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2

in discussing the observed viscosity dependence of the reaction rates,

refs.(1—3), The ob0 of the reactat)into the reacting position, the

‘ncounter” in the language of
_

collision theory, is hindered by

higher viscosities, , and, in the diffusive regime, the number of

these encounters is Zo’71 ; however, this same factor increases the

difficulty for the reactant(s) to move out of position, providing a sort

of cage wall and the time spent inside this cage, or the number of

collisions following the initial encounter, is n< Any reaction rate

that is proportional to the total number of collisions, Z*n, will be

independent of the viscosity.Under certain circumstances, however, the

rate will be proportional to Z O One class of processes where this

is well known to happen is the quenching of fluorescence where the

chemical process is so fast that the rate is controlled by the diffusion

of the quencher to the excited molecule, ref.(4), A similar behavior is

observed in very fast proton—transfer reactions, ref.(5). For very high

viscosities, the quantity n will be very large and the chemical reaction

will aLways occur at aearly stage of the encounter and its rate will

—i
be proportional to Z o< Then, we should expect that the rate of a

—i
chemical reaction would always go like 07 for sufficiently high

viscosities.

In the other extreme case, when the coupling of the

reactant(s) to the solvent is very weak, the reaction rate will also

decrease. In fact, once the higher energy molecules have reacted, the

replenishe of this top energy layer will be too slow to maintain

thermal equilibrium and the rate will slow down.
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We shall h0 __> that this behavior is predicted in all

stochastic theories, the major effort being directed to the

understanding of the conditions when such extreme regimes fail and to

predict the detailed general form of the rate constant.

The most widely used theoretical tool for the understanding

of chemical kinetics is still the transition state theory (TST) in its

original form, ref.(6), or in one of its modern versions, ref.(7).Becaue

tt s used throughout this paper as a major reference for comparison

of the results obtained with the stochastic theories, it is usefu] to

recall its basic principles and final expression. Conventional

transition state theory depends on the following general assumptions,

ref.(8)

a) The rate of a chemical reaction may be calculated by

attention on the ‘transition state’, the region near the col

point of the potential energy surface that must be crossed in

of conversion of the reactants into products.

b) The transition state is in quasi thermodynamic

with the reactants and the removal of the products does not

eacat’ up to the transition

fo cu.sing

or saddle

the process

equilibrium

affect the

state.

c) In the region around the

reaction coordinate can be treated as free

The rate, kTST, is calculate

population at the transition state by the

species will go into products. The final

col, the motion along the

translational motion.

d as the product of the

frequency at which one such

result may be cast in the
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between reactants and transition state. The activation energy is then

solvent dependent and quantities like activation entropy and activation

volume are used in the discussion. (This is thouroughly treated in

standard textbooks, for example, in ref. 1). Other effects originate in

the intrinsically dynamic interactions between solvent and solute and

thus, are not amenable to this kind of thermodynamic treatment The

stochastic theories that have expanded so much in these last few years

attempt to dealing with these more complicated interactions.

The plan of this paper is as follows. In the next section,

the basic ideas of the method of Kramers are reviewed and recent

generalizations, especially the progress made in bridging the two

Kramers limits, are discussed. The

devoted to discussing two lines of

that seem very promising for

processes in condensed media.

interaction of the reactive

establishes a connection with

statistical thermodynamics. The

of the hypothesis of time sc

which may be

in section 4.

by the general

in section 5,

strategy proposed in the first ckapr of this volume are

3 and 4.

remaining part of the paper is

current development of the theory

the interpretation of chemical rate

Section 3 deals with the problem of the

coordinate with other nonreactive modes and

the field of non—equilibrium non—linear

difficulties arising from the breakdown

ale separation (non-1arkoffian effects)

very relevant in condensed phase processes are considered

The improved physical interpretation that may be achieved

strategy that is the subject of this volume, is discussed

We should note that the three cornerstone techniques of

the

used

delta—like

in sections
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2. THE KBAMERS MODEL AND ITS EXTENSIONS

For our purposes, a chemical reaction is viewed as the

passage over a barrier by a particle under the influence of random

forces originat9 in its environment. It was Marcelin (9) who first

represented a chemical reaction by the motion of a point in phase space,

thus USji1 F- tke fi-5t tk roro.smethods of statistical

mechanics. He suggested that the course of a chemical reaction could be

followed by the trajectory of a point in the 2n—dimensional space

defined by the n position coordinates necessary to describe the reacting

system together with the corresponding conjugate momenta.

Inspired by Christiansens (10) treatement of a chemical

reaction as a diffusional problem, Kramers (11) studied the model of a

particle inBrownian motion in a 1—dimensional force—field and predicted

the existence of three fundamental kinetic regimes, depending on the

magnitude of the friction. The bascc hypothesis and results of this work

will be summarized below, as many of the most recent results obtained

using more sophisticated models are still best described by reference to

Kramers original model and to those of Kramers when the

appropriate limits are taken.

2.1 THE KPAMEPS MODEL

Consider an ensemble of non—interacting particles —the

reactant— under the influence of (i) a force derived from an external



7

one—dimensional potential V(x) consisting of a well (A) and an adjacent

barrier C (see fig. 1) and (ii) an irregular force resulting from random

collisions between the reactant particles and solvent particles at a

given temperature, T.

FIGURE 1

Kramers (11) identified the chemical reaction with the

escape over the barrier of the reactant particles initially located in

the potential well, The irregular force simulates the interaction with

the solvent which is thus treated as a heat bath.

The motion of a particle (mass M) in the Kramers model may

be described by the following Langevin equation,

(3.a)

* F() (3

where is the friction coefficient (or damping rate) and 1(t) is the

irregular force associated with the coupling to the heat bath. This

force is assumed to be markoffian, i.e., the forces at different times

are assumed uncorrelated. It may then be defined by

< (t)> (.a)

(E(o)F(t)1KBTt)
(.b)

where eq.(4.b) is an expression of the fluctuation—dissipation theorem,

ref,(l2), that relates the friction with the magnitude of the

irregular forces acting on the particle.

The Langevin equation (eq.3) is equivalent to the following
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Fokker—Planck equation which drives the probability distribution in

phase space.

(5)

In order to obtain simple analytical results from this equation, Kramers

assumed further that (iii) the potential is parabolic near A, V(x)=

C, V(x)=Q— M(x—xc)and that (iv) the height of the

barrier is much larger than the thermal energy, )KaT, so that the

reaction process is slow and quasi—stationary. Under these conditions he

was able to obtain the following simple expression for the rate of

particle flow over the barrier:

___

÷

/

] exp(_E/KBT). ()

It is important to consider two limiting cases where this

general expression may be simplified. For smal] frictions, ]<< 2u,

eq,(6) gives the same expression as that obtained earlier in transition

state theory,

T5T (-E/KY) (7)

The condition of validity of this expression is easily understood. If

the time scale of the damping (l/) is much larger than the time scale
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of the motion atop the barrier (1/), then the particle will have an

effectively free motion in its downhill path out of the well. It should

be kept in mind that this is exactly one of the fundamental hypotheses

of transition state theory. It should be wrong, however, to conclude

that there is no lower limit on the friction for the correct

applicability of the TST expression. For extremely low frictions, the

coupling to the heat bath is no loI1er to maintain the

quasi—thermodynamic equilibrium in the well, thus ivaIjaThnssumption

the
made by Kramers to derive eq.(6) and alsTnderlying conventional TST.

For this extreme low friction region, Kramers (11) was able to calculate

the rate by converting the Fokker—Planck equation (eq.(5)) into a

diffusion equation for the energy; the exchange of energy between the

heat bath and the particle is the rate limiting step in these

conditions. The following approximate rate equation was obtained

KT
(_6/ST) (s)

This energy diffusion process should apply when the characteristic time

of damping, l/’, is much larger than the time of equilibrium escape of

a particle from the well, l/kTs

Kramers (11) suggested that transition state theory should

apply in the range of frictions (KBT/2TEb) , the lowest

limit corresponding to the point where expressions (7j and (8) give the

same rate value.

The general Kramers expression (6) may be simplified in the
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= e (- Eb/KT) Low

Cx p (- E/K31) ()

and the general expression for the overall rate may be written as

-

Low

The results of this two step model are also shown in fig.2.

Biittiker, Harris and Landauer (13) refined the Kramers

treatment of the low friction case allowing for a non—zero density of

particles at the energy of the barrier and obtained an expression for

the rate, which may be cast in the form

* TST/L0w] -

L

This expression converges to for the high frictions and

starts correcting kL3 like

1 3

KBNI _j+

while eq.(l3) introduces a correction of the form

nt -

±

____

L ) J
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As may be seen by comparing eqs.(15) and (16) and also by

inspection of the plots in fig.2, our interpolating expression gives a

rate higher than that calculated by the method of Blittiker, Harris and

Landauer (13) but, for higher frictions it approaches the Kramers

function in the correct way, (See section 2.2 for further discussion of

this point.

2.2 THE BISTABLE MODEL AND OTHER GENERALIZATIONS OF KRAMEPS

METHOD

In the model studied by Kramers (11), the particles are

assumed to be initially at the well around A and to be lost as they

escape above the barrier, Many physical processes, however, are more

realistically modeled by a bistable potential (see fig.3), namely when

two states A and B may be interconverted. In the original Kramers model

no back crossings from B to A were considered, the particles were

somehow absorbed as they arrived at B.

FfçiRs 3

(7)

It should be noted that states A and B are not well defined states but

rather probability distributions around the potential minima A and B.

For high barriers like those assumed originally by Kramers, there should

be no ambiguities, but one should be careful when dealing with small

barriers, One way to deal with this problem rigorously is to work with



13

the eigenvalues of the operator driving the probability distribution in

time. For simplicity, consider the case of a symmetric potential and let

(x) be the eigenfunctions associated with eigenvalues > . The

following interpretation emerges from an interesting paper by van Kampen

(14): (0(x) ( )=O) is the equilibrium distribution; the lowest

non—zero eigenvalue, X, is usually the one defining the chemical

relaxation rate as it corresponds to the slowest time scale and, its

associated eigenfunction, is antisymmetric. To this first level

of approximation, the probability distribution is given by

(x)+ (x)exp(- At) and describes the evolution from t=O, when the

two functions may cancel each other in the right—hand side well, up to

the final equilibrium distribution (x). It is easy to see that

and the individual one way rate constants may be determined if

the equilibrium constant is known as well. Others methods of avoiding

this ambiguity consist of calculating the expectation value of the

position, <x>, (e.g. ref. 15) or the total population in a well defined

Xe:

by UA (t)=f dx P(x,t) (e.g. ref. 16) and look for the time evolution of

these variables.

Brinkman (17) considered the bistable potential problem and

showed that the diffusive, very high friction regime of Kramers was

still correct,

C exr C (Vc -V /KBT
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Bj ex ((-v8)/KJ)
rr

Instead of the quasi—stationary state assumption of Kramers, he assumed

only that the density of particles in the vicinity of the top of the

barrier was essentially constant. Visscher (18) included in the

Fokker—Planck equation a source term to account for the injection of

particles so as to compensate those escaping and evaluated the rate

constant in the extreme low friction limit. Blomberg (19) considered a

symmetric, piecewise parabolic bistable potential and obtained a partial

solution of the Fokker—Planck equation in terms of tabulated functions;

by requiring this piecewise analytical solution to be continuous, the

rate constant is obtained. The result differs from that of Kramers only

when the potential has a sharp, non—harmonic barrier.

Brinkman (17), Landauer and Swanson (20) and Donnelly and

Roberts (21) made important progress in extending Kramers method to

models with several spatial dimensions. For the relatively simple models

that were worked out, the major conclusions attained by Kramers do hold

well, (A more detailed discussion of this point is given in the next

section).

van Kampen (14) presented a detailed analysis of a

specialized one dimensional, symmetric double—well potential and

obtained expressions for the eigenfunctions and eigenvalues of the

associated Smoluchowski equation. He was able to reproduce and correct

the Kramers result in the diffusional limit and clarified the VaioS
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validity of TST would be far higher than predicted by Kramers (11), (See

also the discussion at the end of sub—section 2.1 .)

Several other attempts have been made to derive general

expressions for the chemical rate, valid from the extreme low friction

071€’ S

regime to the moderate and high frictiarlier on, Visscher (23) had

Montgomery, Chandler and Berne (25) used a stochastic dynamics

trajectory method to solve the bistable either piecewise harmonic or

piecewise constant potential and found that the actual rate was always

below 50% of the TST value, (For comparison with fig. 2, we note that

the parameters taken correspond to E6/KT=4.9 and, for the piecewise

harmonic potential, /c)=3.O5 .)

Bttiker, Harris and Landauer (13) extended the treat ment

made by Kramers (11) for the extreme low friction regime to take into

account the effect that the flow of particles out of the well has on

their distribution inside the well, They obtained a rate expression,

Ve io
eq.(14) above, valid from the extreme low frictioup o intermediate

friction but converging to the TST value (see fig. 2). Carmeli and

preformed numerical calculations in

and intermediate friction regimes and

which appeared to cover the whole

Wolynes (16) constructed a sequence

analytical results known for small fric

some theoretical difficulties may

approximants, the results obtained s

technique was applied very recently

the transition region between low

fitted a one—parameter expression

range of frictions, Skinner and

of Pade approximants from the

tion and large friction; although

arise with this use of the

eem very satisfactory. The same

by Garrity and Skinner (24).
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Nitzan (26) proposed a new approach based on a division of the particle

phase space in two overlapping regions. In the first, for the lower

energies deep insidethe wells, the variation of phase is assumed to be

much faster than that of the energy and a diffusion equation for the

energy will hold. The second corresponds to the higher energy region

near the top of the barrier where a spatial diffusion of the particles

may be assumed. The final expression for the rate, kCN, may be written

in the form

=

-

s

where is the mean first passage time for the particle

boundary between the two regions referred above, k1is the

given by eq,(6) and s is a complicated factor assuming v

1/2 (for ‘_.O) and 1 (for large i’), This method and the

eq.(20), should be compared with the very simplistic

discussed at the end of sub—section 2.1, The factor s

makes the rate always larger than kt but closely

llovin away from the smallest frictions, the corrections

of the form

to reach the

Kramers rate

alues between

final result,

two step model

now introduced

related to it.

introduced are

K —
5

____

÷ 5hI<Lw, ,

) )

if we identify k . As the factor s is close to 1/2 in this
i L.Ov

region, it is clear how is closer to kL (or more rigorously, to

(La)
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coupling among these modes may play an important role in the rate

process. Landauer and Swanson (20) extended Kramerswork to the general

multidimensional case to find that, in the diffusive regime (high

friction), the rate expression showed the same deviation from the TST

value as that found in one dimension. the other extreme case, for —>

very low frictions, however, there appeared to be an effect of

dimensionality. It is the aim of this section to evaluate the results

obtained with multimodal theories and we start by discussing in

sub—section 3.1 two interesting attempts to deal with more detailed

models, one to bring in the effects of the solvent, the other to deal

directly with a two—dimensional coupled system. Later, in sub—section

3.2, another detailed model is presented which aims to supplement the

results of these two works.

3.1 TWO DETAILED MODELS

The two particular models of mode coupling that we shall

briefly discuss in this sub—section are illuminating about the man)

mechanisms that are involved and the difficulty in establishin

general simple pattern.

Grote and Hynes (28) studied a model for an exchange

reaction in solution,

A BC (2)

assuming that the motion in the saddle region is separable into

reactive and nonreactive normal modes. The solvent dynamics act on the
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motion on each mode and may also induce a dynamical coupling among them.

In the particular case of eq.(22), the reactive mode is the

antisymmetric stretch of the molecular system ABC. For example, it is

easy to see that the solvent reaction forces upon the translational mode

(one of the nonreactive normal modes) •will couple this one into the

reactive mode. This coupling may have three sources, namely (i) the

4jfjerentmasses of the atoms, (ii) the different friction on the central

atom relative to the more exposed external atoms and (iii) the cross

correlation between the atomic forces. Grote and Hynes described the

motion on each coordinate by a generalized Langevin equation of the

type

L(t) = - - 1JN .(t-z)

where the frequency ‘At is imaginary for the reactive mode. They found

that, except for the limiting cases of very high and very low friction,

the rate of the reaction would depend very markedly on the assumed

friction kernels, Tij(t (It should be kept in mind that these are

related to the correlation of the solvent forces,

.) Moreover, the mode coupling reduced the

effective friction that was “felt” on the reactive mode. This shows how

important and complex may be the role played by the solvent in

determining the reaction rate.

Another source of coupling between the reactive and the

other modes may result from the shape of the potential of the (solvent
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free) reacting system. A particular case of this class was studied by

ChristoFfel and Bowman (29) who considered a two—dimensional potential

based on that of ammonia,

V(x,y)
= Hax kx \/exp(-cx)()]y (i)

with

This has the form of a double—well oscillator coupled to a transverse

harmonic mode. The adiabatic approximation was discussed in great detail

from a number of quantum mechanical calculations and it was shown how

the two—dimensional problem could be reduced to a one—dimensional model

with an effective potential where the barrier top is lowered and a third

well is created at the center as more energy is pumped into the

transverse mode. From this change in the reactive potential follows a

marked increase in the reaction rate. Classical trajectory calculations

were also preformed to identify certain specifically quantal effects.

For the higher energies, both classical and quantum calculations give

parallel results.

3.2 THE COUPLED DOUBLE—WELL OSCILLATOR

In this sub—section we extend Christoffel and Bowmans

investigation to the condensed phase. This is done within a classical

e io<f we
context reminiscent ote and Hynes (28) : , anake extensive use

of both AEP and CFP (see the first four papers of this volume). A more

detailed account is given by Fonseca et al. (30).



2-2

Consider a bidimensional model potential,

V ( ) -

(x) Cf (x ()

where x is the reaction coordinate and y is some transverse normal mode,

(x) is a symmetric double—well potential modelling the chemical

reaction and

ff(x) ÷ (x)

with

ex (_xV)

and r may be regarded as measures of the intensity and the range,

respectively, of the coupling of the transverse mode onto the reactive

motion, For Grote and f-Iynes’ assumption on the mode separability in the

saddle region to be valid, a fairly large value of r is required. In

fact, when r>a (2a is the distance between the two minima of the

reactive potential), the effect of the deterministic coupling can be

viewed as a simple upward translation of the double—well potential on

LS cr]vQn 6y
the energy axis; for ra, however, the reaction coordin(n

effective potential which has a smaller barrier and, in some cases, a

third well, an effect already found in Christoffel and Bowmans work.

The classical motion of a stochastic particle in the

potential defined by eq.(25) may be described by the following set of

equations
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- - + f(t) ()

- - 2 (x ± (t)

The stochastic forces f(t) and f(t) are assumed to be of the form of

Gaussian white noises and to be statistically uncorrelated; this means

that the coupling between reactive and nonreactive modes via the solvent

is completely neglected. However, the noise affecting the nonreactive

mode is transmitted into the reactive one originating the appearance of

multiplicative noise effects. Although the Fokker—Planck equation

corresponding to the set of eqs.(28) may be

its explicit solution involves some technical difficulties, In order to

avoid these difficulties we shall make a set of assumptions similar to

those of Christoffel and Bowman. The pair of variables (y,w) is assumed

to be much faster than the pair (x,v); if this condition applies the ASP

can be applied to obtain a simpler Fokker—Planck equation depending only

on the slow variables, and the CFP can be used to determine the time

evolution of the observables driven by that equation. This kind of

u-s
approach allowso determine the rate constant for the chemical process

under investigation in the following two different physical situations:

I) System in thermal equilibrium: the two modes have



CD
H

‘1
I

C)
C

t
9

1
U)

C
)

C
l

CD
0

U)
C

l
0

U)
<

CD
U)

Z
CD

C
l

I
U)

H
’

0
CD

(JQ
H

’
CD

CD
CD

H
_
i

U)
)>

C)
U)

H
’

CD
H

U)
CD

U)
H

)
H

H
U

)
c
t

C)
C)

j
C)

0
C

l

c
t

H
’

H
U)

CD
c
t

0
<

C)
CD

CD
c
t

C
l

U)
‘1

U)
D

H
’

CD
H

H
0

0
H

H
C

l
9

I
H

’
CD

C)
H

CD
CD

0
H

0
U)

CD
U)

C
l

H
’

0
U)

CD
C

l
C

l
0

H
0

U)

t
I

0
i

C)
H

’
U

)
H

)
U)

ti
H

’
c
t

H
H

’
CD

C)
9

t
H

CD
0

H
C

l
C)

‘
-

C)
U)

c
t

CD
U)

C
l

C)
H

H
0

C
l

c
t

U)
3

C
l

0
H

C
l

C
l

0
C

l
H

H
)

CD
0

CD
CD

CD
>

‘
Il

CD
H

U)
U)

C
l

H
’

3
Q

C
l

0
H

’
CD

C
l

CD
C)

U)
C)

CD
H

<
C)

C)
C

l
CD

H
’

H
H

H
U)

CD
5

H
c
t

c
t
U

)
0

CD

0
H

U)
U)

CD
C)

C
l

CD
C)

CD
3

U)
><

CD
i

H
)

CD
H

U)
U)

C)
0

H
tI

H
’

H
’

CD
C

l
><

(U
)

0
C

l
C)

H
H

-
H

’
CD

H
)

‘
.

U)
H

’
U)

H
U)

H
C)

C)
CD

0
C)

+
U)

CD
H

’
()

t)
C

l
C)

C
l

H
’

0
CD

U)
c
t

C)
X

H
C

o
I

C
l

U)
U)

H
C

l
H

’

10
H

CD
0

)
C

l
C)

0
C)

)
H

(
N

CD
a

0
)

s—
’

H
H

)
CD

U)
U)

C)
U)

o
0

C
l

H
’

U)
U)

H
H

’
C)

0
C)

H
’

C)
C

l
C

l
C)

U)
0

3
<

U)
<1

CD
CD

H
U)

H
F1

CD
CD

U)
H

’
C

l
C)

CD

>
I

H
t

F1
0

0
CD

H
3

CD
C)

<
U)

C
l

0
CD

H
’

U)
C

l
o

—
H

H
H

CD
CD

CD
U)

C)
H

’
><

-
-
-

C)
U)

H
H

U)
H

CD
U)

c-I
-

C
l

C
l

H
C

l
0

H
’

0
CD

C)
U)

*
0

C)
C

l
><

>c
C)

C
l

H
U)

C)
H

C)
‘—

I
H

-<
U)

U)
0

F1
U)

U)
C)

H
H

)
U

)
C)

H
)

F1
C

l
CD

3
3’

H
)

CD
CD

0
CD

CD
CD

U)
0

3
—

F-
I

C)
C)

CD
H

H
C

l
H

’
H

’
H

H
’

H
’

0
H

H
C

l
C)

<
H

‘U
)

C
l

CD
U)

(U
)

CD
CD



H
H

)
a

E
a

ct
10

V
V

n

J
c
t

‘
H

-
H

-
CD

CD
H

-
CD

CD
‘-3

c
t

H
)

ct
ct

‘-S
cm

-
‘-S

J
CD

CD
%

H
)

r
CD

S
c
t

c
t

H
-

H
)

C
‘1

10
H

-
E

S
U)

10
U)

S
H

)
-a

-a
I-

’
0

o
0

H
-

c
t

H
-

F”
C

C
0

c
t

4
0

3-
0)

0
0)

0)
CD

CD
Z

CD
H

-
‘1

c
t

ci
-

‘1
‘•s

51)
(0

.,
—

H
-

I-’
-

CD
4

a
a-

H
a-

0
0

0
U)

r
t
i

10CD
z

‘-
‘-

m
CD

ci
-

0
C)

c
t

I-
I

51)
H

H
•

C)
tt

c
t

Z
‘1

c
t

V
H

c
t

CD
m

‘-S
C

H
-

H
)

‘1
CD

CD
t

+
0)

‘-5

H
C

o
5

51)
4

H
-

a
H

-
ID

H
•

CD
F’

.
‘_5

C)
0

51)
U)

5
0

10
CD

c
t

H
H

CD
‘S

,U
)

3 cm
a-

0)
C)

H
-

C
H

-
c
t

a
H

-
m

m
o

<1
5

q
tr

0
0

4
H

C
-

ci
-

‘s
m

H
-

51)
V

I-’
-

‘S
0

U)
0

H
ct

i-
r
t

>c
m

a-
-C

CD
CD

CD
10

0
‘_5

10
H

-
S

i,
-

c
t

c
t

‘.S
:3

—
CD

a
J
a
j

H
-

-
o

z
S

3
0

CD
0

0)
CD

a
‘
—

‘
CD

CL
fl

C-
C

CD
c
t

H
)

H
-

CD
H

-
c
t

H
-

H
-

CD
U)

•
Z

c
t

tY
5

3
H

)
C

4
cm

T
CD

0)
0

cm
CD

0
(4

0
CD

‘S
H

)
a
,

‘1
H

‘S
c
t

CD
c
t

C
t

C
CD

0
‘S

CD
a-

C
CD

0
U)

0)
CD

0
10

$1
H

-
H

-
a

m
m

H
-

o
-C

H
-

>4
c
t

0
C)

CD
Z

0)
:z

a-
c
t

I-
’-

a-
z-

s
cm

0
H

a-
:3

-
:‘

-
<

-
a

H
)

a
o
.i

ja
i

e
j
e
-
3

-l
CD

CD
CD

CD
I-’

-
n

I-’
-

CD
‘S

3
c
t

CD
‘S

c
t

0
-
‘

t
°
-
)

(I
JI

Q
)

H
)

c
t

CD
a-

5
cm

CD
10

CD
CD

0
‘S

0)
0

a-
F”

‘S
ta

ci
a-

H
)

‘S
a

0)
a

A
ci

-
H

-
H

)
S

CD
o

tS
CD

X
H

-
W

a
o

<
1

—
9.-

‘a
cm

a
H

-
n

:3
to

a-
‘S

a-
H

-
Z

‘-a
H

,—
o

a-
U)

—
CD

0
a

o
0

a
-

rt
-

,0
‘S

-‘
(

H
-

:3
0)

CD
CD

H
)

ci
-

0
U)

U)
C

0)
CD

H
)

0
H

-
a-

a-
H

,
Z

a
-I-

H
to

ti
-

r
to

m
a-

t-
’

H
-

a-
to

C
ci

-
CD

CD
0

C
lb

U)
tt

U)
V

H
-

_
_

_

-
c

U)
10

•
0

H
-

H
-

‘S
U)

c
t

CD
n

C
U)

0
-

a
CD

a-
‘S

:3
-‘

‘—
3

10
:3

a-
,—

.
a

51)
5

0
H

-
C)

I-
’

S
U)

-C
0

)c
H

0)
C)

-C
CD

-
r

CD
H

-
0

-
U)

a
H

-
tY

H
0

H
0

f
l

a
Z

51)
51)

0
,
-
.

H
)

H
)

)c
4

‘S
H

-
(0

H
H

)
o

H
-

H
51)

5
a-

‘S
51)

CD
CD

C
a

cm
H

-
51)

C)
U)

C
•

C
H

-
C)

3
0

a-
0

0
a-

51)
a-

a
C

C
E

U)
t

H
-

C
CD

H
)

V
a-

a-
CD

0
0)

‘S
0

H
-

H
C)

:3
a-

a
‘S

to
H

-
a-

‘S
a-

0
0

N
H

-
U)

0
3

tT
CD

Z
’

e
m

0
-
-

CD
m

cm
CD

CD
CD

CD
a

>4
H

)
(3

1

- o
‘N

b



1-
-f

+

I

_
_

_
_

I
0

x
j

uN
0

I
)

ti
\,

K

-E -E

c
J
c
)

r
t

x

÷

p
.

>( ><

C
l

CD
C

l
H

)
d’

i
C

l
H

)
U)

C)
CD

C)
CD

0
H

)
H

’
H

C
l

CD
H

’
CD

CD
C)

0
U)

H
)

(J
o

C)
CD

CD
H

)
c
t

CD
C

l
C)

H
)

H
’

CD
C

l
C)

c-f
’

C)
c
t

C)
C)

CD
c
t

C)
CD

c-f
’

c-f
’

c
t

C
l

c-f
’

CD
U)

H
’

c-f
’

1
C)

H
’

C
l

0
H

’
CD

C)
c-f

’
0

H
’

CD
<

CD
H

)
<

C)
c-

i
C)

c-f
’

c-f
’

CD
CD

H
’

H
’

<
CD

0
H

’
C)

U)
0

CD
C)

0
CD

CD
CD

C)
C)

)<
Q

C)
C)

rC
)

f’x
j

)
U)

H
’

0
CD

U)
U)

0
i

U)
0

CD
C’

)
c’f

’
C)

c
t

U)
•

C
l

c
t

C
l

CD
0

CD
H

’
CD

CD
—

‘
CD

CD
0

H
C)

C)
CD

c-f
’

C)
<

C’
)

U)
CD

C
l

c
t

C)
C)

U)
c’f

’
c
t

CD
(0

U)
CU

H
’

0
c-f

’
H

’
C

l
C)

“
-

c-f
’

c-f
’

<
H

CD
C)

H
’

CD
CD

c
t

0
CD

C
l

c-f
’

CD
‘
—

‘
H

C)
C)

H
C)

’
CD

C
l

H
CD

(JO
c-I

’
c
t

CD
0

C)
0

H
)

c
t

C
l

c-f
’

C)
C)

H
’

H
)

c-f
’

CD
H

’
CD

H
’

C
l

0
C)

H
’

U)
CD

H
’

0
C)

H
)

C)
U)

CD
C)

CD
1”

)
c-I

’
F

-
0

C)
c
t

C
l

c’f
’

U)
CD

‘t
i

c-f
’

C)
C

l
C

l
U)

CD
C)

<
U)

CD
c-f

’
c
t

C)
C

)
c-f

’
f’I)

<
CD

c-f
’

C
l

CD
CD

0
C)

H
’

d
H

C
l

C)
’

CD
H

’
0

C)
C)

CD
<

C3
CD

H
’

‘
C

)
CD

C)
U

)
0

C)
C)

CD
H

’
C)

C
l

C)
CD

U)
CD

CD
C)

CD
CD

ct
0

C)
CD

CD
CD

CD
CD

C
l

C
l

<
0

C)
<

CD
C)

CD
C)

U)
CD

H
’

C)
c
t

CD
U)

c:
s

d’
0

c-f
’

H
’

C)
’

C
l

C)
H

’
C)

C)
cD

H
’

0
c
t

0
CD

C)
CD

CD
<

c
t

0
CD

CD
<

H
)

CD
H

’
C)

CD
C

l
CD

CD
C)

’
C)

U)
CD

CD
C)

c
t

H
CD

C)
C)

c-f
’

C)
’

CD
C)

c-f
’

H
’

U)
c-f

’
0

c-f
’

H
’

CD
C)

c
t

c
t

C
l

H
’

U)
c
t

C
l

C)
C

l
CD

C
l

H
’

‘<
<

0
CD

CD
CD

CD
CD

H
U)

CD
<

CD
C

l
CD

C)
U)

*

CD
CD

CD
C

l
U)

H
)

c-f
’

C
l

c-f
’

0
CD

CD
c
t

C
l

0
CD

C)
C

l
C)

C)
C)

C)
C

l
C

l
CD

C)
0

C)
C

l
0

CD
CD

c’f
’

H
C

l
0

CD
CD

c-f
’

C)
H

)
CD

C
l

*
C

l
c
t

C)
C)

CD
C

l
C

l
C)

CD
CD

H
’

Jo
C

l
C)

CD
0

CD
•

H
C

)
C

l
H

’
0

C
l

0
c-f

’
C)

(‘
I

c
t

H
H

’
0

C)
C)

H
’

U)
C

l
c-f

’
CO

CD
H

’
CD

C)
CD

CD
C)

CD
C)

H
)

C)
C

l
C

l
c
t

H
’

C
)

-
“

C)
CD

H
)

CD
CD

CD
CD

U)
C

l
C’

)
H

’
H

’
C)

CD
c’f

’
c
t

C)
0

CO
c
t

C)
(0

CD
U)

H
C)

H
’

H
’

C)
CO

H
’

H
’

“
C)

c
t

H
C

l
c-f

’
<

C)
C)

C
l

H
C)

U)
C

l
H

’
CD

CD
0

CD
H

’
c-f

’
H

C)
C)

C)
C)

CD
0

CD
‘<

CD
CD

0
C

l
0

C)
U)

C)
H

)
CD

C)
H

H
)

H
’

C)
CD

C)
0

H
)

C
l

CD
c
t

CD
U)

H
)

C)
C)

0
H

C)
CD

U)
C)

H
’

C)
0

H
)

CD
d
’

C)
C

l
CO

H
CD

CD
c
t

C)
C)

H
C)

CD
H

c
t

CD
c
t

CO
C

l
U)

H
0

CD
H

’
Jo

0
CD

U)
CD

C)
CD

H
’

H
’

C)
c.

i>
U)

0
0

0
c
t

C’
)

DO
C

l
U)

c
t

<
C)

C)
CO

H
’

CO
C)

0
C

l
CD

c
t

CD
C)

0
Cd

H
)

CD
C

l
C

l
H

c-f
’

0
C)

c’f
’

0
0

CD
CD

0
<

0
H

)
C

l
H

c
t

C)
c
t

H
’

H
C)

C
l

CD
c-f

’
C

l
c-f

’
c-f

’
CD

c
t

C)
’

C)
CD

CD
C)

C
l

CD
C

l
C

l
C

l
C)

C’
)

0
CD

CD
c
t

H
CD

C
l

CD
CD

CD
‘
.

0’
)

—
/
\

x +

ci >C 7
*
•*

*
%

(J
4



N
0

‘
-P

0
ci)

4-’
ci)

4-’
5

0
C’)

4-’
U)

4-’
>

0
i

0
-P

-H
tiO

i
H

a)
0

0
S

-P
-P

H
S

(H
U)

ri
C)

C)
C’)

T
i

T
i

-P
a)

C’)
>

S
a)

bl)
a)

bi)
a)

1-4
Q

.
ci)

£
H

ci)
C

C
(1)

c
T

i
U)

4-’
Z

-P
4-’

-H
-P

C)
-H

-H
a)

r1
C

3
U)

C)
4—

’
C’)

U)
><

a)
a)

>
,

-4
0

C’)
U)

C’)
IZ

4-’
0

0
$

-P
U)

U)
()

-P
o

4-’
4-’

a)
---I

a)
C’)

U)
-H

0
>

a)
a)

C’)
T

i
T

i
T

i
-P

C’)
-P

-P
T

i
c

(1)
ci)

-
C’)

H
ci)

U)
C’)

a)
b{)

a)
C

-H
C’)

U)
-D

C)
-H

C’)
c
i

H
0

-H
C’)

>
4)

S
-H

C’)
-I-)

ri
£
)

1x1
0

-P
C

i
U)

c’)
C)

D
>

,
5

o
<

i
C)

C)
(Y

)
ci)

5
0

-P
-H

o
a)

—
Z

r4
H

a)
-H

•
H

C
\i

4-’
C)

4—
U)

c:
a)

4-’
0

C’)
a)

(0
C’)

0
H

C’)
-P

C’)
0

ci)
>

l-
‘
—

$
H

C’)
rJ

(
O

Z
C)

0
-P

a)
,-,1

3
CY’

a)
(H

o
>

0

_

o
a)

0
bO

ci)
ci)

0
-H

I
U)

C)
£

-
i

4-’
a)

U)
o

C’)
H

C’)
a)

(H
H

ci)
(H

U)
-P

>
,

H
0

-P
4-’

(H
-3_

3)—
4-)

T
i

H
C’)

T
i

-P
(H

C’)
‘
,

£2
I

U)
U)

ci)
—

S
H

cfl
0

H
,

bi
a)

5
H

T
i

(3’
ci)

H
U)

S
T

i
C’)

a)
-P

T
i

C
a)

>
<C

a)
4
-

H
C’)

U)
C’)

-P
-H

>
0

U)
Z

a)
4-’

ü)
C

D
I
(
0

-

U)
-H

-P
C’)

CT’
C

-P
-H

0
(H

T
i

>
,

-P
a)

-P
T

i
-i-

-
(H

5
‘ci

-ri
F—i

H
c’)

bO
a)

U)
-

—
-

a)
a)

r()
>

H
4
)

i
4-)

C
H

(H
(1)

H
‘
—

U
-
-
’

-P
0

C’)
4-’

a)
0

U)
C

4-’
0

-P
U)

£
0

—
-H

—

‘
0

U)
a)

T
i

-H
0

‘
I

4-’
4-)

U)
-

U)
0

4-
bO

•—
l

a)
C’)

a)
a)

C’)
C’)

0
(H

£
2

11
Q

0
H

0
-P

ci
Z

-H
0

III
Z

0
0

H
-H

0
a)

H
c’)

-P
a)

C’)
U)

H
a)

>
0

C)
4-’

0
£2

0
-P

-P
bfl

-H
4-)

0
bi

U)
-H

0
0

5
H

H
a)

-H
H

(H
H

-H
01

4-’
0

H
4-’

H
U)

CO
C)

C’)
4
i

C’)
H

a)
T

i
—

+
0

a)
>

C’)
4-’

>
,

S
ci)

i
0

3
s--i

o
cii

H
U)

b
-P

£
4-’

4-’
ci)

T
i

4-’
a)

II
0

4—’
-P

C)
0

C)
U)

•
a)

bD
C’)

4-’
c’)

T
i

H
(H

a)
C’)

-H
-H

H
ci)

>
‘
‘

S
-P

4-’
—

-H
T

i
C’)

,t
—

-H
0

0
H

4-’
C’)

-H
4-’

H
H

a)
Z

C’)
0

C
)

0
-P

-P
CO

0
—

a)
a)

—
0

U)
a)

C)
-P

ci)
T

i
•

-H
-

C)
U)

a)
CT’

0
0

0
0

0
(3’

a)
0

C’)
C’)

£2
ci)

Q
S

-P
-H

C’)
a)

N
-P



28

—> same equation can be obtained from the set of eqs.(29)

supposing v infinitely faster than x.

This touchs the It—Stratonovich controversy discussed by

Faetti et,al. (31) (note that is to be identified with their

-4-
parameter P ). In line with their remarks we are led to the conclusion

that when the system becomes inertial the It description is valid (see

eq,(3l)) and that when inertia is completely absent (see eq.(33)) the

Stratonovich description is attained,

The results obtained considering that the system is

thermalized can be summarized in fig.4,

FIçURE

where the chemical reaction rate, k, is displayed as a function of

Rj(v/Zy). was kepted constant and therefore this figure exhibits

the same kind oependence on ( is the friction acting on the

reactive mode) as that already discussed in sub—section 2.1 of this

chaer. Note, however, that new effects originating from the coupling
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between reactive and nonreactive modes appear in this case, as discussed

later on. When the high friction region is attained and a linear

dependence of k on l/’ is obtained in agreement with the classical

Kramers result. As increases the system becomes more inertial and it

is also interesting to note that, as increases, straight lines of

increasing slope are obtained. This is a manifestation of the role

played by inertia: the sensibility of the reaction rate k to the

intensity of the coupling increases as the reactive system becomes more

inertial.Above a certain value of Rj, the lines startbending down, a

sign that the intermediate friction regime is being approached (see

introduction). Unfortunately, we had difficulties with the convergence

of the continued fraction procedure in this region and therefore there

is little reliance to be placed on results provided by those computer

calculations.

As H1 tends to infinity the energy—controlled regime is

approached and the important role played by the interaction between

reactive and nonreactive modes can be assessed by some remarks on

eq,(31). Let us consider the case where <y5o. . If is also

assumed to vanish, eq.(31) describes a purely deterministic process and

the overcoming of the barrier is rigorously forbidden when the total

enery of the reactant is lower than the barrier height. However, when

the coupling between reactive and nonreactive modes is restored, the

reactant undergoes the influence of the fluctuations acting on the

nonreactive mode and this can supply enough energy for the reactant to

overcome the barrier, Fluctuations become ineffective near the top of
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the barrier where their intensity vanishes as implied by

This means that inertia is absolutely necessary for the barrier to be

really overcome. As a result of such a synergism between inertia and

multiplicative fluctuations, the chemical reaction can take place even

when Kramers theory predicts vanishingly small rates. This is — an

interesting property, a quantitative discussion. of which requir€S that a

point of view completely different from the one considered until now be

adopted. To derive a Fokker—Planck equation for the energy, we follow

Lindenberg and Seshadri (32) who used energy and displacement as

independent variables. We define the energy as

E 3 (x) (3’i.a)

e (x (x) (x<y>
[]l<

(3 .b)

In the absence of the additive and multiplicative stochastic forces, E

would be a constant of motion, rigorously independent of time, Under the

influence of these fluctuations E becomes time dependent but its

dynamics will certainly be very slow when compared to the dynamics of

the variable x, therefore permittii us to eliminate also the space

variable. Starting from eq.(3l), we rewrite it in terms of the new pair

of variables, x and E, and, after eliminating x with a procedure

introduced by Stratonovich (33), the following final equation is

obtained
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The results illustrated on the right—hand side of fig.4 show

that, in this region, the increase o k is much more sensitive to the

increases in than it is in the high friction region, thereby

corroborating our statements about the role of inertia. This trend is

especially emphasized in the limit and is better seen in fig.5.

As remarked above, the reaction rate stays finite in this zero friction

limit counter to Kramers prediction.

Until now we limited ourselves to study the thermalized

system, thus in physical condition (I) cited at the very 6einnin, of

this sub—section. When we assume that the nonreactive mode can be

continuously heated by an external source, the system ceases to be

thermalized and interesting new effects can occur as a consequence of

the coupling between reactive and nonreactive modes. Returning to

eq.(32) we can guess what really happens when c)0<y) is increased: on

the one side, the deterministic effect over the reactive potential

increases and consists of lowering the barrier to be overcome, However,

and in addition to this effect, the intensity of the multiplicative

fluctuations is increased with respect to the intensity of the additive

ones; this creates a gradient of temperature inside the reactant well

that pushes the reactant particles to the region near the barrier while

supplying them with energy. This effect vanishes at x=O (the barrier

top) but, by the presence of the additive fluctuations, the reaction

occurs with a velocity that is much faster than in the absence of this

effect, If we continue to increase the energy of the nonreactive mode, a

threshold region is attained when the deterministic counterpart of the



33

multiplicative diffusional term equals the frequency corresponding to

the harmonic expansion of the effective potential around the top of the

barrier. In the absence of additive fluctuations, it is well known after

the work of Schenzle et.al (35) that this threshold corresponds to

centeri the probability distribution at the top of the barrier, ad in

t?viS
chemical language we can roughly identifYTh an activation process.

When the threshold is passed and we continue to pump energy into the

nonreactive mode, the probability distribution tends to become still

more concentrated on the top of the barrier rendering the chemical

reaction even faster.

The results obtained in this particular physical condition

are displayed in fig.6.

FIGUPE 6

The curve A was obtained using eq.(33), i.e., completely

neglecting the role of inertia; curve B, in turn, was obtained using

eq.(32) where these effects are present. The increase on the reaction

rate is very clear; the threshold region corresponds to the plateau and

the increase of k after this region is much more marked. Once again the

S
role of inertia is to speed up the chemical reaction andy eems to

Thflf LL
N4-he threshold condition’Thrbe attained at lower values of the

energy given to the nonreactive mode.
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4. NON-MARKOFFIAN EFFECTS ON THE RATE

In this section we shall explore a different kind of

generalization of the Kramers theory to take into account the problems

resulting from the breakdown of the time-scale separation between the

reactive mode and its thermal bath. This problem may be also found in

the multimodal theories in section 3 when the nonreactive modes are not

much faster than the motion along the reaction coordinate,

Computer simulations of the molecular dynamics of the liquid

state)refs.(36—3),clearly show that the correlation function of the

velocity vriale is not exponential, rather it usually exhibits a sort

of damped oscillatory behavior. This means that the Markoffian

assumption is often invalid. When studying a chemical reaction in a

liquid phase this makes it necessary to replace the standard Kramers

condition (see eq,(4.b)) with a more realistic correlation function

having a finite lifetime, Recall the rate expression obtained by Kramers

for moderate to high frictions, eq.(6) above. This may be cast into the

form kkTsy*f(c,T) where kTST, given by eq.(7), is essentially an

equilibrium property depending on the thermodynamic equilibrium inside

the well, As a canonical equilibrium property, it is not affected by

whether the system is 1.arkoffian or not. The calculation of the factor

depends, however, on the dynamics of the system and will thus be

modified when non—arkoffian behavior is allowed for,

Another problem of interest is that concerning the effect of

external radiation fields, In the overdamped regime this will be shown

to be reminiscent of the effect of the nonreactive modes. These problems
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will be the major topics of the present section.

This section is organized as follows: in sub—section 4.1 the

approaches based on the assumption of heath bath statistical equilibrium

and those which use the generalized Langevin equation are reviewed for

the case of a bounded one—dimensional Brownian particle. A detailed

analysis of the activation dynamics in both schemes is carried out by

adopting AEP and CFP techniques. In sub—section 4.2 we shall consider a

case where the non—fj.rkoffian character of the variable velocity stems

from the finite duration of the coherence time of the light used to

activate the chemical reaction process itself.

4.1 NOISE ACTIVATED ESCAPE PATE IN THE PPESENCE OF MEMORY EFFECTS

To discuss the idea of noise activated reactions we begin by

noting that the random forces which occur in the Langevin equation

related with the process under investigation may have quite different

origins. In an ordinary microscopic derivation of a Langevin equation

(or the corresponding Fokker—Planck equation) the random term is

interpreted as associated with the thermal fluctuations of the system.

This thermal or internal noise scales with the size of the system

(except near instability points ts.(O-.A different interpretation of

such a contribution to a Langevin equation is necessary, however, when

this is thought to model what can be defined as an external noise. In

this latter case, one considers a system which experiences fluctuations

that are not ‘self—originating. These fluctuations can be due to a

fluctuating environment or can be the result of an externally applied

random force. The mathematical modelling of these fluctuations is made
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by considering a deterministic equation appropriate in the absence of

external fluctuations and then considering the external parameter which

undergoes fluctllations to be a stochasticvariable. The noise term of

the stochastic differential equation so obtained is usually

multiplicative in its nature, that is, it depends on the instantaneous

value of the variable of the system. It does not scale with the system

size and is not necessarily small. We can regard the external noise as

an external force field which drives the system maintaining always its

statistical equilibrium. Among the experimental situations in the

presence of external noises so far considered, the example of

illuminated chemical reactions (ref.43) is of particular interest for

our readers.

In the introductory chapter of this volume and in the next

two, it is
- stressed that the “microscopic derivation of

equations such as some of those used here should be discussed carefi.J].

This is to avoid So-y the ambiguous

features a purely phenomenological treatment. However, as

these are widely used in the literature of —s, stochastic processes, we

shall show how to approach the problem of their solution while avoidj9

those difficulties

> by using a more rigorously founded “microscopic’ derivation (see

the next two chapters in this volume).

(a) ExamplesofNon—arkoffian External Noises

Let us focus on the one—dimensional dynamics of an order

parameter x exhibiting bistability, i.e.
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f(x,) (37)

where a denotes an external control parameter, The flow f(x,a) is

assumed to possess three real roots We choose where

x and x1 denote locally stable steady states and x is an intermediate,

locally unstable, steady state, In the presence of a fluctuating control

parameter a the deterministic flow in eq.(37) should be replaced by a

stochastic one

(x a) ÷ (x) (t) (38)

where the multiplicative noise (state dependent coupling) represents the

linear coupling of a to the order parameter x in the dynamical flow,

eq.(37). A common example of eq.(38) is provided by the Smoluchowski

approximation of the random walk of a Brownian particle bounded into a

symmetrical double—well potential

V(’c) -ax
)

(3)

In such a case g(x) is assumed to be 1, x=O and

The problem may be formulated as follows. Given random

noises (t) with different correlation parameters and Z1,, but

possessing identical spectral densities S(c=O) at frequency zero, i.e.

(o))t J<t ))Jt zD) (4o)

what is the relationship between the corresponding activation rates of

the metastable states?

Hanggi and Piseborough (44) carried out an exact calculation

of the activation rates for the bistable flow of eq.(38) for the case

when the noise of the control parameter can be modelled by a telegraphic

FIuR 7
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noise of vanishing mean,

()
(-i) (i.a)

<(t)(s)> exp (-1t-s/z)

where n(t) is a Poisson counting process with parameter (2Z) and d

denotes a random step with density

= + L (d Co/z))J. ()
We may now elaborate on the problem posed above: the system with a

smaller correlation time Z is subject to random forces with larger

amplitude (see fig.7), and this might lead one to conclude that the rate

was enhanced. However, the time interval over which the force is

constant decreases; since the random force changes sign more rapidly,

one might now expect that the system had not enough time to reach the

point of instability and consequently the rate would be supressed for a

smaller correlation time. Thus, it is not obvious a priori which of the

two random forces, (t) or (t), yields a smaller rate, i.e. a larger

escape time.

The analysis made in ref.(44) is based on the discussion of

the related exact non—jarkoffian master equation (refs.45,46) and allows

us to conclude that, when the noise intensity S(O), eq.(40), is

constant, the rates are exponentially enhanced with decreasing

correlation time Z and this is independent of the specific form of the

nonlinear bistable flow f(x,a) and also of whether the random noise is

additive or multiplicative. (The only condition imposed is g(x)O in

fxj x,)
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An important property of the telegraphic noise, eq(4l), is

the approach to a gaussian white noise in the limit t-’.O (ref,47). With
- It,

1im_ (t)
z—*0 2dZ

eq(4l) reduces to

D (t-s) (3)

From now on we consider the stochatic differential equation (38) with

(t) being a random force associated with a zero mean gaussian process

and an auto—correlation function given by eq.(4l) This system has been

widely investigated by Sancho et,al (48—50), The use of such gaussian

noises is justified by the central limit theorem (see refs, ll.b and

41). For a gaussian noise with exponential auto—correlation, eq,(41),

the so called Ornstein—LJhlenbeck noise, one is unable to derive exact

expressions for activation rates (see refs, 48.a,50,5l), In ref.(50) an

approximate Fokker—Planck equation is obtained for the probability

distribution of the variable x by applying functional methods

(refs,48,5l). These methods provide an alternative to the more often

used cumulant techniques (see refs. 49,52,53) and may be shown to lead

to consistent results (refs. 49,50), The same approximate,

Fokker—Planck equation, however, can be recovered with the AEP

technique. The AEP can be applied by introducing an equivalent

formulation of the process under investigation, eq,(38):

f(x1a +

(4)
( Ct)

The exact equivalence of these formulations may be proved, ref,(54), for

the case where: (i)7(t) is a white gaussian noise with



< (t) 0 ani (t 7 (s)> = (t - s ()

(ii) a fluctuation—dissipation relationship for the auxiliary variable

is understood and it is initially prepared at its gaussian equilibrium

with

Z(Q)>=
<>eD

The perturbation reduction of the corresponding Markoffian Fokker—Planck

equation for the two variable process (x(t),(t)) to an approximate

e eon4
one in x(t) has been carried out in sub—section (5.i of the—hapter

of this volume. For brevity we only report the approximate time

evolution equation for o(x,t) up to order D

(x,t) N(x)] J ,t)

(47.a)
where

the prime, denoting the derivative. (The reader can find a detailed

discussion of some technical properties of eq.(47) in the article quoted

above.

The problem we are a.dressing now is the same posed in

ref.(44) for a case of a non—Markoffian telegraphic noise: Given

gaussian noises with different auto—correlation times and , but

identical intensities 20, eq.(40), which of them will provide a smaller

rate (larger escape time)? Since detailed balance does not or

eq.(44), the standard methods (see refs. ll,a,20,55) fail in evaluating

the activation rate of the non—Markoffian process under investigation

and the more general method of refs.(56) and (57) is rather cumbersome

because the stationary probability v (x,!) should first be determined
st.
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Since eq.(49) takes into account only the term of order D’, the term of
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perturbatively. If T denotes the mean first passage time (refs. 33,34)

to reach the barrier top the activation rate can be estimated as

K ()

where the factor 1/2 takes into account that the random walker has equal

chance to either continue to the adjacent stable state or return to the

old one. Without loss of generality we consider the particular case of

the Smoluchowski approximation of the random walk of a Brownian particle

bounded into a symmetrical double—well potential, i.e.

f(x,a ‘) a

where V(x) is given in eq.(39). The chemical meaning of this model has

been widely discussed in the preceding sections. If x=—oc is a natural

reflecting boundary and x=xt=O an absorbing state, one finds

(refs.33,58) for the mean first passage time T(x) of a walker which

started out at x(O)=xKO Y

- I a ()
jt(Y)D(y) J

‘(x) denotes the stationary probability of the approximate
St

Fokker—Planck equation, eq.(47). D(x) is the corresponding diffusion

coefficient, i.e. D(x)=D(l—’M(x)). Within the assumptions of (i)

—sma1l enough auto—correlation time ‘ —b and (ii) weak noise so as

D<a/b, we can evaluate T(x) applying the method of steepest descendent

to eq.(49). From eqs.(47) and (39) we — obtain

T(x)(i÷) exp(/D) (so)
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order in eq.(51) is meaningless and the term linear in in

vanishes exactly. For ‘=O our result equals the well—known Smoluchowski.

rate (ref,11.a).

The main conclusion we can draw is that the activation rates

for the non—Markoffian process like eq.(44) decrease as ‘ increases; the

exact result of ref.(44) can be thus extended to the case of gaussian

random forces of finite correlation time as well. However, if we take

eq.(50) seriously we obtain an Arrhenius factor, exp(/D), of T(x)

which not exhibit a dependence on Z. This is in contrast to the

result found for telegraphic noises where the Arrhenius factor increases

with increasing auto—correlation time Z (see ref.44). The result of a

numerical simulation for T(x) based on the bistable flow is given in

fig.8. In contrast with our prediction in eq.(50) increases with

increasing auto—correlation time it.

FIGURE 8

The increase is proportional to the first order in ‘ and is not

dependent on the small noise parameter ID, The origin of

disagreement can be traced —> to the Tc that the Fokker—Planck

approximate schemes, like eq.(50), can be incorrect, even in leading

order in , if viewed as a long time approximation of the corresponding

(unknown) master equation dynamics, refs.(59—6l), This difficulty is

discussed in the section 7 of chapter ii in the present volume. However,

the physical contents of the major conclusions drawn above remains

unchanged.

(b) Chemical Reactions Driven by Bona Fide Non-Markoffian
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Fluctuation—dissipation Processes

When the chemical reaction process takes place in condensed

phase (for example in a liquid) a reliable description of it seems to be

achieved, ref(49), simply by replacing eqs.(3) with

t

V(x) - J(t)v(z) ÷f(t)) (cz)
N

where (e(t) and the stochastic force are related to each other via

(t) <f(o (t)) (53)

This takes into account the fact that the stochastic force f(t) can

have —> a finite correlation time, for example

(t)

In the absence of the external potential V, eqs.(52) can be

given a rigorous derivation from a microscopic Liouville equation (see

chapter I of this volume). We make the naive assumption that, when an

external potential driving the reaction coordinate is present, the two

contributions (the deterministic motion resulting from the external

potential and the fluctuation—dissipation process described by the

to
standard generalized Langevin equation) can simply be added\iach other.

A more realistic and more general treatment would presumably

lead to a set of equations like that of eqs.(52), with the potential

V(x) fluctuating as a consequence of couplings with nonreactive modes

(see the foregoing section). For the sake of simplicity, we study

separately the two different aspects. While section 3 was devoted to

pointing out the role of multiplicative fluctuations (derived from
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non—linear microscopic Liouvillians) in the presence of additive noise

of white type, this sub—section is focused on the effects of a

non—Markoffian fluctuation—dissipation process (with a time convolution

term provided by a rigorous derivation from a hypothetic microscopic

Liouvillian) in the presence of a time—independent external potential.

A more general expression for f(t) can be derived from the

continued fraction expansion, ref.(62),

(55)

I

defining its Laplace transform. In the explicit calculations presented

in this sub—section, we shall limit ourselves to considering the case of

eq.(54) which corresponds to truncatieq.(55) at the first order

(=O) while assuming Xj=l/ and A truly rigorous

derivation from a microscopic Liouvillian would lead to j=O, unless

coherent oscillatory motions have to be simulated (in that case

would be purely imaginary numbers). The chain of eq.(55) is often

truncated at the n—th order by assuming (z)=T. When this is done,

the dissipative term simulates the infiniteremainder of the chain.

In most cases (see for example Grote and Hynes (28.a,36.b)) lf(t) is

given a certain analytical expression without taking into account the

formal constraints provided by the derivation from an hypothetical

microscopic Liouvillian. In such a case the parameters X can be real

numbers. If we adopt the basic ideas of the PMT (which in the present

linear case to which the standard generalized Langevin equation applies
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is virtually equivalent to the methos described by Ferrario and

Grigolini (63)), we find that the set of eqs.(52) is equivalent to

V’(x) +

-

A(t) -4 A1-n A + (t)

The random forces (t),...,(t) are gaussian white noises of zero mean
cj.

and correlations

<.(t) .(s)>z lSj

These forces are introduced, ref.(64), so

with the corresponding noise term and

canonical equilibrium. The Fokker—Planck

set of eqs.(56) can be written as

I ÷

a summation over repeated indices is implicit, J-,

The generalized potential U is

__

+

M
and the kinetic matrix D

)c v
v

÷

A -A - +

(s-6.b)

(.c)

(s6.d)i43 +

K3TX1(.. )Ct-s) (7)

as to supplement the frictions

guarantee the attainment of a

equation associated with the

where

q=x ,V

P (58)

a rid

(5)
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0-i 0 0

4

o . . . ()o
‘2

The equilibrium stationary solution of eq.(58) is

ex

where N is a normalization constant.

As mentioned above, in the explicit calculations of this

sub—section we shall consider This is the simplest case

satisfying the requirements of a rigorous derivation from a microscopic

Liouvillian. Of course, for the non—Markoffian nature of the variable

velocity, v, to result in observable effects, the effective friction

term /

eff ( <Co)(t>dt)

cannot be infinitely large when compared with the frequency %, the

harmonic approximation around the bottom of the reactant well. This

means that inertial effects cannot be disregarded. An interesting

discussion of the influence of inertia on the escape over the potential

barrier(variational in is nature).can be found in a paper of Larson and

Kostin (22.b). Their results are valid in the limit of white noise and

provide a reliable check of our approach. Furthermore, in a former

paper, ref.(22.a), the same authors improved the Kramers result for the

diffusional case by evaluating corrections to the linearization of the

an
Brownian motion within the barrier region. SucI’rYsumption is usually

(refs. 28,a,36.b,65) at the basis of any approximate ana]ytical
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calculation of the activation rates. On the contrary, as shown by

Fonseca et al. , when using the CFP this approximation can be avoided.

Therefore we shall apply the CFP in the most advanced form reviewed by

Grosso and Pastori in the third chapter of this volume to the

Fokker—Planck equation (eq.(58)) with n=l and .XO, which hopefully

should account also for the corrections of ref.(22.b).

In Larson and Kostin (22.b) notation we change variables as

follows:
‘-I

x —* x a.

(e)
t —>

a

where

(3)

9
The reduced Fokker—Planck equation in dimensionless units now reads

+c (x3-x
L

+ o’ A + I (xv,A,t) (6)
J

S -‘2..
where a /c

()

V0 a/

Let us note that in dimensionless units c plays the role of barrier

height, while is the effective friction constant. This can be
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shown by following the\euristic argument of section 1 of chapter LE in

this volume: let us assume that A4 relaxes so fast that A , eq.(56.G),

is approximately zero; the system of eqs.(3) will be recovered provided

Moreover in sub—section 5.3 of the same chapter it is shown

that the AEP corrections to the trivial Markoffian approximation of

eq.(58), n=l, are perturbation terms in the pararrieter

=
(/1)120 = C6)

In other words, if we keep fixed and vary g we explore situations with

different “memory strength”. Following the prescription of ref.(66) we

define the escape time from the reactant well to the product well as the

area below the curve <x(t))/(x(O)). For fairly high values of the

barrier c, this curve is mostly one exponential throughout the whole

time range but for a narrow region close to t=O. This fast relaxation

significantly depends on the starting point distribution, p(x,O) (see

ref.l5.a). Let us assume p(x,O) to be given by a delta of Dirac placed

at the bottom of one well. This choice may enhance the effect of the

short time relaxation on our definition of escape time,

(o) (s7)

where (O) is the Laplace transform of<x(t))/<x(O)> at zero frequency.

However, for large enough values of c, k= can be relied on as a

sensible estimate of the activation rate of the process.

FIGUPE 9

Fig. 9 describes the results obtained by applying the CFP, The most

remarkable feature of this result is the increase of the rate k as the

parameter g increases. A further remarkable finding is that for g—*O
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(Markoffian limit) the accurate value of Larson and Kostin (22.b) is

attained within a precision of some percent.

Fig. 9 is the main result of the present discussion.

However, we can make an attempt to arrive at an analytical expression

for the rate of escape over the barrier by using the generalization of

Kramers ideas to systems with many variables (see refs. 20,55,67,68).

Let us come back to the multi—dimensional potential U(q), eq.(59): It

has two metastable minima at q1=(x2,0.. .0) and a saddle point

q0=(x,0. . .0). This generalization essentially consists in the

following. —>>One first looks for a > ua3i stationary state

of eq.(58). In this state there exists a nonvanishing probability

current from a metastable minimum to the other.

The non—equilibrium stationary state and

calculated by linearizing around the saddle

given by the flux of probability current

the point The calculation of k has

Lanr (20) for a general Fokker—Planck

eq.(58). The final result is
Iz

l (et M
\et

where

UzU(9-U( ;

Note that detM° is taken in absolute value in eq.(68). This corresponds

to replacthe negative eigenvalue which indicates the single

the probability current are

point q0. The escape rate is

through a surface containing

been discussed in detail by

equation with the form of

(68)

99i

C68.a)
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direction of instability, by its absolute value. The dynamical factorX

is defined as the negative eigenvalue of the matrix M°D/KBT. It is

important to note that the dynamics of the system only enters in eq.(68)

through j . This factor depends on the kinetic coefficients D7, eq.(60),

while the remaining terms in eq.(68) are completely determined by the

potential U of the stationary solution. For the case under study,

eqs.(58) and (59), eq.(68) reduces to

(u’1 (xj
-

[

(x - U (x] /K8T (6 )
2r

In this particular case

a S

S

0 - S

(70)

2..
S S

S

)
* a

The eigenvalues of this matrix admit a continued fraction expansion

L

-
U (x

_____

(7)

—1< - -JK+\- -X# X

From this expression it is clear that is the negative solution of the

implicit relation

-

1I()

(7z)

-

Eq.(?2) —----————--— coincides with the analytical result of Grote and

Hynes (36.b). In the Markoffian limit,

/ ‘1

I
_

U(x)
2 Li

and we recover Kramers result, eq.(6).
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The whole effect of the non—Markoffian dynamics is contained

in f<. As long as the fluctuation—dissipation relation, eq.(57), is

satisfied, the existence of the non—Markoffian kernel modifies the

dynamics, but not the equilibrium solution, eq.(61), and, on the other

hand, a change in the dynamics of the system only changes the value of J

in eq.(69). The general form of the non—Markoffian effects on IC

have also been obtained by Hnggi and Mojbatai (65). Their elegant

derivation is based on a non—Markoffian master equation first

established by Adelman (70) for the probability density of the process

which is solved by using the main basic assumption of Kramers. Their

results are again proven to agree with those of Grote and Hynes (36,b).

As a particular example of eq.(72) we can consider the case

of an Ornstein—Uhlenbeck noise (36.b,65), where and /.

In this case j< is the negative solution of

- ( ÷ -
(7)

The Markoffian limit corresponds to )j— By solving eq.(73) to the

lowest order in it is easy to see that in this case the

non—Markoffian dynamics leads to an enhancement of the decay rate k. In

notation of ref,(22.b) such an approximate expression for eq.(69) reads:

K i- (i )1 (1)

where k(g=0) is the Kramers escape rate (in the diffusional limit) and g

is the parameter of memory strength defined in eq.(66). The same

result has been obtained in ref.(66) by adopting the variational method

of ref.(22). Eq.(74) is the analytical counterpart of the exact results

reported in fig9: as showed in ref.(66) the agreement with numerical
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results is only qualitative. Before concluding this sub—section, we

would like to mention a further way to explore the effects of

non—Markoffian statistics on the rate of escape from a well. This

consists in applying the AEP of chapter II of this volume to the

Fokker—Planck equation, eq.(58), so as to build up a reduced

diffusion—like equation for the variable x alone. As the chance of

proper simulating these effects relies on a faithful simulation of

inertia, we quote here the interesting result of Gardiner (71), which

shows that this actually happens. He considered a correctedSmoluchowski

equation which is a particular case of the more general reduced equation

mentioned above. By using a first&ssae tTme technique he could

explore the whole region varying from low to high friction regime and

obtained results in agreement with those of a computer simulation. It

seems therefore possible to explore also the effects of a non—white

noise by applying the same procedure to the more general reduced

equation mentioned above.

4.2 ACTIVATION OF A CHEMICAL REACTION PROCESS VIA ELECTROMAGNETIC

EXCITATION

The subject of ths sub—section isciosely related to that of

section 3. Indeed, we shall show that the effect of a radiation field on

an overdamped reacting system produces activated states which are

reminiscent and formally similar to those arrived at by the coupling

between reactive and nonreactive modes.

Hnggi (72) studied the model potential

(7)
2. Li
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where the frequency d(t) is a stochastic parameter such as

J(t ÷ (t) (76)

and ‘7(t) is a Gaussian white noise. The main result of this study is

that the presence of a multiplicative coupling with the heat bath makes

the activation rate to increase with respect to that in the Kramers

model, where a purely additive noise is considered. In the following we

give a detailed discussion of the interplay of additive and

multiplicative noises on the basis of a phenomenological model for a

photo—activated chemical reaction. De Kepper and Horsthemke (43) have

already used a radiation field as a source of noise. As in refs (73) and

(74) we model the action of a radiation field h(t) with a finite

coherence time l/X , in terms of the following set of stochastic

differential equations

(77)

- v + E(h(t) + f(t)

where f(t) is a Gaussian white noise with zero mean and auto—correlation

function

= 2 (t) <v> (t (7a)

V(x) is assumed to be the usual symmetrical double—well potential(V(x)

z_x1/L +x/) ; ke ——>
third term on the right—hand side of eq.(77) is the coupling between the

Brownian particle and the external radiation field, which is

characterized through its auto—correlation function

<h(t) (o)) eç ( X) cos (7)

Eq.(79) has the physical meaning that the coherence of the
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electromagnetic field is lost in a time i/X Models of this kind are

frequently used to depict laser light, ref.(75) The electrical dipole

of the system interacting with the external field is assumed to have the

simple form

E(x) (xx) (80)

In order to relate the system of eqs.(77) to a time

independent Fokker—Planck formalism we replace that set of stochastic

differential equations with the equivalent one

V’(x) - Ex) (y÷)
(8±)

Y-ly Xy +

1c - i (t)

The AEP allows us to simplify the discussion of this model provided that

we can choose a (slowly relaxing) variable of interest. For that reason

we shall focus on an electromagnetic field of frequency comparable with

the frequency corresponding to the harmonic expansion of the reactant

well, The diffusional assumption implies Furthermore, we

shall assume that our experimental apparatus only allows us to observe

long time regions corresponding to t /cJ’ so that the dynamics induced

by the radiation field belongs to the short time region if,\>)ZL. When

it is further assumed that the stochastic forces (t) and (t) are
y

independent of each other and related to the field intensity by

K (t) (°)> (t)
()

<(t) (o)) 0
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where

÷ (83)

the current problem takes a form resembling that of the model studied in

sub—section 5.3 of chapter I. in this volume. Let us focus our attention

on the case i.e. when non—Markoffian effects due to light

statistics are more relevant thar inertial corrections. The perturbation

expansion of eq.(5.31) of chapter if can then be rewritten as

+ — Ec +

1’ x

_____

E( E(x) cc. (x t)
J

where j(x)=<v2)+V’(x) and or higher order terms have been
U

neglected.

Let us study in detail the case where the particle dipole

E(x), eq.(80), is given by

E (x x (8)

Eq.(84) can be put in a simpler form:

+

__

x x (x)t) (s’)
-J

where

(7)

d )
(se)

Q— 2q >
-

(i +-_)ci XL
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j+ A jCA)

_i i_ (so)

multiplicative noises

the presence of a

Markoffian limit

at a fixed value of

action of an additive and a

and Q, respectively) in

potential, eq.(90). The

If we take such a limit

and the case studied by Hanggi (72) is recovered, —-------‘ Of

have veL’ce tkeprlwi
having neglected the condition ) <<

diffusional (lowest—order) approximation.

The escape rate for the process described by the

Fokker—Planck equation, eq.(66), has been studied in ref.(73), We choose

(t)<x(t))/(x(O)) as the observable of interest—Kx())=O. Then we

apply the approach described in the foregoing sub—section to evaluate

the escape rate k as the area below the curve (t): k=(O), where

(O) is the Laplace transform of (t) at zero frequency. To make the

convergence of the computer calculations faster the CFP algorithm has

been applied by taking d
Q ex (_x1)

)

as the initial distribution (N is a normalization constant). This is the

stationary distribution in the absence of additive noise. The most

dd- q

As a result of AEP, the initial system of the set

to the equation describing the diffusional motion

of eqs.(8l) is reduced

of a Brownian particle

which undergoes the

(with intensities D

renormalized bounding

corresponds to

,dd

course,

trivial
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remarkable results are reported in fig.10.

FIGUPE 10

When Q=0, k exactly coincides with the corresponding result of Larson

and Kostin (22.b). For small values of Q, k is a linear function of Q. A

first change in the slope of k(Q) is exhibited at those values of Q

corresponding to the onset of the continuum in the spectrum of the

purely multiplicative Fokker—Planck operator (ref.35), i.e. the

Fokker—PLanck operator of eq.(51) with D=0. A second one is found when

the threshold of the phase transition (see ref.35.a) is reached. The

main conclusion is that the cooperative presence of a multiplicative

noise produces a marked increase of the thermal (i.e. additive)

activation rate,

The question raised at the begjnning of the present

sub—section is still unanswered. A simple argument however can provide

information on the role played by non—Markoffian dynamics in the problem

under investigation. When X<oa, d <d so that at a fixed value of Q the

rate of escape will be larger than in the Markoffian limit, making

k(Q,d) a decreasing function of d—see fig.l0. We are in the presence of

a striking effect due to the synergism of different—and statistically

unrelated—noise sources, non—linearity and inertia. We showed in the

preceding sub—section that the effect of an external additive noise,

non—Markoffian in its nature, would betolessey, the activation rate of the

process with respect to the Markoffian case first studied by Kramers.

Furthermore, it has been found, ref.(50), by means of a numerical

simulation, that the non—Markoffian dynamics affects the diffusional
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relaxation in the presence of external multiplicative noises in a

similar way. Contrary to these findings, it is the major conclusion of

the present sub—section that when both additive and multiplicative

external noises act on the system, a finite correlation time of the

multiplicative noise determines an increase of the activation rate.

These subject is discussed further in the next chapter of this volume.
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5. DISCUSSION AND GENERAL PERSPECTIVE

In order to get a satisfactory perspective of the state of

art in the limited sector of the theory of chemical reactions which was

explored in this chapter, we shall devote this final section to the

following basic aspects:

a) The relation between current theories and selected

experiments and the discussion of the extent to which the details of

theoretical predictions have been confirmed so far.

b) The relation between chemical reaction rate theories and

some recent advances in the field of non—equilibrium statistical

thermodynamics.

5.1 THE SUPPORTING EXPERIMENTAL EVIDENCE

The experimental confirmation of the theoretical predictions

discussed in this article is still far from completely satisfactory. It

may be expected that in the near future fresh experimental results will

come to motivate new development in the theory and greatly improve the

understanding of the actual experimental conditions where the

theoretically predicted effects are relevant. The aim of this

sub—section is not that of giving a comprehensive review of the already

very sizeable mass of relevant experimental studies (for more

comprehensive reviews see refs.7,b,76); we shall draw attention to

certain difficulties of the interpretation of experimental results in

to
relation to the theory developed here and referV. few representative

pieces of experimental work.

One difficulty of connecting theory and experiment comes
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fact that the relation between the microscopic coupling

between the reaction coordinate and the medium (the friction

and the macroscopic observables is not well understood. The

of thumb is
— Stokes law and states that the

s proportional to the macroscopic bulk viscosity; however,

be grossly incorrect. It would be advantageous to use a local

obtained from the measurement of some sort of molecular

phenomenon, but this is not always available.

An alternative strategy is to look at the activation

related to the pressure dependence of the rate constant by

__

(si)

The volume of activation should be formed by an equilibrium

(quasithermodynamic) part related to the TST rate, , plus an

extra part, , originating from the dynamic interaction with the

solvent. may be estimated with reasonable assumptions about the

transition state conformation and thus access is gained to , that is

the pressure dependence of (k/k,.). This pressure dependence is felt

through the friction,

v 3)

by Montgomery, Chandler and Berne (25) who

could be estimated from the equation of state

with a hard sphere collision expression and

of (k/kTsT) could be assessed..

to know what experimental conditions lead to

from the

parameter

coefficient

usual rule

friction i

this may

viscosity

relaxation

volumes,

the thermodynamic relation

This method was proposed

suggested that

of the solvent, together

thus the friction dependence

One would like
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the energy transfer controlled regime or to the diffusive regime and

whether the plateau of transition between these two regimes approaches

the TST rate. The experimental evidence to answer this sort of questions

is still very fragmentary, Only very recently, was performed the first

series of very interesting experiments seemingly to cover the whole

range of friction dependent kinetic regimes. Hashe,Eguchi and Jonas (77)

did a high—pressure NMR study of the conformational isomerization of

cyclohexane in several solvents so as to cover a viscosity range of

about 50 times. They found a clear transition between the rate

increasing low friction regime to the rate decreasing high friction

region, but this decrease does not exceed 7.5% of the maximum for a

friction 10 times higher.

Fleming et al. (78) in a series of studies of the solvent

viscosity dependence of the rate of isomerization of several organic

molecules (e.g., diphenylbutadiene) in alkane and alcohol solvents

fod a similar deviation: for the higher viscosities, the observed rate

is lower than that predicted by a fitted Kramers expression. This effect

has been explained as coming from the non—Markoffian nature of the

coupling to the heat bath by Velsko, Waldek and Fleming (78.c), by

Bagchi and Oxtoby (79) using Grote and Hynes (28) formalism and also by

Carmeli and Nitzan (26.b) within their generalized theory.

Other reactions have been study that do appear to require as

well the consideration of non—Markoffian effects, For example, in a

recent study of the photoisomerization of trans—stilbene and

trans—l,l—biindanylidene, Pothenberger, Negus and Hochstrasser (80)
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found deviations from the Kramers rate in the case of trans-stilbene.

These discrepancies were tentatively related to the larger flexibility

of this molecule but appeared to be well simulated by the non-Markoffian

theory of Grote and Hynes (28).

The fitting of the theoretical models to experimental data

does normally require the adjustment of the frequency parameters

related to the molecular potential as this is frequently unknown. It has

been noted by several authors, refs (26.b) and (80), that the values

obtained appeared to be unrealistic, what sheds some doubt as to the

validity of the interpretation given to the data.

An explanation of the enhancement and other anomalies of the

catalytic reaction rates on metals and certain insulators associated

with the large fluctuations of the internal degrees of freedom that

occur near a phase transition or by alloying has been attempted by

‘itki,
d’Agliano, Schaich, Kumar and Suhi (8l)Vhe framework of stochastic

theories.

To sum up the current position of the experimental evidence

about the viscosity effect on condensed phase reaction rates, we note

that the most commonly observed effect is the inverse proportionality

associated with the diffusive (high friction) regime. In some cases,

deviations are observed for lower viscosities which fit well with

Kramers intermediate friction regime predictions. (See, for example, the

analysis made by Mc Caskill and Gilbert (82) of data of Shank et al.

(83) for the optically induced conformational changes in l,l’-binaphthyl

in several solvents.) Furthermore, there is now enough experimental
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evidence to show that, in more particular conditions, the energy

transfer controlled (very low friction) regime will set in and this may

be accompanied by a wealth of finer effects that are discussed in this

chapter

Some of the theoretical results discussed here may also be

checked by analogous computer simulation, a topic discussed by Faetti et

al. (31).

5.2 Settled and Unsettled Problems in the Field of Chemical Reaction

Pate Theory

The current attempts at generalizing the Kramers theory of

chemical reactions touch two major problems: the fluctuations of the

potential itself driving the reaction coordinate, including the

fluctuations driven by external radiation fields, and the non—Markoffian

character of the relaxation process affecting the velocity variable

corresponding to the reaction coordinate, When the second problem is

dealt within the context of the celebrated generalized Langevin equation

I f(t) ()

supplemented by the fluctuation—dissipation relationship

(t) <f(o) t(t) ) /<v c)
this topics seem now to be at a fully developed level of understanding,

As already illustrated in the foregoing sections, the chemical

relaxation process is then described by

- f (t) (se)

where V is the external potential driving the reaction coordinate x.

kave
Carmeli and Nitzan (84) Crovideda complete treatment of
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this problem. They assumed the memory kernel to be given the

following analytical expression

(7)

As already stressed in the foregoing sections the standard case studied

by Kramers is recovered by assuming T’to be infinitely large. In such a

case ‘.f(t) can be replaced by

which, when replaced into

equations studied by Kramers

The parameter

()
1’

can be thought of as a measurement of the friction intensity also in the

strong memory region.

As
—------- discussed in the preceding sections, further

parameters of interest are the frequencies cA and w deriving from the

harmonic approximation at the bottom of the reactant well and the top of

the barrier, respectively. Carmeli and Nitzan (84.a) evaluated the

reaction rate throughout the whole friction dominion ranging from the

low friction regime (CA)6>) ) to the high friction one. This has also

been commented on sub—section 2.2. They also studied the dependence of

these reaction curves on the correlation time

(oo)
-r

Their interesting results are shown in figs (i1) and (12.).

FIGURES jj. ,

We learn from these results that the effect of increasing the

1’
eq.(96) results in the

(see eq.(6)).

1
(es)

standard set of
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correlation time is equivalent to shifting the curve corresponding

to the case of white noise to the right. The height of the curves

changes also as is varied, the form of this change depending on the

ratio CJ0/CJ.

These results are of a very special interest as they provide

a definite answer to questions such as the following: (i) Can the rate

be increased beyond any limit by adjusting the value of ‘ta? On another

region of the friction, (ii) Can an increase of make the reaction

time infinitely large? By inspection of Carmeli and Nitzan results we

conclude that an unbounded growth of makes the reaction rate

vanishingly small; however, when an initial increase of the rate (as a

consequence of the growth of ) is observed, this is bound to reach a

maximum value and then to decrease to a vanishing rate for . This

is not only a problem of academic interest. A large interest is

currently being devoted to enzyme chemistry, see ref.(85). There the

enigma to be solved concerns how the activation process takes place. —

Enzymes — succeed in increasing the reaction rates of about six orders

of magnitude. A possible mechanism could be the presence of cooperative

effects which make tend to infinity, However, Carmeli and Nitzants

results (84) show that in the case of a barrier as high as l8KT, the

effect of increasing ‘ cannot produce an increase of the chemical

reaction rate larger than one order of magnitude. This suggests that the

enigma of enzyme chemistry has to be solved by other mechanisms, for

example, the interaction with nonreactive modes. This is the second

aspect concerning the generalization of —-> Kramers theory. This second
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aspect touches problems which seem to be still the subject of

controversies such as, for instance, the validity of the AEP itself.

To the first aspect, on the contrary, we are already in a

position to get a fairly definite view, which is clearly illustrated by

the results of Carmeli and Nitzan (see figs. (Ii.. and (l2i).

What about the role played within this context by the

general strategy of this book (as symbolized by the delta—like diagram

of the first chapter of this volume) ? We shall devote a large part of

this final section to show how our strategy may contribute to clarify

the physical meaning of these results. A calculation completely

satisfactory from a quantitative point of view should, however, largely

rely on the methods developed by other authors (those of Carmeli and

Nitzan seem to be of especial interest) . For the sake of clarity we

shall recall some of the key results of the foregoing sections.

When considering the special case widely studied by Carmeli

and Nitzan, the PMT replaces eq,(96) with

(o)

- flv F(t)

where F(t) is a white Gaussian noise defined by

o

<F(o) (t)> = 1 (t) (aoz)

The physical meaning behind eq,(lOl) has been already discussed in the
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foregoing sections, as well as in the introductory chapter of this

volume

First of all we shall apply eq.(lOl) to study the low

friction regime

(i03)

and we assume CJ0 and to be of the same order of magnitude. The

standard Kramers theory corresponds to

(io)
_.L <<C’.L < -

To take into account the fact that f(t) of eq.(94) is not rigorously

white we should explore also the region where

F < (‘os)

which is precisely that explored by Carmeli and Nitzan (84.b) Their

latest results, ref.(84.a), however, seem to apply also to

1fl<<c - (o6)

As, in the low friction regime, the escape is largely

determined by the behavior of the Brownian particle in the well, we

shall focus our attention on that. When considering barriers of large

intensity we are allowed to replace eq.(lOl) with its harmonic

approximation

z
-l( ÷ w (oi)

1w — V —
W + F (t

We assumed the origin of the space coordinate to be at the bottom of the

reactant well, By adopting the method of the stochastic normal modes
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(see the second chapter of this volume) eq.(107) is replaced by

=
(t)

+ -

(t) (io)

To determine these normal modes one has to diagonalize the matrix

0 1CJ0 0

A (4o)

-in -

This antisymmetric form can easily be derived from eq.(l07) by

multiplying the variables v and w by suitable constants. Note the

similarity of this matrix with that of ref.(39).

We may exploit the fact that is much larger than the

other parameters, fl andfl. First of all, let us rewrite the matrix A

in the basis set where it can be given the form

i)o 0

__

A

___

Then, by a perturbation calculation, we obtain

+
0

z +

A - —
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JL

This means that the normal modes and are characterized by the
4-

frequencies

i fi ( \ (iz)

I fl -

- zo —

2((A) fi’)

both with the same damping

+ ZZ)

If we focus our attention on the damping while neglecting the less

important effect on the frequencies, we have that the same result could

be obtained from the Markoffian system

xz V

- — v f (t)

with the Gaussian white stochastic force f(t) defined by

<(o) (t)> Ff <Vt> ()

Note that in the non—Markoffian case (CLJ0Zl) the effective damping

‘eff
i +

turns out to be much smaller than the damping in the absence of the

external field. This is a well understood effect, widely discussed in a
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previous papery one of us, ref.(86). A strong external field acting on

a non—Markoffian system tends to decouple that from its thermal bath

thereby rendering smaller its effective damping.

In other words, if we are exploring the low friction regime,

the interplay of non—Markoffian statistics and external field renders

the system still more inertial, thereby iiaeain. the range of

validity of the formula provided by Kramers for the low friction regime

provided that be replaced by

Fig. (la) shows that this simple expression agrees fairly

well with both the theory of Carmeli and Nitzan and the result of their

purely numerical calculations. The plots in fig. (12.) show how well the

non—Markoffian effects on the rate may be simulated by a simple

multiplicative factor (1+Z ) . For the sake of comparison, we

fitted an expression with this factor to Carmeli and Nitzans results so

as to include their accurate Markoffian rate.

Using eq.(ll3), the Markoffian low friction expression of

Kramers (eq.(S)) may be generalized to the non—Markoffian case,

k ( E/I<T (7)

) KT
The discrepancies between the rate given by this expression and that

calculated by Carmeli and Nitzan are mostly due to their improved

Markoffian part.

We believe that the arguments above should convince the

reader that the interesting phenomenon detected by Carmeli and Nitzan is

another manifestation of the decoupling effect, well understood at least
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since 1976 (see ref.(86)). The only physical systems, the dissipative

properties of which, are completely independent of whether or not an

external field is present are the purely ideal Markoffian ones. Those

non—Markoffian in the presence of a strong external field provoking them

to exhibit fast oscillations are characterized by field—dependent

dissipation properties. The5e decoupling effects have also been proved in

jiithe
the field of molecular dynamicsCTiquid state studied via computer

simulation (see Evans chapter in this volume).

The region ranging from to J1can also be explored

using the RMT. In the foregoing section we showed indeed that the basic

ideas of the RMT supplemented by the generalization of the Kramers

theory to the multidimensional case allows us to recover the simple

expression first derived by Grote and Hynes (36.b). This quite

interesting formula reads

K15 (r/
(s)

where

____

e p (- E / K)

and

\

(‘sr)
and

ex(rt)(t) (2o)

In the case considered by Carmeli and Nitzan (84.b) we obtain

________

(iz)

Xç+ F’


