as a negative semi-definite
selfadjiat operator ir Lçp) with elgenvalue zero corresponding to the invari
ant distribution. if the spectrum of D is otherwise bounded away from zero,

and for the real yalued function f equal to zero except o a finite subset of fI

(Qf)(z)
= Q()

yEO

(Df)(z) = (Qf)(z) — q(z)j(;).

1) is densely defined and dissinative

(Df,J),. (f,f)

(5)

(6)
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in £2(r) where Theorem 1. Let ir be a strictly positive probability distribution on Z. If

(f, g) f(z)g(fr(z).

We now introduce some particular generators in terms of Q, I = 0, 1, 2, 3.
We need only define Q(x, y) for y E ox and take q, Q and D as above;

for 1=0,1,2.

Qo(z,y) = 7r(y)/[r.(z) +ir(y)]

Q (x, y) = min{1, r(v)/r(z)}

Q2(z,y) =

Q (z, y) = max{1, 7r(y)/r(z)}

Proposition 1. The closure of 132 is the generator of a positive contraction
senhigroup in £‘ (7r) provided that the cardinality of O is uniformly bounded
for x E fl.

Conclusions about the spectral properties of 13 presume that the closure
of 13 is the generator of a positive contraction semigroup on £‘(7r). When ox
is uniformly bounded, this obtains for D and D as bounded operators and
for D2 by Proposition 1. Related methods can prove that this property holds
for D in the case of r of the form in Theorem 2.

When the closure of D is the generator of a positive contraction semigroup
on £(z), the associated P is a Feller semigroup which extends to £, I p
cc. The action of the generator in £2(7r), which we also denote by D, is a
negative semidefinite selfadjoint operator. We use the following notation:

= i{A E £2(r) spectrum of — 13)

A(D) = inf{the [0, A] spectral projection of — 13 is infinite dimensionai}

The value of A is significant because it determines the rate of exponential
convergence to equilibrium in £2 (r). In [6] we give direct estimates for A1, but
for Zd, d> 1, the methods seem more suited for estimating ). We note that
if A > 0, then ? > 0. From (7) we hay.

forj = 1,oo, I = 0,1,2.

For Z’ we have the following

)(D) Aj(D;+1) (s)

liPç (x)/x(n)<oo

lirn sup x(-)/(-72) <Go

then we have )(D) > 0, 1 0, 1, 2,3. Conversely, if either limit superior is
infinite, then A(D) = 0,1 = 0,1,2.

In general the condition is not sufficient for A (D) = 0, but this is the case
for ir of the type in Theorem 2.

For D > 1, the results are for a specific family of examples. We consider
probability distributions on Zd of the form

= K exp —cr[’

c,cr>0

with K the normalizing constant,
Theorem 2. For r as given above we have

0 < a <1 ?(D) = 0, 1 = 0,1,2,3 (9)

a=1=0<Ac(Dj)<oo, 1=0,1,2,3
a>i=.O<A(D)<oo, i=0,1

a > I ) (Di) = o, I = 2, 3 (12)

§3 The Diffusion Limit. Before proving the above results we shall take
an elementary look at the diffusion limit of operators like those above. The
limiting diffusion operators on L2(R’, rdx) when symraetrized toL2(Rd) take
the form

with denoting the Laplace operator and V a multiplicative operator. Thus,
apart from irrelevant constants, the limiting operators are Scbrödinger opera
tors (see [3]).

We shall consider limits of operators based on D2. The reader may verify
that D and D lead to these same limiting operators, while D yields half these
limits. Let x : R’ — R be a strictly positive twice continuously differentiable
function such that

< 00

All of these are reversible for r and we have

(D+Lf) (Dgf,f),,. (7)

(10)

(11)
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for each positive integer n, with the sum over E Zd. Define §4 Remaining proof’s. For Proposition 1: if 8z is uniformly bounded in
2, then Q2 acts a.s a bounded linear operator in £2(r). MuItiplicaion by

e(z —logr(z) —q is the generator of a contraction semigroup in £2(). By Theorem 13.2.1 of2 Rile-Phillips [2], the closure of D2 generates a contraction sernigroup in
The generator D is defined by the matrix Q. where Then for A> 0 and any ,f E £2fr) there exists q E £2fr) with

ôx={±ej/n:j=1”.d} (A—D2)g = f

________

Now £r) C t’(r) and is dense. We verify that the above holds in t’fr) andy) = n y)/(z) the result follows from the Hilie-Yosida Theorem.

Proposition 2. Let f : Rd R be twice continuously differentiable, Then Proof of Theorem 1. If we have for all Ti 0 and some a > 0
00 00

Jim Df=Lf —2Ve’Vf (13) —.2r(—z)<!
— r(n) a 2r(—n) — a

pointwise. Th operator acting on f E L2(Rd, dz) is formally unitarily equ&- an adaptation of the proof of Theorem I of 6] shows thatalent to
— ([Ve]2

—
i..c) g (14) A1(D3) a2/4

acting on g EL2(R’). A1(D2) ‘./r/(i —

Proof. To get (13), expand j’ to second order in a Taylor series and take limits. A1(D3) [a/(1 —

The mapping taking f E L2(Rd, 7rdz) to g E L2(Rd) is given by A1(D0) a

g(z) = f(x) (15) As the uulI space of D is one dimensional

Expression (14) follows from a straightforward calculation. A00 > A1 > 0

Thus we obtain Schr6dinger operators which can be expressed with V of in each ease
the fom For the case where one of the inferior limits is infinite— for definitenessV = — e. we assume
For example, e(z) = z12 corresponds to the harmonic oscillator potential. Jim inf irfr)/ E ir() = 0, (IG)The following shows that quite a broad class of Schrddinger operators can be
expressed in this way.

consider the functions
Proposition 3. Let the Schrödinger operator — + V possess a strictly
positive twice continuously differentiable eigenfunction ‘: f (z) = 0 for x1 < n, = I for a1 n (17)

+ = As d 1, a1 = a, but the above definition will be used again below. We have

for the real constant A. Then V can he expressed in the form
fr)—/(Jn ft),r = \/(n — 1)7r(n)/

V = A ± Ve]2 —

It is not difficult to deduce from (16) and the above that
with c = — lega.

Proof. Calculation liminf(—D2f7;,Jn),r/(fn, fn) = 0,
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so (D2) 0 by Lemma 1 below. The result for D0 and D1 follows from (8). Then
lim(D3fn,f,)/(fn,fn) 0Lemma 1. If there exists a constant a and a sequence of functions {f} E n—Do

£2(r) such that
and Lemma 1 together with (8) gives conclusion (9).= 0 for jzj <

For D2 and a 1 we employ Lemma 2 with p(z) 1. for this case we
1iminf(—Dfn,fn)/(fn,fn), a (is) have
n—oo a

1. 1then —s(z)+q(z) = —2d+ [r(z+ej) +r(z —el)31/r(x) (19)

Prool If b < A00, then the [0, b] spectral projection of —D is finite dimensional,
so the contribution of this part of the spectrum to (18) goes to zero as . For a > 1 the right hand side of (19) approaches +00 as — co. Hence
hence b a. we have (12). For a = 1 the right hand side of (19) can for large Izi be
Lemma 2 If there exists a constant a and a positive function o such th approximated arbitrarily closely by a sum of d terms of the form r + 1/f — 2
with with at least one value of r satisfying r exp[—c/(2dj1. Also for a = 1,

Q(z, y) = Q(z, y)/ir(z)p(y)/(p(z)ir(y))
Q2 cosh(c/2) Qo

Q(z,y)
yEas so we have conclusion (10).

Now we consider D1 for a > I and takewe have that
liminf q(z)—8(z) a,

(z)=exp[—cz+2z/3

then A00 a.
with > 0 constant. Then q(z) — s(z) can be represented as the sum of 2dProof. Assume that for all IzI r’ terms of the following two types. With y = z ± e1 for 1 < Jz the term is of
the form 1 — exp [1uI — IzU, while for ui > izi the term is of the formq(z) —s(x) b.

(expcUzia
— iyM)(1 — exp/3[izI —1i1) (20)For f such that f(z) = 0 for ivl < n and {z: f(z) 0} is finite, with u(z) =

/(x)/p(z)f(z) we have
It is not difficult to deduce that terms of the form (20) go to zero as —+ 00(ff)1 = (g,g)p
so that

(—Df,f) = ([q — s]f,f) + (sg,g)p + (—Qg,g). liminfq(z) — s(z) 1— exp(—/d.

By an adaptation of Lemma 1 of [61, the last two terms together are nonnegative
Since > 0 is arbitrary, A00(D1) 1. Also 2Qo Q and both D1 and D0so
are bounded so we have (11).(—DJ, f),. b(j, f),..

Tiic uallty extends to all fin the £2fr) domain of D which satisfy 1(z) = 0 Concluding remarks. The random walks on we considered showed thefor [z[ < ri, which implies A00 b. following behavior. If the reversible invariant distribution ir decays as 00

Proof of Theorem 2. For 0 < a < 1, if we apply D3 to f given by (17) for at a rate less than exponential, thea 0 is an accumulation point of the spectrum
of the generator. If the rate of decay is exponential or greater, then 0 is an

(—D3f,fn)ir/(fn, f,.,) {zi = n}hr{zi } isolated point of the spectrum.
We have given a very elementary approach to the diffusion limit. WithFor fixed integer k we hay. a bit more effort it is possible to relate the spectral properties of the limit

to those of the discrete approximations. For this to be useful we need betterlim r{z1 = = n + k} = 1. estimates on the spectra of the discrete models. Since Schrödinger operators
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have received such considerable study, it might be more useful to be able to
make assertions about the spectra of the discrete models based on the properties
of the diffusion limit.
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