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2
in discussing the observed viscosity dependence of the reaction rates,
refs.(1-3). The molion of the Teactant@into the reacting position, the
"encounter” in the language of _, collision theory, is hindered by —
higher wviscosities, ﬁz , and, in ‘the diffusive regime, the number of

’ -4
these encounters is Zo<42 i however, this same factor increases the
difficulty for the reactant(s) to move out of position, providing a sort
of cage wall and the time spent inside this cage, or the number of
collisions following the initial encounter, is ncxﬁ7 . Any reaction rate
that 1s proportional to +the total number of collisions, Z%*n, will be
independent of the viscosity.Under certain circumstances, however, the
1
rate will be proportional to Zo< 0? . One class of processes where this
is well known to happen is the quenching of fluorescence where the
chemical process is so fast that the rate is controlled by the diffusion
of the quencher to the excited molecule, ref.(4). A similar behavior is
observed in very fast proton-transfer reactions, ref.(5). For very high
viscosities, the quantity n will be very large and the chemical reaction
will aJLways occur at anearly stage of the encounter and its rate will
1 ‘

be proportional to Z o<’7 . Then, we should expect that the rate of a
chemical reaction would always go like ’Qn for sufficiently high
viscosities.

In the other extreme case, when the coupling of the
reactant(s) to the solvent is very weak, the reaction rate will also
decrease. In fact, - once  the higher energy molecules have reactsd, the

replenishvhent of this top energy layer will be too slow to maintain

thermal equilibrium and the rate will slow down.



We shall show — that this behavior is predicted in all
stochastic theories, the major effort being directed +to  the
understanding of the conditions when such extreme regimes fail and to
predict the detailed general form of the rate constant.

The most widely used theoretical tool for the understanding
of chemical kinetics 1is still the transition state theory (TST) in its
original form, ref.(6), or in one of its modern versions, ref.(7).Becau5e

it is —» used throughout this paper as a major reference for comparison

of the results obtained with the stochastic theories, it is useful = to
recall its basic principles and final expression. Conventional
transition state théory depends on the following general assumptions,
ref.(8)

a) The rate of a chemical reaction may be calculated by
focusing attention on the "transition state", the region near the col
or saddle point of the potential energy surface that must be crossed in
the process of conversion of the reactants into products.

b) The transition state is in quasi thermodynam;c
equilibrium with the reactants and the removal of the products does not
affect the +yeactanle' eq\LiLjﬁgri&L?n —— 5 up to the transition
state.

c) In the region around the col, the motion along the
reaction coordinate can be treated as free translational motion.

The rate, Kk is calculated as the product of the

ST

population at the +transiticon state by the frequency at which one such

species ~will go into products. The final result may be cast in the



form

TsT = K E‘\%IQEGXP('EB/KBTv ‘ (9

QA

where Q$ and QA are the partition functions  associated with the
transition state and the reactant, respectively, Ey is the activation
energy (the. potential energy of the col above the ground state of the
reactants) and h, ?(B and T have the usual meaning; K is the so called
transmissi?n coefficient, an ad hoc factor, usually taken close to
unity, measuring the fraction of the forward moving transition state

molecules that actually become products and are not reflected.

If one considers a system with a single degree of freedom,
A
Q3=1 and QA:(l—ﬁa%/KBI) 5 Keﬁ/ﬁcuo (for KBTSyﬁa%) - the partition
function of the harmonic vibration of the reactant — the TST rate is
given by
- _ =
Kigr = (coo/:m) exp ( x_b/I{B’T) (2)

¢ if the transmission coefficient is assumed unity. This is

the TST rate expression that we will always consider in later sections.

The most interesting applications of transition state theory
have been, perhaps, in solution chemistry and a number of detailed
. heen . . .
improvements have“v—made to bring in some of the effects of the solvent.
This has been done mostly within the framework of thermodynamics by

introducing in eq.(l) the solvent dependence of the assumed equilibrium



between reactants and transition state. The activation energy is then
solvent dependent and quantities like activation entropy and activation
volume are used in the discussion. (This 1is thouroughly treated in
standard textbooks, for example, in ref. 1). Other effects originate in
the intrinsically dynamic interactions between solvent and solute and
thus, are not amenable to this kind of thermodynamic treat_ment . The
stochastic theories that have expanded so much in these last few‘years
~attempt to dealing with these more complicated interactions.

The plan of this paper is as follows. In the next section,
the baéic ideas of the method of Kramers are reviewed and recent
generalizations, especially the progress made in bridging the two
Kramers 1limits, are discussed. The remaining part of the paper is
devoted to discussing two lines of current development of the theory
that seem very promising for the interpretation of chemical rate
processes in condensed media. Section 3 deals with the problem of the
interaction of the reactive coordinaﬁe with other nonreactive modes and
establishes a connection with the field of non-equilibrium non-linear
statistical thermodynamics. The difficulties arising from the break_down
of the hypothesis of time scale separation (non-Markoffian effects)
which may be very relevant in condensed phase processes are considered
in section 4. The improved physical interpretatioh that may be achieved
by the general strategy that is the subject of this volume, is discussed
in section 5. We should note that the three cornerstone techniques of
the delta-like strategy proposed in the firstc,aPEr of this volume are

used in sections 3 and 4.



2. THE KRAMERS MODEL AND ITS EXTENSIONS

For our purposes, a chemical reaction is viewed as the
passage over a barrier by a particle under the influence of random
forces originating in its environment. It was Marcelin (9) who first
represented a chemical reaction by the motion of a point in phase space,
thus  Using for the first Lime fhe rigorousnethods of statistical
mechanics. He suggested that the course of a chemical reaction could be
followed by the trajectory of a point 1in the 2n-dimensional space
defined by the n position coordinates necessary to describe the reacting
system together with the corresponding conjugate momenta.

Inspired by Christiansen's (10) +treatement of a chemical
reaction as a diffusional problem, Kramers (11) studied the model of a
particle in Br0wnian motion in a l-dimensional force-field and predicted
the existence of three fundamental kinetic regimes, depending on the
magnitude of the friction. The hasic hypothesis and results of this wgrk
will be summarized below, as many of the most recent results obtained
using more sophisticated models are still best described by reference to
Kramers ' original model and ‘reaxxca ‘to those of Kramers when the

appropriate limits are taken.

2.1 THE KRAMERS MODEL

Consider an ensemble of non-interacting particles —the

reactant- under the influence of (i) a force derived from an external
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one-dimensional . potential V(x) consisting of a well (A) and an adjacent
barrier C (see fig. 1) and (ii) an irregular force resulting from random
collisions between the reactant particles and solvent particles at a

given temperature, T.
FIGURE 1

Kramers (11) identified +the chemical reaction with the
escape over the barrier of the reactant particles initially located in
the potential well. The irregular force simulates the interaction with
the solvent which is thus treated as a heat bath.

The motion of a particle (mass M) in the Kramers model may

be described by the following Langevin equation,

X = Vv (3.3.)
Y= 1 9V F(e 3.b
V=YY - 4V 4 r .
I ) (3-8)
where ‘K is the friction coefficient (or damping rate) and F(t) is the
irregular force associated with the «coupling to the heat bath. This

force 1is assumed to be markoffian, i.e., the forces at different times

are assumed uncorrelated. It may then be defined by

< E(t)) = 0 (4.&}
. . . b
<F(o}F(t)>;1XKBTb@ (4-8)
where eq.(4.b) is an expression of the fluctuation-dissipation theorem,

ref.(12), +that relates <the friction 6‘ with the magnitude of the
irregular forces acting on the particle.

The Langevin equation (eq.3) is equivalent to the following



Fokker-Planck  equation which drives the probability distributicon in

phase space.

2 p(xvt)=l-va + L3V 3
3t ax M gx v

<

- N ‘
+ K L%-\—/V + ——LKMT %—'1} Plx,v,t

(5)
4
In order to obtain simple analytical results from this equation, Kramers

assumed further that (iii) the potential is parabolic near A, V(x)=

:%tﬂugkzand,near C, V(x)=Q- %tMaf(x—xc)land that (iv) the height of the

barrier 1is much larger than the thermal energy, ESS>KBT, so that the

reaction process is slow and quasi-stationary. Under these conditions he

expression for the rate of

was able to obtain the following simple

particle flow over the barrier:
- /2

2
SO ICRED

_1]exp(-—Eb/[«{BT). (s)

It is important +to consider two limiting cases where this

general expression may be simplified. For small frictions, ‘6« 2u%,

eq.(6) gives the same expression as that obtained earlier in transition

state theory,

- - 7
KTST:% exp (‘EE/KBT) y YK AW, (7)

The condition of wvalidity of this expression is easily understood. If

the time scale of the damping (l/;{) is much larger than the time scale



of the motion atop the barrier (l/cog, then the particle will have an
effectively’ free motion in its downhill path out of the well. It should
be kept in mind that this is exactly one of the fundamental hypotheses
of transition state theory. It should be wrong, however, to conclude
that there is no lower limit on the friction for the correct
applicability of the TST expression. For extremely low frictions, the
coupling to  the heat bath 13 mo 10n%ev‘ able to maintain the

an
gquasi-thermodynamic equilibrium in the well, thusifn/alida[inggssumption

made by Kramers to derive eq.(6) and alsg¢§£derlying conventional TST.
For this extreme low friction region, Kramers (1l) was able to calculate
the rate by converting the Fokke;—?lanck equation (eq.(®)) into a
diffusion equation for the energy; the exchange of energy between the

heat bath and the particle 1is the rate limiting step in these

conditions. The following approximate fate equation was obtained

K ’;KEJ?—Q"F (~EB/I<T> (8)
L-Ow B
KgT
This energy diffusion process should apply when the characteristic time
of damping, l/'ﬁ, is much larger than the time of equilibrium escape of
a particle from the well, 1/kT5T.
Kramers (11) suggested that transition state theory should
apply in the range of frictions (KBT&%/ZTfEB)z E”Z (l/S)ch, the lowest
limit corresponding to the point where expressions (7) and (8) give the

same rate value.

The general Kramers expression (86) may be simplified in the
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region .of wvery high frictions, 3@9 2&%; where a purely diffusive regime

is attained,

FIGURE L
Ko = WoWp exp (-E /KT (9)
Righ & P (- Es B )

The plots in fig.2 suggest that the limits pf validity of transition
state theory may be fairly ﬁarrow or altogether ﬂOﬂ-cnsEﬁt counter to
the prediction made by Kramers..The nonequilibrium effects duly treated
for —s extremelylow friction "~ may start being felt before the TST
plateau 1is approached. This 1is more 1likely to occur for the lower
barriers and larger ratios w,/w.

The following argument may help 1in understanding the
connection between the extreme low friction regime and the diffusive
one. Kramers identified very clearly the two processes that determipe
the .rate of escape, the thermal escape out of the bottom of the well and
the actual diffusive crossing of the barrier; the slowest of the two
becomes the Ilimiting step and determines the overall rate given by
eq.(8) and eq.(6), respectively. If we assume that these are successive

To
processes accordinéy%he schere

KE ¥ Kd
A *—-AVZE_ Al—— B (40)
bt}

we can easily calculate a rate expression valid for all frictions. The
=
overall rate of scheme (10) is given by klntzkéki/(k€+kd) and

£, E
’kg)zexp(~Eb/K8T). The

Boltzmann equilibrium requires that (kr

following limits are clearly satisfied
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£ N
K2 «; King = ¥y exp (- £y /K T) = ¥low (11)

J = d )
kY& Ky Kint= Kexp (B, /KgT ) =K (12)

and the general expression for the overall rate may be written as

- A _ _
K = K * f— Klii | (i'5>

ing

The results of this two step model are also shown in fig.2.

Buttiker, Harris and Landauer (13) refined  the Xramers
treat_ment of the low friction case allowing for a non-zero density of
particles at the energy of the barrier and obtained an expressiop for

the rate, kBHL’ which may be cast in the form

-

1/2 "
Koy, = Ei+qKT5T/KL0w] - X ow

14)
3 7 (14)

This expression converges to kTST-for the high frictions and

starts correcting ks tike

while eq.(13) introduces a correction of the form

X
K. P~ E 4 - \/KLOW\ -+ Kiow\ eia i(ng ’\’16)
in L ’\k’TST} KK ’)
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As may be seen by comparing egs.(15) and (16) and also by

inspection of the plots in fig.2, our interpolating expression gives a
rate higher than that calculated by the method of Buttiker, Harris and
Landauer (13) but, for higher frictions it approaches the Kramers
function in the correct way. (See section 2.2 for further discussion of

this point. )

—_— 2.2 THE BISTABLE MODEL AND OTHER GENERALIZATIONS OF KRAMERS

METHOD

In the model studied by Kramers (11), the particles are
assumed to Dbe initially at the well around A and to be lost as they
escape above the barrier. Many physical ﬁrocesses, however, are more
realistically modeled by a bistable potential (see fig.3), namely when
two states A and B may be interconverted. In the original Kramers model
no back crossings from B to A were considered, the particles were

somehow absorbed as they arrived at B.

FIGURE 3
K

AL B (+7)
Ky

It should be noted that states A and B are not well defined states but

rather probability distributions around the potential minima A and B.

For high barriers like those assumed originally by Kramers, there should

be no ambiguities, but one should be careful when dealing with small

barriers., One way  to deal with this problem rigorously is to work with
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the eigenvalues of the coperator driving the probability distribution in
time. For simplicity, consider the case of a symmetric potential and let
{fn(x) be the eigenfunctions associated with eigenvalues kﬁx' The
following interpretation emerges from an interesting paper by van Kampen
(14): Wo(x) ( XO=O) is the equilibrium distribution; the lowest
non-zero ei _genvalue, >\i’ is usually the one defining the chemical
relaxation rate as 1t corresponds to the slowest time séale and, its
associated eigenfunction, \Pi(x), is antisymmetric. To this first level
of approximation, the probability distribution is given by
wo(x)+ Qi(x)exp(— Xit) and describes the evolution from t=0, when the
two functions may cancel each other in the right-hand side well, up to
the final equilibrium distribution lyo(x). It 1is easy to see that
Ai:k7+k€ and the individual cone way rate constants may be determined if
the equilibrium constant is known as well. Others methods of avoiding
this ambiguity consist of calculating the expectation value of the
position, <x%, (e.g. ref. 15) or the total population in a well defined

X
by np\(t)z-/ dx P(x,t) (e.g. ref. 16) and look for the time evolution of
-0
these variables.
Brinkman (17) considered the bistable potential problem and

showed that the diffusive, very high friction regime of Kramers was

still correct,

Kg,%:,ﬂ_&)’c— exp (— (VC‘\/A\)/KBT} » o (18)
'3 am oy
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Kiiﬁh - C‘)BQC exp (—(VC—VB>/I<.13T> (43)
1 5

Inétead of the quasi-stationary state assumption of Kramers, he assumed
only that the density of particles in the vicinity of the top of the
barrier was essentially constant. Visscher (18) included in the
Fokker—-Planck equation a source term to account for the injection of
particles so as to compensate those escaping and evaluated the rate
constant in the extreme low friction limit. Blomberg (19) considered a
symmetric, pilecewise parabolic bistable potential and obtained a partial
solution of +the Fokker-Planck equation in terms of tabulated functions;
by requiring this piecewise analytical solution to be continuous, the
rate constant 1is obtained. The result differs from that of Kramers only
when the potential has a sharp, non-harmonic barrier.

Brinkman (17), Landauer and Swanson (20) and Donnelly and
Roberts (21) made important progress in extending Kramers' method to
models with several spatial dimensions. For the relatively simple models

that were worked out, the major conclusions attained by Kramers do hold

well. (A more detailed discussion of this point is given in the next
section).

van Kampen (14) presented a detailed analysis of a
specialized one dimensional, symmetric double-well potential and

obtained expressions for the eigenfunctions and eigenvalues of the

associated Smoluchowski equation.  He was able to reproduce and correct

the  Kramers result in the diffusional limit and clarified the varvious
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relaxation processes that occur in the different time scales of a
reaction process with a high barrier. Taking as initial distribution a
delta-like function placed at the bottom of one well,wﬂkich 15 equivalent
to considerina a linear combination of infinitely many excited states, he
showed +that a Qquasi-equilibrium 1is attained after a initial fast
relaxation process; this quasi-equilibrium consists of an equally
weighted lineaf combination of the ground state (the equilibrium
distribution) and the first excited state. The eigenvalue of the first
excited state corresponds to the Kramers rate of escape. This shows how
the Kramers theory gives a satisfactory description of the slow escape
process, while an accurate picture of the faster processes, consisting
mainly in the initial relaxation inside the well, would require the
evaluation of an overwhelming number of excited states.

Larson and Kostin (22) considered a symmetric double-well
potential and solved the Fokker-Planck equation driving the probability
distribution 1in phase space, assuming the barrier to be high. Three
cases were considered, firstly the diffusional 1limit, where the
Smoluchowski equation may be used, secondly an intermediate range of the
friction coefficient, ‘E, and thirdly the limit of very low friction . A
variational approach was used to calculate the eigenvalues and the
eigenfunctions were obtained by a perturbational technique. For high and
intermediate values of the friction, asymptotic formulas for the rate
are given, -~ their ~accuracy being tested against numerical calculations.
Starting from the limit‘a'ﬁ O, they proposed a semi-empirical expression

apparently wvalid for all frictions and suggested that the lower limit of
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validity of TST would be far higher than predicted by Kramers (11). (See
also the discussion at the end of sub-section 2.1 .)

Several other attempts have been made to derive general
expressions for the chemical rate, valid from the extreme low friction

omes

regime to the moderate and high frictigaf/ﬁarlier on, Visscher (23) had
preformed numerical calculations 1in the trans;tion region between low
and intermediate friction regimes and fittéd a one-parameter expression
which appeared to cover the whole range of frictions. Skinner and
Wolynes (16) constructed a sequence of Pade approximants from the
analytical results known for small friction and large friction; although
some theoretical difficulties may arise with this wuse of the
approximants, the results‘ obtained seem very satisfactory. The same
technique Qas applied very recently by Garrity and Skinner (24).
Montgomery, Chandler and Berne (25) used a stochastic dynamics
trajectory method to solve +the bistable either piecewise harmonic or
piecewise constant potential and found that the actual rate was always
below 50% of the TST value. (For comparison with fig. 2, we note that
the parameters taken correspond to EE/KBT=4'9 and, for the piecewiée
harmonic potential, w,/®,=3.05 .)

BUttiker, Harris and Landauer (13) extended the treat ment
made by Kramers (11) for the extreme low friction regime to take into
account - the effect +that the flow of particles out of the well has on
their distribution inside the well. They obtained a rate expression,
eq.{(14) —above, wvalid from the extreme low fricti6§$ESE%% intermediate

friction but converging +to the TST wvalue (see fig. 2}. Carmeli and
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Nitzan (26) proposed a new approach based on a division of the particle
phase space in two overlapping regions. In the first, for the lower
energies deep inside the wells, the variation of phase is assgmed to be
much faster than that of the energy and a diffusion equation for the
energy will hold. The second corresponds to the higher energy region
near the top of the barrier where a spatial diffusion of the particles

may be assumed. The final expression for the rate, k.

cy may be written

in the form

-4 -1

K

where Zi is the mean first passage time for the particle to reach the
boundary between the two regions referred above, k}Cis the Kramers rate
given by eq.(@) and s is a complicated factor assuming values between
1/2 (for 3/-—-#0) and 1 (for large *J). This method and the final result,
eq.(20), should be compared with the very simplistic two step model
discussed at the end of sub-section 2.1. The factor s now introduced
makes the rate kCN always larger than kinf but closely related to ig.

Tﬂovin% away from the smallest frictions, the corrections introduced are

of the form

CN % " | Low
K /)
-4
if we identify Zika@VJ As the factor s 1is close to 1/2 in this
region, it 'is <clear how k is closer to k. (or more rigorously, to
CN LOW
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Z;i) than k; .. A factor s=1/2 for the first order correction in the
form of eq.(21) had been proposed earlier on by Visscher (23) to fit the
numerical results of a Kramers-type model that includes a source term.
This should be contrasted with the refined Kramers treatvment of
Blittiker, Harris and Landauer (13) which overcorrects kLOM/by comparison
with the two-step model. (See egs.(14) and (15) and fig.2 .) The
approach of Carmeli and{Nitzan has been generalized by the same authors
to the non-Markoffian case, but this is the subject of section 4.
Very recently, Lavenda (27) devised an interesting method of
solution of' the Kramers problem in the extreme low friction limit. He

was able to show that it could be reduced to a formal Schréﬁinger

equation for the radial part of the hydrogen atcom and thus be solved

One parficular form of the

exactly.L———xv/-’”’“'7&555_#5355—'3ehavior of the rigorous rate equation

coincides with that obtained by Kramers with the guasi-stationary
_ imoplicalions

hypothesis and may thus Clavd.fy the——y  oF this hypothesis. The

method of Lavenda 1is reminiscent of that used by van Kampen (14) but

applied to a Smoluchowski equation for the diffusion of the energy.

3. MULTIMODAL THEORIES

In Kramers' (11) model, the reaction process is described by
the motion of a particle along a single coordinate. This is what in tﬂe
Jargon of chemical kinetics is called the reaction coordinate, a concept
laking — rigorous definition in most cases. In actual problems of
chemical interest, the barrier may be fairly wide near the saddle point
and, besides, the normal mode separation may break down in that region.

Real systems do usually require a many-coordinate description and the
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coupling among these modes may play an important rocle in the rate
process. = Landauer -and Swanson (20) extended Kramers work to the general
multidimensional case +to find +that, in the diffusive regime (high
friction), the rate expression showed the same deviation from the TST
value as that found in one dimension. Ir\the other extreme case, for -—
very low frictions, however, there appeared. to be an effect of _
dimensionality. It is the aim of this section to evaluate the results
.obtained with multimedal theories and we start by discussing in
sub-section 3.1 two interesting attempts to deal with more detailed
models, one to bring in the effects of the solvent, the other to deal
directly with a two-dimensional <coupled system. Later, in sub-section
3.2, another detailed mocdel is presented which aims to supplement tbe
results of these two works.

3.1 TWwWO DETAILED MODELS

The +two particular models of mode coupling that we shall
briefly discuss 1in this sub-section are illuminating about the mamny
éi£ferﬂﬁ'mechanisms that are involved and the difficulty in establishing a
general simple pattern.

Grote and Hynes (28) studied a model for an exchange

reaction in solution,

A+rBC — AB+C | (22)

assuming that the motion ' in 'the saddle region 1is separable into

reactive and nonreactive normal modes. The solvent dynamics act on the
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motion on each mode and may also induce a dynamical coupling among them.
In the particular case of eq.(22), the reactive mode 1is tThe
antisymmetric stretch of the molecular system ABC. For example, 1t is
easy to see that the solvent reaction forces upon the translational mode
(one of the nonreactive normal modes) will couple this one into the
reactive mode, This coupling may have three sources, namely (i) the
éif{efenfmasses of the atoms, (ii) the different friction on the central
atom relative to the more exposed external atoms and (iii) the cross
correlation between the atomic forces. Grote and Hynes déscribed the

motion on each coordinate a; by a generalized Langevin equation of the
type

- 2 3 ’rt ya (t-z) + F(T)
G (1) = -wla (t) -z [ dx Y aiEE) s
L i

i J)o

where the frequency W; is imaginary for the reactive mode. They found
that, except for the limiting cases of very high and very low friction,
the rate of +the reaction would depend very markedly on the assumed
friction kernels, 3}&(2). (It should be kept in mind that these are
related to the correlation of the solvent forces,
638(%):<Fi(O)Fé(z)>/KE; .) Moreover, the mode coupling reduced the
effective friction that was "felt" on the reactive mode. This shows how
important and complex may be tﬁe role played by the solvent in
determining the reaction rate,

Another source of coupling between the reactive and the

other modes may result from the shape of the potential of the (solvent

e

ST

z.J

[§3]

Nt
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free) ‘reacting system. A particular case of this class was studied by
Chrisloffel and Bowman (29) who considered a two-dimensional potential

based on that of ammonia,

VOuy) = faxt s bt Voenp (et fr s m o)y

with

wy (%) = wOY_d" N exp <-O(XL)]. (lé,.

This has the form of a double-well oscillator coupled to a transverse
harmonic mode. The adiabatic approximation was discussed in great detail
from a number of guantum mechanical calculations and it was shown how
the two-dimensional problem could be reduced to a one-dimensional model
with an effective potential where the barrier top is lowered and a third
well is created at the center as more energy is pumped into the
transverse mode. From this change in the reactive poteﬁtial follows a
marked 1increase 1in the reaction rate. Classical trajectory calculations
were also preformed to identify certain specifically quantal effects.
For +the higher energies, both classical and quantum calculations give
parallel results.

3.2 THE COUPLED DOUBLE-WELL OSCILLATOR

In this sub-section we extend Christoffel and Bowman's

investigation to the condensed phase. This is done within a classical
the worKof we

context reminiscent of {Grote and Hynes (28) —== , and ‘make extensive use

of ~both AEP and CFP (see the first four papers of this volume). A more

detailed account is giVen by Fonseca et al. (30),



Consider a bidimensional model potential,

Viey) s B+ w0y (25)

where x is the reaction coordinate and y is some transverse normal mcde,
? (x) is a symmetric double-well potential modelling the chemical

reaction and

4/1
Wots (%) :[.% c,o;L + \{/(X)} (26)

with

W) = -2 g exp (x¥/rr) (a7)

xint and r may be regarded as measures of the intensity and the range,
respectively, of the coupling of the transverse mode onto the reactive
motion. For Grote and Hynes' assumption on the mode separability in the
saddle region to be wvalid, a fairly large value of r is required. In
fact, when ry»a (2a 1is the distance between the two minima of the
reactive potential), the effect of the deterministic coupling can be
viewed as a simple upward translation of the double-well potential on
15 driven b
the energy axis; for r%a, however, the reaction coordinggg—“w/_*_gﬁ;
effective potential whiqh has a smaller barrier and, in some cases, a
third well, an effect already found in Christoffel and Bowman's work.
The classical motion of a stochastic particle 'in the
potential defined by eq.(25) may be described by the following set of

equations
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X =

v

I

G -y - Yyt B (2e)
j=w

W= - Xw—w}y-ly Uf(x)érf‘c‘[)

The stochastic forces f(t) and f'(t) are assumed to be of the form of
Gaussian white noises and to be statistically uncorrelated; this means
that the coupling between reactive and nonreactive modes via the solvent
is completely neglected. However, the noise affecting the nonreactive
mede is  transmitted into the reactive one originating the appearance of
multiplicative noise effects. Although the Fokker-Planck equation
corresponding to the set of eQS.(28) may be wriften Straig%@orwardlf
its explicit solution involves some technical difficulties. In order to
avoid these difficulties we shall make a set of assumptions similar to

£

those of Christeffel and Bowman. The pair of variables (y,w) is assumed

to be much faster than the pair (x,v); if this condition applies the AEP

can be applied to obtain a simpler Fokker-Planck equation depending only

on the slow variables, and the CFP can be used to determine the time

evolution of <the observables driven by that equation. This kind of
ws

approach allowé\/go determine the rate constant for the chemical process

under investigation in the following two different physical situations:

1) System 1in thermal equilibrium: ' the +two modes have
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available the same thermal energy and, in this case, we study the whole
range of values of the friction, 3’, on the reactive mcde.

II) System being excited: we assume that the nonreactive
mode can be continuously heated by an external source, without affecting
the reactive one, ‘thereby creating a physical situation where a
canonical equilibrium does not exist.

In Dboth physical situations cited above we assume the
nonreactive mode to be overdamped, with the friction A so large (with

respect to w,) as to allow the set of egs.(28) to be replaced by

k z VvV

\‘,:;(pl(x)-ﬂ(fv-\yl(x)yz%-f(t) (l@)

® L i
=-% - 2 W(ix (t
Y )\y )\W()y +TC/\> .

The AEP 1is applied to the set of eqs.(29) in order to extract from its

equivalent Fokker-Planck equation,
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the one describing the time evolution of the probability distribution of

the slow variables, o(x,v,t):

; D2 0 v o+
%D’(x,\/}t)~ -v 2= S,JQD(X) R

0 ey o2 9 eyt W0 Wik)
ava)w w;'avww)‘ i

2”\
¥ vy 3° 3yt o Ty ] ,
e q)’ZS}W QIR LACATDOR

dvt

(This result 1s obtained by wusing corrections up to the second

perturbational order — for a detailed discussion of how the
see

perturbation parameter is defineéﬁvzhe first chaﬂkrof this volume.)

It is dilluminating to make a short discussion about the
significance and importance of each term in eq.(31). The first three
terms are trivial as they are nothing €xcepl adescrihlion of the
deterministic evolution iwm the reactive mode in the absence of coupling
with the nonreactive one; the sixth term is also trivial and is a
diffusional term corresponding to the effect of the stochastic force

f(t) over the reactive mode. More interesting are the remaining terms:

in fact the fourth term 1is equivalent to the standard adiabatic
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correction to the reactive potential found by Christoffel and Bowman,
and ‘arises as a consequence of the deterministic coupling of the
reactive mode to the nonreactive one. When one applies the AEP to the
set of egs.(29) this term appear as the first order correction. The
fifth and seventh terms appears as the second order correction provided
by the AEP; the fifth 1s a non-standard adiabatic correction to the
reactive potential and the seventh is a multiplicative diffusional term
that transmits to the reactive mode the effect of the thermal
fluctuations acting on the nonreactive one. It can be also proved that
higher order corrections provided by the AEP will generate the true
effective potential "felt'" by the reactive mode.

Eq.g3l) is wvalid when the characteristic times of the

position x and velocity v are similar; when both v and y are assumed to

be fast variables the AEP appied to the set of egs.(29) leads to
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where Riz(us)\)/E'EZg/Zy. This equation was obtained taking into
accougt corrections up to the fourth order on the AEP, and considering v
as a fast variable but not infinitely fast when compared to x. It must
be noted that the last term in this equation is, with respect to
eq.(31), the next non-standard adiabatic correction to the reactive
potential. It is interesting to study how eq.(32) behaves with 3’ or
more directly with Ri; when Ri assumes large values, what is equivalent
to taking small values of hf and, therefore, making the system more
inertial, the fourth and seventh terms of eq.(32) cancel each other out
and the resulting equation is equivalent to that obtained starting from
eq.(31) and eliminating (with the AEP) the velocity v. When Ry tends to
zZero, 6’ tends to infinity and the diffusional limit is approached; in

this limit eq.(32) can be rewvitten as-

jia x, 1) = :E_ ;a_ , X 1 X -
atq(,) 753}&[(1)()4—\\/()<y>

A , 4
237 Wy + 4 9D o Y }‘
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This —» same equation can be obtained from the set of egs.(29)
supposing v infinitely faster than x.
This touchs the Itdé-Stratonovich controversy discussed by
Faetti et.al. (31) (note that Ry 1is to be identified with their
-4
parameter R ). In line with their remarks we are led to the.conclusion
that when the system becomes inertial the Itd description is valid (see
eq.(31)) and that when inertia is completely absent (éee eq.(33)) the
Stratonovich description is attained.

The results obtained considering that the system is

thermalized can be summarized in fig.4,

FIGURE 4

where the chemical reaction rate, k, 1is displayed as a function of

Ri(=zg/zy). Qy was kepted constant and therefore this figure exhibits
: K . . .

the same kind ofvaependence ~—> on '6 (76 is the friction acting on the

reactive mode) as ‘that already discussed 1in sub-section 2.1 of this

chaﬁkn Note,  however, that new effects originating from the coupling
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between reactive and nonreactive modes appear in this case, as discussed
later on. When Ri-—>0 the high friction region is attained and a linear
dependence of k on l/‘K is obtained in agreement with the classical
Kramers result. As Ri increases the system becomes more inertial and it
is ~also interesting to note that, as kint increases, straight lines of
increasing slope are obtained. This 1is a manifestation of the role
playeé by inertia: the sensibility of the reaction rate k to the
intensity of the coupling increases as the reactive system becomes more
inertial.Above a certain value of Ri’ the lines start bending down, a
sign that the intermediate friction regime is being approached (see
introduction). Unfortunately, we had difficulties with the convergernce
of the continued fraction procedure in this region and therefore there
is little reliance to be placed on results provided by those computer
calculations.

As Rl tends to infinity the energy-controlled regime is
approached and the important role played by the interaction between
reactive and nonreactive modes can be assessed by some remarks on
eq.(31). Let us consider the case where <y2}:ih . If 7§<v2> is aiso
assumed to vanish, eq.(31) describes a purely deterministic process and
the overcoming of +the barrier is rigorously forbidden when the total
energy of the reactant is lower than the barrier height. However, when
the coupling between reactive and nonreactive modes is restored, the
reactant undergoes the influence of the fluctuations acting on the
nonreactive mode and this can supply enough energy for the reactant to

overcome the Dbarrier. Fluctuations @ become ineffective near the top of
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the barrier where their intensity vanishes as implied by \V'(O)zo. .
This means that inertia is .absolutely necessary for the barrier to be
really overcome. As a result of such a synergism between inertia and
multiplicative fluctuations, the chemical reaction can take place even
when Kramers theory predicts vanishingly small rates. This is ——— an
interesting property, a quantitative discussion. of which requireé$ that a
point of view completely different from the one considered until now be
adopted. To derive a Fokker-Planck equation for the energy, we follow
Lindenberg and Seshadri (32) who wused energy and displacement as

independent variables. We define the energy as

2

E- X + & &) (34.2)

Ey

CIOERUIOR xy(xm%-[wx)fw; (346

(AJO

In the absence of the additive and multiplicative stochastic forces, E
would be a constant of motion, rigorously independent of time. Under the
influence of these fluctuations E becomes time dependent but its
dynamics will certainly be very slow when compared to the dynamics of
the wvariable x, therefore permittin% us to eliminate also the space
variable. Starting from eq.(31), we rewrite it in terms of the new pair
of wvariables, x and E, and, after eliminating x with a procedure
introduced by . Stratonovich (33), the following final equation 1is

obtained

[N
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where
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with the integration extending over a domain that includes all values of
x for which E)/@(x).

To evaluate the chemical reaction rate via eq.(35) we adopt
the first-passage time method (35,34) identifying k with the inverse of
the mean first-passage time. The results are displayed on the right-hand

side of fig.4 and in fig.5.

FIGURE 5



32

The results illustrated on the right-hand side of fig.4 show
that, in +this region, the increase of k is much more sensitive to the
increases in >\i“t than it is in the high friction region, thereby
corroborating our statements about the role of inertia. This trend is
especially emphasized in the limit ‘6-—90, and is better seen in fig.5.
As remarked above, the reaction rate stays finite in this zero friction
limit counter to Kramers' prediction.

Until now we limited ourselves to study the thermalized
system, thus in physical condition (I) cited at the very beginﬂiﬂ% of
this sub-section. When we assume that the nonreactive mode can be
continuously heated by an external source, the system ceases to be
thermalized and interesting new effects can occur as a consequence of
the .coupling between reactive and nonreactive modes. Returning to
eq.(32) we can guess what really happens when a@?yl) is increased: on
the one side, the deterministic effect over the reactive potential
increases and consists of lowering the barrier to be overcome. However,
and 1in addition to this effect, the intensity of the multiplicative
fluctuations 1is increased with respect to the intensity of the additive
ones; this creates a gradient of temperature inside the reactant well
that pushes the reactant particles to the region near the barrier while
supplying them with energy. This effect vanishes at x=0 (the barrier
top) but, by the presence of the additive fluctuations, the reaction
occurs with a velocity that is much faster than in the absence of this
effect. If we continue to increase the energy of the nonreactive mode, a

threshold region 1is attained when the deterministic counterpart of the
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multiplicative diffusional term equals the frequency corresponding to
the harmonic expansion of the effective potential around thektop of the
barrier. In the absence of additive fluctuations, it is well known after
the work of Schenzle et.al (35) that this threshold corresponds to
cepterihg the probability distribution at the top of the barrier, aﬂjd in

: this
chemical language we can roughly identif?YWE%h an activation process.
When the threshold is passed and we continue to pump energy into the
nonreactive mode, the probability distribution tends to become still
more concentrated on fhe top of the barrier rendering the chemical
reaction even faster.

The results obtained in this particular physical condition

are displayed in fig.6.
FIGURE 6

The curve A was obtained using eq.(33), i.e., completely
neglecting the role of inertia; curve B, in turn, was obtained using
eq.(32) where these effects are present. The increase on the reaction
rate 1is very clear; the threshold region corresponds to the plateau and
the increase of k after this region is much more marked. Once again the

. , . . ) this
role of inertia is to speed up the chemical reaction and‘ ™y Seems to

| I_ﬂw}l@i would
the threshold condition™S5 " be attained at lower values of the

energy given to the nonreactive mode.
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4, NON-MARKOFFIAN EFFECTS ON THE RATE

In this section we shall explore a different kind of
generalization of the Kramers theory to take into account the problems
resulting from the breakdown of the time-scale separation between the
reactive mode and its thermal bath. This problem may be also found in
the multimodal theories in section 3 when the nonreactive modes are not
much faster than the motion along the reéction coordinate.

Computer simulations of the molecular dynamics of the liquid
state)reh.ﬁé-BSLclearly show. that the correlation function of the
velocitj variable is not exponential, rather it usually exhibits a sort
of damped oscillatory behavior. This means that the Markoffian
assumption is often invalid. When studying a chemical reaction in a
liquid phase this makes 1t necessary to replace the standard Kramers
condition (see eq.(4.b)) with a more realistic correlation function
having a finite lifetime. Recall the rate expression obtained by Kramers
for moderate +to high frictions, eq.(6) above. This may be cast into the
form RBEkTsT#f(Q%,K) where kTST’ given Dby eq.(?j, is essentially én
equilibrium property depending on the thermodynamic equilibrium inside
the well. As a canonical equilibrium property, it is not affected by
whether the system is Markoffian or not. The calculation of the factor
f(a&,a) depends, however, on Fhe dynamics of the system and will thus be
modified when non-Markoffian behavior is allowed for.

Another problem of interest is that concerning the effect of
external radiation fields. In the overdamped regime this will be shown

to be reminiscent of the effect of the nonreactive modes. These problems
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will be the major topics of the present section.

This section is organized as follows: in sub-section 4.1 the
approaches based on the assumption of heath bath statistical equilibrium
and those which use the generalized Langevin equation are reviewed for
the case of a bounded one-dimensional Brownian particle. A detailedV
analysis of the activation dynamics in both schemes is carried out by
adopting AEP and CFP techniques. In sub-section 4.2 we shall consider a
case where the non{ﬂarkoffian character of the variable velocity stems
from the finite duration of the coherence time of the light used to

activate the chemical reaction process itself.

4.1 NO;SE ACTIVATED ESCAPE RATE IN THE PRESENCE OF 'MEMORY EFFECTS

To discuss the idea of noise activated reactions we begin by
noting that +the random forces which occur in the Langevin equation
relatea with the process under investigation may have quite different
origins. In an ordinary microscopic derivation of a Langevin equation
(or the corresponding Fokker-Planck equation) +the random term is
interpreted as associated with the thermal fluctuations of the system.
This thermal or internal noise scales with the size of the system
(except near 1instability pointshf?ﬁ.@oﬂﬁ.A different interpretation of
such a contribution to a Langevin equation is necessary, however, when
this is thought to model what can be defined as an external noise. In
this latter case, one considers a system which experiences fluctuations
that are not I'"self-originating'". These fluctuations «can be due to a
fluctuating environment or can be the result of an externally applied

random force. 'The mathematical modelling of these fluctuations is made
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by considering a deterministic equation appropriate in the absence of
external fluctuations and then considering the external parameter which
undergoes fluctuations to be a stochastic variable. The noise term of
the  stochastic differential equation so obtained is usually
multiplicative in its nature, that is, it depends on the instantaneous
value of the variable of the system. It does not scale with the system
size and is not necessarily small. We can regard the external noise as
an external force field which drives the system maiﬁtaining always its
statistical equilibrium. Among the experimental situations in the
presence of external noises so far considered, the example of
illuminated chemical reactions (ref.43) is of particular interest for
our readers.

In the introductory <chapter of this volume and in the next
two, 1t is ————— stressed that the ""microscopic" derivation of

equations such as some of those used here should be discuSsad Carefu]%r

This is to avoid Some - ——— the ambiguous

features of

> a purely phenomenological treatment. However, as
these are widely used in the literature of —, stochastic processes, we

shall show how to approach the problem of their solution while avoidinj

e —————— 5  those difficulties >
s, by using a more rigorously founded '"microscopic! derivation (see
the next two chapters in this volume).

(a) E_xamples of Non-Markoffian External Noises

Let ‘us focus on the one-dimensional dynamics of an order

parameter x exhibiting bistability, i.e.
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*zf(xz a) (37)
where a denotes an external control parameter. The flow f(x,a) is
assumed to possess three real roots {xi,Xﬁ,xi}. We choose x£<xz, where

and Xy, denote locally stable steady states and Xy 1s an intermediate,

4
locally unstable, steady state. In the presence of a fluctuating control
parameter a the deterministic flow in eq.(37) should be replaced by a
stochastic one,
x=f(x,a) + 9) (D) (38)

where the multiplicative noise (state dependent coupling) represents the
linear coupling of _a to the order parameter x in the dynamical flow,
eq.(37). A common example of eq.(38) is provided by the Smoluchowski

approximation of the random walk of a Brownian particle bounded into a

symmetrical double-well potential

V(=)= —ax2 + bx*/4 | (29)

/2

4
In such a case g(x) is assumed to be 1, x, =0 and x ¥(a/b)

1,2°
The problem may be formulated as follows. Given random

noises ?(t) with different correlation parameters T

A and Zl’ but

possessing identical spectral densities s%(w=0) at frequency zero, i.e.

S‘g(o):/<§i(t);(o>>clt ._-_/< gl(t) gl(o)ﬁt: 2D (40)

what 1is the relationship between the corresponding activation rates of
the metastable states?

Hanggi and Riseborough (44) carried out an exact calculation
of the activation rates for the bistable flow of eq.(38) for the case

when the noise of the control parameter can be modelled by a telegraphic

FIGURE 7
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noise of vanishing mean,

n (t)
¢(t)y=d (1) (41.a)

CEMDEG)> = Lg_ exp (-1t-sl/z)  (41.5)

A
where n(t) is a Poisson counting process with parameter (27) and d

denotes a random step with density

o - L[5 (4 (/) ) v s(d(p/e)?)] (42)

We may now eanborate on the problem posed above: the system with a
smaller correlation time 7T is subject +to random forces with larger
amplitude (see fig.7), and this might lead one to conclude that the rate
was enhanced. However, the time interval over which the force is
constant decfeases; since the random force changes sign more rapidly,
one might now expect that the system had not enough time to reach the
point of instability and consequently the rate would be supressed for a
smaller correlation time. Thus, it is not obvious a priori which of the
two random forces, gi(t) or %Z(t)’ yields a smaller rate, i.e. a larger
escape time.

The analysis made in ref.(44) is based on the discussion of
the related exact non-Markoffian master equation (refs.45,46) and allows
us to conclude that, when the noise intensity S%(O), eq.(40), is
constant, the rates are exponentially enhanced with decreasing
correlation time 7 and this is independent of the specific form of the
nonlinear bistable flow f(x,a) and also of whether the random noise is

additive or multiplicative. (The only condition imposed is g(x)#0 in

{Xi’xu’xz}-)
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An important property of the telegraphic noise, eq.(41), is

the approach to a gaussian white noise in the limit T—0 (ref.47). With

- ftl/z
lim _A;_ e = 5 (t)
>0 17

eq.(41) reduces to

<g(tyg()> = 2D s(t-s) - (43)
From now on we consider the stochatic differential equation (38) with
g(t) being a random force associated with a zero mean gaussian process
and an auto-correlation function given by eq.(41). This system has been
widely investigated by Sancho et.al (48-50). The use of such gaussian
noises 1is Jjustified by the central limit theorem (see refs. 11.b and
41). For a gaussian noise with éxponenfial auto-correlation, eq.(41),
the so called Ornstein-Uhlenbeck noise, one is unable to derive exact
expressions for activation rates (see refs. 48.a,50,51). In ref.(50) an
approximate Fokker-Planck equation 1is obtained for the probability
distribution of the variableé X by applying functional methods
(refs.48,51). These methods pro&ide an alternative to the more often

used cumulant techniques (see refs. 49,52,53) and may be shown to lead

to consistent results (refs. 49,50). The same approximate
Fokker-Planck equation, 'however, can be recovered with +the AEP
technique. The AEP can be applied by introducing an equivalent

formulation of the process under investigation, eq.(38):

x=T(x,2) + g00¢

L A

The exact equivalence of these formulations may be proved, ref.(54), for

(44)

the case where: (i)f?(t) is a white gaussian noise with
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<m{tyy=0  and <M(T)M ()= 2L s(t-5) (45)
(ii) a fluctuation-dissipation relationship for the auxiliary variable ?.
"is understood and it is initially prepared at its gaussian equilibrium
with
Z 2 Co
<80y y = < & >eq.:D/Z C48)
The perturbation reduction of the corresponding Markoffian Fokker-Planck
equation for the +two variable process (x(t),%(t)) to an approximate
second
one -~ in x(t) has been carried out in sub-section (5.4) of the—~,—Chapter

of this volume. For brevity we only report the approxihate time

evolution equation for ¢#(x,t) up to order D ,

9 v (x t) :{~ 3?‘; f(*;i)‘*‘D%_x%(x)%;{g(x)- ZMM} } v (x t)

3T (47.a)

where

M(x) = fle'eo -f g, (47.5)
the prime, denoting the derivative. (The reader can find a detailed
discussion of some technical properties of eq.(47) in the article quoted
above. )

The problem we are a&dressing. now 1is the same posed in )
ref.(44) for a case of a non-Markoffian telegraphic noise: Given
gaussian noises with different auto=-correlation times Zi and Zz, but
identical intensities 2D, eq.(40), which of them will provide a smaller
rate (larger escape time)? Since ~— detailed balance does not %ojé for
eq.(44), the standard methods (see refs. 11.a,20,55) fail in evaluating
the activation rate of the non-Markoffian process under investigation
and the more . general method of refs.(56) and (57) is rather cumbersome

because the stationary probability uﬂéx,?) should first be determined
sT.
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perturbatively. If T denotes the mean first passage time (refs. 33,34)
to reach the barrier top the activation rate can be estimated as

K = 4-//2 T <4 8)
where the factor 1/2 takes into account that the random walker has equal
chance to either continue to the adjacent stable state or return to the
old one. Without loss of generality we consider the particular case of
the BSmoluchowski approximation of the random walk of a Brownian particle
bounded into a symmetrical double-well potential, i.e.
i
{;(x,g._)_-_ \/(x) and %(x):’i ,

where V(x) is given in eq.(39). The chemical meaning of this model has
been widely discussed’ in the preceding sections. If x=-00 is a qatural
reflecting boundary and X=Xy=0 an absorbing state, one finds
(refs.33,58) for the mean first passage time T(x) of a walker which

started out at x(O):giﬁo o Y

Ty- [ [ogmdr o (49

U;t(y)1>(Y)

st
v (x) denotes the stationary probability of the approximate
st
Fokker-Planck equation, eq.(47). D(x) 1is the corresponding diffusion

coefficient, i.e. D(x)=D(1-ZM(x)). Within the assumptions of (i)

——small enough auto-correlation time 7 — and (ii) weak noise so as
<

D<a /b, we can evaluate T(x) applying the method of steepest descendent

to eq.(49). From egs.(47) and (39) we > obtain

1/2

0d 1+ 237 e x 5
T() avT \ 1 - ax P(A¢/D> (s0)

A - / f(y,4) dy - iaaz)+0(z3)h

i+‘zf(y a) 4b L

Since .eq. takes into account only the term of order D%, the term of

with

[
\

51)
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order T?’ in eq.(51) 1is meaningless and the term linear in % in A(¢
vanishes exactly. For =0 our result equals the well-known Smoluchowski
rate (ref.ll.a).

The main conclusion we can draw is that the activation rates
for the non-Markoffian process like eq.(44) decrease as ¢ increases; the
exact result of ref.(44) can be thus extended to the case of gaussian
random forces of finite correlation time as well. However, if we take
eq.(50) seriously we obtain an Arrhenius factor, exp(A(P/ﬁ), of T(x)
which Joeg not exhibit a dependence on 7. This is in contraét To  the
result found for telegraphic noises where the Arrhenius factor increases
with increasing auto-correlation +time 7 (see ref.44). The result of a
numerical simulation for T(x) based on the bistable flow is given in
fig.8. In contrast with our prediction in eq.(50) AM# increases with
increasing auto-correlation time 7.

FIGURE 8

The increase 1is proportional to the first order in T and is not
dependent on the small noise parameter D. The origin of the
disagreement can be traced — to the‘FAth that the Fokker-Planck
approximate schemes, like eq.(50), can bé incorrect, even in leading
order in 7T, if viewed as a long time approximation of the corresponding
(unknown) master equation dynamics, refs.(59-61). This difficulty is
discussed 1in the section 7 of chapter Il in the present volume. However,
the physical contents of the major conclusions drawn above remains
unchanged.

(b) Chemical Reactions Driven by Bona = Fide Non-Markoffian




43

Fluctuation-dissipation Processes

When the chemical reaction process takes place in condensed
phase (for example in a liquid) a reliable description of it seems to be

achieved, ref.(49), simply by replacing egs.(3) with

© _ 52.3)
. (
i
\'/z-..’i_\/(X)—/L‘D(t~“c)V(z)& FF(D), (s2.b)
M 5
where {F(t) and the stochastic force are related to each other via
2' —
VY Y (1) = <FayflD)) (53)
This takes into account the fact that the stochastic force f(t) can
have — a finite correlation time, for example
pley= L exp (- /7)) (s4)
T

In the absence of the external potential V, egs.(52) can be
given a rigorous derivation from a microscopic Liouville equation (see
chapter I of this volume). We make the naive assumption that, when an
external potential driving the reaction coordinate is present, the two
contributions (the deterministic motion resulting from the external
potential and the fluctuation-dissipation process described by the

to
standard generalized Langevin equation) can simply be addedVéach other.

A more realistic and more general treatment would presumably
lead to a set of equations like that of eqs.(52), with the potential
V(x) fluctuating as a consequence of couplings with nonreactive modes
(see the foregoing section). For the sake of simplicity, we study
separately the two different aspects. While section 3 was devoted to

pointing out the role of multiplicative fluctuations (derived from
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non-linear microscopic Liouvillians) in the presence of additive noise
of white type, this sub-section is focused on the effects of a
non-Markoffian fluctuation-dissipation process (with a time convolution
term provided by a rigorous derivation from a hypothetic microscopic
Liouvillian) in the presence of -a time-independent external potential.

A more general expression for LP(t) can be derived from the

continued fraction expansion, ref.(62),

A 2
Y(z)= _Bs

Zor Ayt VAYY ’ (s55)
Z-l-)\L-i‘ 432’

1
+ An
2+Lph(z)
defining its Laplace transform. In the explicit calculations presented
in this sub-section, we shall limit ourselves to considering the case of
eq.(54) which corresponds to truncatingeq.(55) at the first order
(g}z'—O) while assuming A\,=1/ and 431~ /% A trul rigorous
2" uming Ay =tTe 1‘5 e .y rigor
derivation from a microscopic Liouvillian would lead to Aizo, unless
coherent oscillatory motions have to be simulated (in that case Ai
would be purely imaginary numbers). The chain of eq.(55) is often
R .
truncated at the n-th order by assuming %Dn(z)='K . When this is done,
T

the dissipative term ‘Xn simulates the infiniteremainder of the chain.
In most cases (see for example Grote and Hynes (28.a,36.b)) LP(t) is
given a certain analytical expression without taking into account the
formal constraints provided by the derivation from an hypothetical
microscopic Liouvillian. In such a case the parameters Ai can be real

numbers. - If we adopt the basic ideas of the RMT (which in the present

linear case to which the standard generalized Langevin equation applies
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is virtually equivalent to the methos described by Ferrario and

Grigolini (63)), we find that the set of egs.(52) is equivalent to

X = v i (?5-a>
Vo= - \V/'(><> + /%~1 (s6-b)
A= =Div - N A AL %, (1) (56.¢)

ApemBla, -2 AL Ay v @ (ed)

®

A ()= <AL A - 2a AL+ 8 (D) (5¢.0)

The random forces ? (t),...,‘é(t) are gaussian white noises of zero mean
n

and correlations

{$. (t); (s)>= 2855 KT Mg (oF A s(t-9) (57)

These

A

; with the corresponding noise term and guarantee the attainment of a

forces are introduced, ref.(64), so as to supplement the frictions

canonical equilibrium. The Fokker-Planck equation associated with the

set of egs.(56) can be written as

P(Cit)--ﬁ ﬁ,Y(KT)( U@) ]Pca £)  (58)
f~

where a summation over repeated indices is lmpllClt,,ﬂ,V—l,...,n+L and

q=X,V,A1,---,An~ The generalized potential U is

1 2
U@ = V&« " Ar v An o (59)
M L 2 AX A%

and the kinetic matrix va
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The equilibrium stationary solution of eq.(58) is

e ()= M oexe (FU@/K,T) ()
where N is a normalization constant.

As mentioned above, in the explicit calculations of this
sub-section we shall consider ono,ki¢no,£g%0. This is the simplest case
satisfying the requirements of a rigorous derivation from a microscopic
Liouvillian. Of course, for the non-Markoffian nature of the variable
velocity, v, to result in observable effects, the effective friction-

-1

term oo

Yetf <NV (t)ydl

cannot be infinitely large when compared with the frequency o, the/

1

harmonic approximation around the bottom of the reactant well. This
means that inertial effects cannot be disregarded. An interesting
discussion of the influence of inertia on the escape over the potential
barrier(variational in 1is nature)can be found in a paper of Larson and
Kostin (22.b). Their results are valid in the limit of white noise and
provide a reliable check of our approach. Furthermore, in a former
péper, ref.(22.a), the same authors improved the Kramers result for the
diffusional case by evaluating corrections to the linearization of the
Brownian motion within the barrier region. Sucﬁ%%ésumption is usually

(refs. 28.a,36.b,65) at the basis of any approximate analytical

B

(0)
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calculation of the activation rates. On the contrary, as shown by
Fonseca et al. , when using the CFP this approximation can be avoided.
Therefore we shall apply the CFP in the most advanced form reviewed by
Grosso and Pastori in the third chapter of this volume to the
Fokker-Planck equation (eq.(58)) with n=1 and ki¢-0, which hopefully
should account also for the corrections of ref.(22.b).

In Larson and Kostin (22.b) notation we change variables as

follows:
X ———-)XS.‘
vyl (s2)
t — Blélt/q
ZAJ
where

i

(a/b>4/l
AL/ 2
q = Y

The reduced Fokker—Planck.equation in dimensionless units now reads

(63)

=L R
i

%U(x,v),ﬂ;i,t): }:-o(v_a_ +4c (x*-x) . - N'A,l.@-—

X Qv PYY

+ xv. d_ & o(.’_’é__ Ai + Pl }U(xjv)Aijﬂ >(éz‘>
A, A, Al

where o = XBéIL/C\

}

i~
«= MYTa/y (65)
c;—g/\/o
2
Let us note that in dimensionless units ¢ plays the role of barrier

2
height, while ‘5=A1/X1 is the effective friction constant. This can be
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shown by following theheuristic argument of section 1 of chapter I in
this volume: let us assume that A4 relaxes so fast that Ai , eq.(56.¢c),
is approximately zero; the system of egs.(3) will be recovered provided
’6=£§/Ai. Moreover in sub-section 5.3 of the same chapter it is shown
that +the AEP corrections to the trivial Markoffian approximation of
eq.(58), n=1, are perturbation terms in the parameter

9= 2 (o(/ot’)i/l =24, /y (6¢)
In other words, if we keep { fixed and vary g we explore situations with
different 'memory strength". Following the prescription of ref.(66) we
define the escape time from the reactant well to the product well as the
area Dbelow the curve <x(t)>/(x(0)). For fairly high values of the
barrier ¢, this curve 1is mostly one exponential th?oughout the whole
time~ range but for a narrow region close to t=0. This fast relaxation
significan%ly depends on the starting point distribution, p(x,0) (see
ref.15.a). Let us assume p(x,0) to be given by a delta of Dirac placed
at the bottom of one well. This choice may enhance the effect of the
short time relaxation on our definition of escape time,

~ .
7.z @ (o) (67)
A
where q>(0) is the Laplace transform of {x(t))/{x(0)> at zero frequency.
However, for large enough values of ¢, k:T; can be relied on as a
sensible estimate of the activation rate of the process.
FIGURE 9

Fig. 9 describes the results obtained by applying the CFP. The most
remarkable feature of this result is the increase of the rate k as the

parameter g increases. A further remarkable finding is that for g—0
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(Markoffian 1limit) the accurate value of Larson and Kostin (22.b) is
attained within a precision of some percent.

Fig. 9 . is the main result of the present discussion.

However, . we can make an attempt to arrive at an analytical expression

for +the rate of escape over the barrier by using the generalization of

Kramers ideas to systems with many variables_(see refs. 20,55,67,68).

Let us come back to the multi-dimensional potential U(q), eq.(59): It

has two metastable minima at q4vl=(x¢’%,0...0) and é saddle point

qoz(x&,o....O). This generalization essentially consists in the

following. >'One first 1looks for a

> quasl stationary state
of eq.(58). In this state there exists a nonvanishing probability

current from a metastable minimum to the other. --—-;\_____g>

—

The non-equilibrium stationary state and the probability current are
calculated by linearizing around the saddle point dpe The escape rate is
given by the flux of probability current through a surface containing
the point g,. The calculation of k has been discussed in detail by
Langer (20) for a general Fokker-Planck equation with the form'of

eq.(58). The final result is
1/2

wo 1K (det M 0 AV (s8)
— | 2o xPp KT
1T ldet M°) ( // = >

where

AU-U@)-UG) i, = 20| - T e

aq/u.gqv q:qo) /“) BC\/"‘QC‘\J q=9,

Note that detff is taken in absolute value in eq.(68). This corresponds

o
to replac&ngthe negative eigenvalue Ii‘T’ which indicates the single
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direction of instability, by its absolute value. The dynamical factor K

is defined as the negative eigenvalue of the matrix M°D/KBT. It is

important to note that the dynamics of the system only enters in eq.(68)
through & . This factor depends on the kinetic coefficients QHV’ eq.(60),

while the remaining terms in eq.(68) are completely determined by the

potential U of the stationary solution. For the case under study,

eqs.{(58) and (59), eq.(68) reduces to

1 1/2
k= 1AL [ U (x0)
2T \JU" (xo),

In this particular case

~

o -U'tx) © - e

1 ° “AF o .. o
. o 1 A, -D) 0
MD/KT - . . LA,
_a
L © oo

The eigenvalues of this matrix admit a continued fraction expansion

" 2 A
k- -U () Da AT (71)
- K + —K o+ Ny ¥ K + Ap :

From this expression it is clear that X 1s the negative solution of the

implicit relation

- K - - U”(xo)
-k o+ P (k)

coincides with the analytical result of Grote and

(72)

Eq.(72) ————>
Hynes (36.b). In the Markoffian limit,\f(t)=2’ 5(t),
: 4
2 n %
k-1 (3 -V
L \g

and we recover Kramers result, eq.(6).

axo [~ [UG)-U ()] /KT } . (69
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The whole effect of the non-Markoffian dynamics is contained
in K. As long as the fluctuation-dissipation relation, eq.(57), is
satisfied, the existence of the non-Markoffian kernel modifies the
dynamics, but not the equilibrium solution, eq.(61), and, on the other
hand, a change in the dynamics of the system only changes the value of X
in eq.(69). The general form of the non-Markoffian effects on K&«
have also been obtained by Hanggi and Mojbatai (65). Their elegant
derivation is based on a non-Markoffian master equation first
established by Adelman (70) for the probability density of the process
which is solved by using the main basic assumption of Kramers. Their
results are again proven to agree with those of Grote and Hynes (36.pb).
As a particular example of eq.(72) we can consider the case
of an Ornstein-Uhlenbeck noise (36.b,65), where nzl,)l=7;4and Ai=3 /ﬁh.
In this case K is the negative solution of
CKPon kP o (A + UGk U') Ay =0 (73)
The Markoffian limit corresponds to Ai-eah By solving eq.(73) to the
-4
lowest order in Ai it is easy to see that in this case the

non-Markoffian dynamics leads to an enhancement of the decay rate k. In

notation of ref.(22.b) such an approximate expression for eq.(69) reads:

T Z

K= K(%:o)\bi-ﬁhc_(i-j__)] (7‘-})
7 4

where k(g=0) is the Kramers escape rate (in the diffusional limit) and g

is the parameter of ‘'memory strength'" defined in eq.(66). The same

result has Dbeen obtained in ref.(66) by adopting the variational method

of ref.(22). Eq.(74) is the analytical counterpart of the exact results

reported ‘in fig.9: as showed in ref.(66) the agreement with numerical
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results is only qualitative. Before concluding this sub-section, we
would like to mention a further way to explore the effects of
non-Markoffian statistics on the rate of escape from a well. This
consists in applying the AEP of chapter II of this volume to the
Fokker-Planck equation, eq.(58), so as to Dbuild up a reduced
diffusion-like equation for the variable x .alone. As the cﬁance of
proper simulating these effects relies on a faithful simulation of
inertia, we quote here the interesting result of Gardiner (71), which
shows that this actually happens. He considered a correcled Smoluchowski
equation which is a particular case of the more general reduced equation
mentioned above. By using a first-—Pa5sa3e time technique he could
explore the whole region varying from low to high friction regime and
obtained results in agreement with those of a computer simulation. It
seems therefore possible to explore also the effects of a non-white
noise by applying the same procedure to the more general reduced

equation mentioned above.

4.2 ACTIVATION OF A CHEMICAL REACTION PROCESS VIA ELECTROMAGNETIC
EXCITATION

The subject of this sub-section isclosely related to that of
section 3. Indeed, we shall show that the effect of a radiation field on
an overdamped reacting system produces activated states which are
reminiscent and formally similar +to those arrived at by tﬁe coupling
between reactive and nonreactive modes.

Hanggi (72) studied the model potential

Vix)= -4 2 bk (75)

2
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where the frequency d(t) is a stochastic parameter such as
é(t’) = 3 + n’)(t) (76)

and ﬂ?(t) is a Gaussian white noise. The main result of this study is
that the presence of a muitiplicative coupling with the heat bath makes
the activation rate to increase with respect to that in the Kramers
model, where a purely additive noise is considgred. In the following we
give a detailed discussion of the interplay of additive and
multiplicative noises on the basis of a phenomenological medel for a
photo-activated chemical reaction. De Kepper and Horsthemke (43) have
already used a radiation field as a source of noise. As in refs (73) and
(74) we model the action of a radiation field h(t) with a finite
coherence time L/X , in terms of the following set of stochastic

differential equations

X z VvV
| (77)
-V - Yv + EGoh() + T

<v

where f(t) is a Gaussian white noise with zero mean and auto-correlation
function

DT> 22D s =2 v 8 (78)

V(x) is assumed to be the usual symmetrical double-well potential(k&x):

z-§x¥/2 +3x1/4) ; the >

third term on the right-hand side of eq.(77) is the coupling between the

Brownian particle and the external radiation field, which 1is
characterized through its auto-correlation function

<h(t)]'\(0)>= LW é"P(“ At) cos ot (79)

Eq.(79) has the physical meaning that the coherence of the
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electromagnetic field is lost in a time 1/X\. Models of this kind are
frequently used to depict laser light, ref.(75). The electrical dipole
of the system interacting with the external field is assumed to have the
simple form

n
E(x):./q (x =xg) . (80)
In order to relate the system of egs.(77) to a time
independent Fokker-Planck formalism we replace that set of stochastic
differential equations with the equivalent one
X =V

v _\/‘(x)-?fv +E(x]<y+i)+1t(t)

S (81)
_1wy - >\>/ + N{)(t>

<
I

L
il

°

lwz - N2 o+ 72&)

it

The AEP allows us to simplify the discussion of this model provided thét
we can choose a (slowly relaxing) variable of interest. For that reason
we shall focus on an electromagnetic field of frequency comparable with
the frequency corresponding to the harmonic expansion of the reactant

well, ab.

The diffusional assumption implies‘X})Z&%. Furthermore, we
shall assume that our experimental apparatus only allows us to observe
long time regions corresponding to tz yﬂdg'so that the dynamics induced
by the radiation field belongs to the short time region if;\»za% When

it 1is further assumed that the stochastic forces‘7 (t) and “Z(t) are
Y 3

independent of each other and related to the field intensity by

NMOLBOPER ‘Dy s (t) (o)

<m B @>= 1 D, 6(t)
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where " 2
. L =
D -D :(>\+1w><W>—(‘é<W> (83)
y © Z

the current problem takes a form resembling that of the model studied in
sub-section 5.3 of chapter 1 in this volume. Let us focus our attention
on the case 3’25)\, i.e. when non-Markoffian effects due to light
statistics are more relevant than inertial corrections. The perturbation

expansion of eq.(5.31) of chapter I] can then be rewritten as

Z
D w(x,t)={L 3 3 <w s 3 ET(x) +
’atU( ) P 1)+ (g2 2

L <w 9 E(x) d_E(x) + C.c,} x t (84)
TCEATIEF - (x) v (x,t)

‘where j(x)=<v2>;a_+V'(x) and ‘6"3 or higher order terms have been
: X

neglected.
Let us study in detail the case where the particle dipole
E(x), eq.(80), is given by
E (X)‘:/U X (85}
Eq.(84) can be put in a simpler form:

P t){_ 23 (-d bx3) + DA% +
S—EV(X’> ax( qx+ x) Ix*

+ Qa X J x} U’(x,t) (86}

BRS PR3

D:<V1>/Z ’ <87)
d = 5/} , b:{g/w ) (%8>

_o2ewhs , (89)
2

[ St
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Z
W

| N . (90)
(d.+_%_> +?%6—

L+

A
I

As a result of AEP, the initial system of the set of eqgs.(81) is reduced
to the equation describing the diffusional motion of a Brownian particle
which undergoes the action of an additive and a multiplicative noises
(with intensities D and Q, respectively) in the presence of a
renormalized bounding potential, eq.(90). The Markoffian limit
corresponds to AX-aoo. If we take such a 1limit at a fixed value of
K’szd and the casée studied by Hanggi (72) is recgvered. ———3 Of
have vedvced Lhe problew
course, having neglected the condition k <Z‘6 we TN, o a
trivial diffusional (lowest-order) approximation.

The escape rate for the process described by the
Fokker-Planck equation, eq.(86), has been studied in ref.(73). We choose
é@(t)=<x(t))/(x(0)) as the observable of interest—-{x(e))=0. Then we
apply the apprcoach described 1in the foregoing sub-section to evaluate

o~ 4
the escape rate k as the area below the curve é@(t): k:é@(o) , where
A
(@(O) is the Laplace transform of qp(t) at zero frequency. To make the

convergence of the computer calculations faster the CFP algorithm has

been applied by taking 14+ d

U(x,o): N | x| Q exp (——f’axl) , (3i>

as the initial distribution (N is a normalization constant). This is the

stationary distribution in the absence of additive noise. The most
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remarkable results are reported in fig.10.
FIGURE 10

When Q=0, k exactly coincides with the corresponding result of Larson
and Kostin {(22.b). For small values of Q, k is a linear function of Q. A
first change in the slope of k(Q) is exhibited at those values of Q
corresponding to the onset of the continuum‘ in the spectrum of the
purely multiplicative Fokker-Planck  operator (ref.35), i.e. the
Fokker-PLanck operator of eq.(51) with D=0. A second one is found when
the threshold of the phase transition (see ref.35.a) is reached. The
main conclusion 1is that the cooperative presence of a multiplicative
noise produces a marked increase of the thermalv (i.e. additive)
activatién rate.

The question raised at the beginning of the present
sub-section 1is still unanswered. A simple argument however can provide
information on the role played by non-Markoffian dynamics in the problem
under investigation. When )\(oo, dCfd so that at aAfixed value of Q the
rate of escape will be larger than in the Markoffian limit, making
k(Q,d) a decreasing function'of d-see fig.1l0. We are in the presence éf
a striking effect due to the synergism of different-and statistically
unrelated-noise sources, non-linearity aﬁd inertia. We showed in the
preceding sub-section that the effect of an external additive noise,
non-Markoffian in its nature, would belolessen the activation rate of the
process with respeét to the Markoffian case first studied by Kramers.
Furthermore, it has been found, ref.(50), by means of a numerical

simulation, that the non-Markoffian <dynamics affects the diffusional
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relaxation in the presence of external multiplicative noises 1in a
similar way. Contrary to these findings, it is the major conclusion of
the present sub-section that when. both additive and multiplicative
external noises act on the system, a finite correlation time of the
multiplicative noise determines an increase of the activation rate.

These subject is discussed further in the next chapter of this volume.
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5. DISCUSSION AND GENERAL PERSPECTIVE

In order to get a satisfactory perspective of the state of
art in the limited sector of the theory of chemical reactions which was
explored in this chapter, we 'shall devote this final section to the
following basig aspects:

a) The relétion between current theories and selected
experiments and the discussion of the extent to which the details of
theoretical predictions have been confirmed so far.

b) The relation between chemical reaction rate theories and
some recent advances in the field of non-equilibrium statistical
thermodynamics.

5.1 THE SUPPORTING EXPERIMENTAL EVIDENCE

The experimental confirmation of the theoretical predictions
discussed in this article is still far from completely satisfactory. It
may be expected that in the near future fresh experimental results will
come to motivate new development in the theory and greatly improve the
understanding of the actual experimental conditions where the
theoretically predicted effects are relevant. The aim of this
sub-section is not that of giving a comprehensive review of the already
very sizeable mass of relevant experimental studies (for more
comprehensive reviews see refs.7.b,76); we shall draw attention to
certaiﬁ difficulties of the interpretation of experimental results in
relation to the theory developed here and refef¢% few representative
pieces of experimental work.

One difficulty of connecting theory and experiment comes
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from the fact that the relation between the microscopic coupling
parameter between the reaction coordinate and the medium (the friction
coefficient) and the macroscopic observables is not well understood. The
usual rule of thumb is B Stokes) law and states that the
friction 1is proportional +to the macroscopic bulk viscosity; however,
this may be grossly incorrect. It would be advantageous to use a local
viscosity obtained from the measurement of some sort of molecular
relaxation phenomenon, but this is not always available.

An alternative strategy is to look at the activation
v T

volumes, , related to the pressure dependence of the rate constant by

the thermodynamic relation

v CK,T QBBIQKL- (32)

The volume of activation should be formed by an equilibrium

(quasi-thermodynamic) part related to the TST rate, VTST' , plus an

extra part, Vig , originatiﬁg from the dynamic interaction with the
* . : :

solvent. V. may be estimated with reasonable assumptions about the
TST

transition state conformation and thus access is gained to V{f , that is

the pressure dependence of (k/kTsT)' This pressure dependence is felt

through the friction,

v; :-KBT[T%_ (1</KTST3].(%%_)T~ (93)

This method was proposed by Montgomery, Chandler and Berne (25) who
suggested that (a“é’/ BTP)T. could be estimated from the equation of state
of the solvent, together with a hard sphere collision expression and

thus the friction dependence of (k/kT T) could be assessed..

S

One - would 1like to know what experimental conditions lead to
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the energy transfer controlled regime or to the diffusive regime and
whether the plateau of transition between these two regimes approaches
the TST rate. The experimental evidence to answer this sort of questions
is still very fragmentary. Only very recently, was performed the first
series of very interesting experiments seemingly to cover the whole
range of friction dependent kinetic regimes. Hashe,Eguchi and Jonas (77)
did a high-pressure NMR study of the conformational isomerization of
cyclohexane in several solvents so as to cover a viscosity range of
about 50 times. They found a clear transition between the rate
increasing 1low friction regime +to the rate decreasing high friction
region, but .this decrease does not exceed 7.5% of the maximum for a
friction 10 times higher.

Fleming et al. (78) in a series of studies of the solvent
viscosity deﬁendence of the rate of isomerization of several organic
molecules (e.g., diphenylbutadiene) in alkane and alcohol solvents
found a similar deviation: for the higher viscosities, the observed rate
is lower than that predicted by a fitted Kramers expression. This effect
has Dbeen explained as coming from the non-Markoffian nature of the
coupling to the heat bath by Velsko, Waldek and Fleming (78.c), by
Bagchi and Oxtoby (79) using Grote and Hynes (28) formalism and also by
Carmeli and Nitzan (26.b) within their generalized theory.

Other reactions have been study that do appear to require as
well +the consideration of non-Markoffian effects. For example, in a
recent study of the photoisomerization of trans-stilbene “and

trans-1,1'-biindanylidene, Rothenberger, Negus and Hochstrasser (80)
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found deviations from the Kramers rate in the case of trans-stilbene.
These discrepancies were tentatively related to the larger flexibility
of this molecule but appeared to be well simulated b& the non-Markoffian
théory of Grote and Hynes (28).

The fitting of the theoretical models to experimental data
does normally require the adjustment of the freguency parameters (a%,cbg
related to the molecular potential as this is frequently unknown. It has
been noted by several authors, refs (26.b)‘and (80), that'the values
obtained .appeared to be unrealistic, what sheds some doubt asﬂto the
validity of the interpretation given to the data.

An explanation of the enhancement and other anomalies of the
catalytic reaction rates on metals and certain insulators associated
with the large fluctuations of the internal degrees of freedom that
occur near a phase transition or by alloying has been attempted by

wiblhin
d'Agliano, Schaich, Kumar and Suhl (8lf_ﬂv/_~%he framework of stochastic
theories.

To sum up the current position of the experimental evidence)
about the viscosity effect on condensed phase reaction rates, we note
that the most commonly observed effect is the inverse proportionality
associated with the diffusive (high friction) regime. In some cases,
deviations are observed for lower viscosities which fit well with
Kramers intermediate friction regime predictions. (See, for example, the
analysis made by Mc Caskill and Gilbert (82) of data of Shank et al.

(83) for the optically induced conformational changes in 1,1'-binaphthyl

in several solvents.) Furthermore, there is now enough experimental
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evidence to show that, in more particular conditions, the energy
transfer controlled (very low friction) regime will set in and this may
be accompanied by a wealth of finer effects that are discussed in this
chapter.

Some of the theoretical results discussed here may also be
checked by analogous computer simulation, a topic discussed by Faetti et
al. (31).

5.2 Settled and Unsettled Problems in the Field of Chemical Reaction

Rate Theory
The current attempts at genepalizing the Kramers theory of
chemical reactions touch two major problems: the fluctuations of the
potential itself driving the reaction coordinate, including the
fluctuations driven by external radiation fields, and the non-Markoffian
“character of the relaxation process affecting the velocity variable
corresponding to the reaction coordinate. When the second problem is
dealt within the contexttpf the celebrated generalized Langevin equation
\‘\/:—-]kﬁ(t—”r.)v(z)cjz + T(D) (349)
> .
supplemented by the fluctuation-dissipation relationship
v (t) = <T@ F) 2, /<, (35)
this topics seem now to be at a fully developed level of understanding.
As already illustrated in the foregoing sections, the chemical
relaxation process is then described by

t
= —%y; —-O/ \P(t—‘dv(z)c}‘c v (e, (36)

where V is the external potential driving the reaction coordinate x.

have
Carmeli and Nitzan (84) ¢ provideda complete treatment of
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this problem. They assumed the memory Kernel lP to be given the
following analytical expression

Y (f) = 0 exp (-Tt) (37)
As already  stressed in the foregoing sections the standard case studied
by Kramers is recovered by assuming T_ito be infinitely large. In such a
case kP(t) can be replaced by _
P(t)=2y s(t) = 1_%_’: JON (o)
which, when replaced into eg.(96) results 1in the standard set of
equations studied by Kramers (see eq.(6)).

The parameter
2

Y= () (39)

can be thought of as a measurement of the friction intensity also in the
strong memory region.

As

> discussed in the preceding sections, further
parameters of interest are the frequencies W, and cobderiving from the
harmonic approximation at the bottom of the reactant well and the toﬁ of
the barrier, respectively. Carmeli and Nitzan (84.a) evaluated the
reaction rate throughout the whole friction dominion ranging from the
low friction regime “ﬂb»'y) to the high friction one. This has also
been commented on sub-section 2.2. They also studied the dependence of
these reaction curves on the correlation time
7 = __}-_. (dOO)
Their interesting results are shown in figs (411) and (12).
FIGURES 11 | 12

We learn from these results that the effect of increasing the
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correlation time Tt is equivalent to shifting the curve corresponding
to the case of white noise to the right. The height of the curves ——
changes also as Te is varied, the form of this change depending on the
ratio a%ﬂwb.

These results are of a very special interest as they provide
a definite answer to questions such as the fo}lowing: (i) Can the réte
be increased beyond any limit by adjusting the.value of TC? On another
region of the friction, (ii) Can an increase of 7. make the reaction
time infinitely large? By inspection of Carmeli and Nitzan results we
conclude that an unbounded growth of QC makes the reaction rate
vanishingly small; however, when an initial increase of the rate (as a
consequence of the growth of T, ) is observed, this is bound to reach a
maximum value and then to decrease to a vanishing rate for Qé-ooo. This
is not only a problem of academic interest. A large interest is
currently being devoted to enzyme chemistry, see ref.(85). There the
enigma to be solved concerns how the acti&ation process takes place. —
Enzymes’ —> succeed in increasing the reaction rates of about six orders
of magnitude. A possible mechanism could be the presence of cooperative
effects which make Tt tend to infinity. However, Carmeli and Nitzan's
results (84) show that in the case of a barrier as high as lBKBT, the

effect of increasing 7

¢ cannot produce an increase of the chemical

reaction rate larger than one order of magnitude. This suggests that the
enigma of enzyme chemistry has to be solved by other mechanisms, for
example, the interaction with nonreactive modes. This is the second

aspect concerning the generalization of —— Kramers theory. This second
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aspect touches problems which seem to be still the subject of
controversies such as, for instance, the validity of the AEP itself.

To the first aspect, on the contrary, we are already in a
position to get a fairly definite view, which is clearly illustrated by
the results of Carmeli and Nitzan (see figs. (41 and (12)).

What about the role played within this context by the
general strategy of this book (as ;ymbolized by the delta—like'diagram
of the first chapter of this volume) ? We shall devote a large part of
this final section to show how our strategy may contribute to clarify
the physical meaning of these results. A calculation completely
satisfactory from a quantitative point of view should, however, largely
rely on the methods developed by other authors (those of Carmeli and
Nitzan seem to be of especial interest) . For the sake of clarity we
shall recall some of the key results of the foregoing sections.

When considering the special case widely studied by Carmeli
and Nitzan, the BMT replaces eq.(96) with

X = V

v = - g\/ + W (ioi)
PR

W _ﬂzv +Tw+F(t),

1]

where F(t) is a white Gaussian noise defined by

CF(D)>=0
_ I 2y S (t (402
CF)F(D)y=2T <wh, 58 )

The physical meaning behind eq.(101) has been already discussed in the
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foregoing sections, as well as in the introductory chapter of this
volume.

First of all we shall apply eq.(101) +to study the low

friction regime

X K W, (103)

and we assume @), and <nb to be of the same order of magnitude. The
standard Kramers theory corresponds to
O «wow, « 17 . (104)
To take into ’account the fact that £(t) of eq.(94) is not rigorously
white we should explore also the region where
O« T« w, . (405)
which 1is precisely that explored by Carmeli and Nitzan (84.b). Their
latest results, ref.(84.é), however, seem to apply alsoc to
" L «w, . (106)
As, in the low friction regime, the escape 1is largely
determined by the behavior of the Brownian particle in the well, we
shall focus our attention on that. When considering barriers of large
intensity we are allowed to replace eq.(101) with its harmonic

approximation
5(:\/
v Sl x o+ ow (/107)

= o

w-_0 _ T'w + FO&)

We " assumed the origin of the space coordinate to be at the bottom of the

reactant well. By adopting the method of the stochastic normal modes
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(see the second chapter of this volume) eq.(107) is replaced by

¢ - - N8 « (D)

% i JAL_fé_ . F (D (108)
(é :“‘/\-o%o * FO(t) A

To determine these normal modes one has to diagonalize the matrix

) EAEAN 0 W

A - -1,

This antisymmetric form can

multiplying the wvariables v and w

o i()

easily be derived from

similarity of this matrix with that of ref.(39).

by suitable constants.

(409)

eq.(107) by

Note the

We may exploit the fact that Wy is much larger than the

T
other parameters, |

in the basis set where it can be given the form

1w,

5 il
V2

i)
vz
T

Then, by a perturbation calculation, we obtain

VAV I

+

J\

R

P

+ O
z(jao*-7j>
L N°
2(10,-T")

and {) . First of all, let us rewrite the matrix A

(110)

(441)
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This means that the normal modes ‘g and E are characterized by the
+ -

frequencies :
bA
0= e s Do )
+ 2 ~1L>
Z’CQG + | (112,)
2
() =1 (e o She
2 (wd 1)
both with the same damping
T 2
. O T 3 | (443)
2
2(@3+Tﬂz) 2(4+ wf?f)

damping while neglecting the less

If we focus our attention on the

important effect’ on the frequencies, we have that the same result could

be obtained from the Markoffian system

X:\/

(444)

—COOZX _ }-é:Hv + {_*(’C)

E S
with the Gaussian white stochastic force f (t) defined by

<Hl tmy .2 T <vi, 800 (115)

Note that in the non-Markoffian case <Cd07£2>1) the effective damping

T = —1 (11¢)

2
1+ w7,

than the damping in the absence of the

turns out to ‘be much smaller

external field. This is a well understood effect, widely discussed in a
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previous PaPerky one of us, ref.(86). A strong external field acting on
a non-Markoffian system tends to decouple that from its thermal bath
thereby rendering smaller its effective damping.

In other words, if we are exploring the low friction regime,
the interplay of non-Markoffian statistics and external field renders
the system still more inertial, thereby widenjxué the range of
validity of the formula provided by Kramers for the low friction regime
provided that 6 be replaced by ’B/(l+ c,ooz’z\j').

\

Fig. (1) shows that this simple expression agrees fairly
well with both the theory of Carmeli and Nitzan and the result of their
purely numerical calculations. The piots in fig. (12) show how well the

non-Markoffian effects on the rate may be simulated by a simple

2 L)'i

multiplicative factor (l+5002£ For +the sake of comparison, we

fitted an expression with this factor to Carmeli and Nitzan's results so
as to include their accurate Markoffian rate.
Using eq.(113), the Markoffian low friction expression of

Kramers (eq.(8)) may be generalized to the non-Markoffian case,

} (o) = 1 Eb exp (—EE/I{T) (447)
<Low (1 N Qoz, ,ZCZ,) X‘{BT B

The discrepancies between the rate given by this expression and that

calculated by Carmeli and Nitzan are mostly due to their improved
Markoffian part.

We ©believe that the "arguments above should convince the
reader that the interesting phenomenon detected by Carmeli and Nitzan is

another manifestation of the decoupling effect, well understood at least
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since 1976 '(see ref.(86)). The only physical systems, the dissipative
properties of which, are completely independent of whether or not an
external Tfield 1is present are the purely ideal Markoffian ones. Those
non-Markoffian in the presence of a strong external field provoking them
to exhibit fast oscillations are characterized by field-dependent
dissipation properties. These decoupling effects have also been proved in

in The
the field of molecular dynamics Y~ liquid state studied via computer
simulation (see Evans' chapter in this volume).

The region ranging from *6=oo to D’wa)}) can also be explored
using the BRMT. In the foregoing section we showed indeed that the basic
ideas of the BMT supplemented by the generalization of the Kramers
theory to the multidimensional case allows us to recover the simple

expression first derived by Grote and Hynes (36.b). This quite

interesting formula reads

S 2% B L
where
K = Wo e x - E /K T)
and
) A
Ay = b : (4193)
and Ar ¥ \'0 ()\r>

g)()\'r)= /wc\t exf@/\rt)\{)(t). (420)

In the case considered by Carmeli and Nitzan (84.b) we obtain

2
N it | (421)
- x . STLZ

Ae v ]




