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Abstract: For an arbitrary vector field eR ‘ the

repiesentation F = V+ L+ VAL is proved where , -, are scalar

potentials. Using this decomposition in the Maxwell equations

disentangles the longitudinal and transversal degrees of freedom of

the electromagnetic field. As a result the electromagnetic field can

be quantized restriction free.

1 . Tnt rOdLI( tion

In the theory of eloctromagnetism it is common to decompose ‘a three—

dimensional vector field F: E3s— F()6’ as

(1) F() = + Vii A;)

thereby introducing a scalar function and a vector Potential

lloweve there exist other decompositions in terms of three scalar

potentials so called Debye polentials (1,2,3]. We use the decomposition

(2) (‘) V) t- L”() * V41’ ;k’(,),

where denotes the angular momentum operator, which can be found in

(2].

It is one purpose of this note to establish rigorously the validity

of decomposition (2). In particular, the uniqueness of the potentials

has to be related precisely to the possible gauge transformations.

As in [I] where a rigorous proof of a slightly different version of

(2) was given, we will employ the lodge decomposition [4] as a main

tool.

The other purpose of this note is to show that the longitudinal and

transversal degrees of freedom of the electromagnetic field disentangle

if we use the scalar fields of (2) in the Maxwell equations. Without

further assumptions, such as Lorentz condition or Coulomb gauge, we

arrive at wave equations for the transversal potentials. Therefore

the transversal potentials can be quantized canonically without the

notorious restrictions which aze a main cause of the difficulties in
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quantum elecliodynamics [5]. On the other hand, up to a time derivation,

the gradient potentials of the electric field and the exterior current

arc identical. This shows, that the longitudinal part of the Maxwell

field belongs to the sources. — With regard to the separation between

transversal and longitudinal, it is interesting to notice that from

a group theoretical point of view, where photons are defined as

irreducibel unitary rest mass zero representations of the Poincaré

group, it is the introduction of the conventional vector potential

which causes difficulties (6].

2. The representation theorem

We use Ilodge’s decomposition theorem for exterior differential forms

of degree p on a closed orientable n—dimensional Riemannian manifold

17, in the form given by [4]. It states that every C2 p—form o can

be decomposed uniquely into a sum of three forms

(3) ° ° -

being exact, coexact, and harmonic; i.e. there exists a

(p_1)_formp1 with

(3.a)

and a (p+l) form with

(3.b) o(z
(o1j*)*

while, for L:= ( 1)npSd + (_1)nP+n
d

(3.c) O( a

If the manifold 12 is 2—dimensional and o a 1—form, the forms,41 and

are scalars. If in addition £2 is a sphere the first iletti number

is zero, and vanishes. Hence we have the special situation that

the decomposition of the 2—component vector is given in terms of

two scalar fields/!1 and
12

This implies the following lemma (see

[1]):

Lemma 1: Let ft be a 2—dimensional sphere and a C2—vector field

on ul..Let denote the gradient on £2, and the unit vector at

r€-Qc perpendicular tofi . Then there exist functions S and T on ft
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such that
to be spherically symmetric. We use the Poisson formula [71

(4) = V t TA T. V I K(, ) ()

V S gives the exact 1—form M1 and rAT the coexact 1—form where the kernel K is a fundamental solution of the Laplace equation,

(Td). (dfl denotes the obvious 2-dimensional differential.) and abbreviate := K(,) F() d3. Employing the decompositions

(5) and (4), and some vector identities, we have

To apply this lemma for a 3—dimensional vector field F: 6I—F(x)
—

Vz G()

we use radial and tangential coordinates:
V (v- Ga)) - VA (VA G)

(5) T() -t- (>0.
= v( V + V S() + A T() j)

So excluding the origin we relale one—to—one to (x,2)e1d2,

A
VA(VAIG1R)* c7s()+ A T())

x:II, with £2. the unit sphere, and x: /x. F1 is a scalar function

on the domain of F, and F1() a tangent vector tofl at 2. in these V ( v• ( G (>0 ) S (‘))

coordinates the gradient is given as
- VA (vA C>0) * Vi (VA

(6) =: a 2
-

(VJ -

—

VA(VAXAVT()j)

Theorem 2: Given a region flc4Oj, with regular boundary ‘-Q=: V( V- (G,();) ÷ Vz 3(’))
-

and a C3—vecior field F: EflF()E1. Then there exist —--(G4>0 —
t L V

three scalar functions #F’ ‘F’
on 12. such that

This proves the existence of the Debye potentials.

-

Suppose now

Requiring F
to vanish on the boundary, and kF F

not to be

spherically symmetric, these functions are unique.
:

=
÷ VL x V’# L’ ‘ * V’L ‘‘.

Then straightforward vector calculations imply

We any add always a spherically symmetric function to ‘F’ XF without —.
_pa -

_.z

V=VT, LLF. LV=-(V,IF,

chatigi ug (2). 1et us assume to vanish on f2, and !tF ‘XF not
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hence V2(’) 0, 0,
3. Application to Maxwell equations and Quantum Electrodynamics

L f
1.. V ( —) -x (‘— “) 0 and therefore

qed.
The Maxwell equations are given by

—,

(8.a) VAE = -

—p - —•

Remark:
(8.b) A

The “gauge freedom” associated with decomposition (2) is the freedom with the usual assumptions

to add spherically symmetric scalar functions to the Debye potentials -.

(9.a) V—JL

3t, X. The requirement of spherical symmetry distinguishes this gauge

from the usual vector potential gauge where the gradient of any scalar (9b) V .3 U

function can be added to the vector potential.

__

-
(l0.a) ç E

-. —p

(l0.b)
(H ÷ H)

Combining (10) and (8.b) yields

(8.b’) V 5÷ V ?) ÷ c. .

Now we decompose all vector fields according to (2),

(11)
F=E,,J,I/,7t1,

under the tacit assumption that the gradient potentials vanish on the

boundary of the region .0. under consideration which is supposed to

exclude the origin, and to be sufficiently regular. Thus (8.a) is,

up to a gauge, equivalent to

(12.a.c) 0,

(12.a./)

(12.a. ) V X
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(13.a) V1(ç )

(13.b)

The remarkable result of this calculation is the separalion of the

gradient potentials and the transversal potentials . k . Without

any further assumptions or restrictions, we arrive at a wave equation

by eliminaLing
L

and

(14.b) D = ( . 17z)

(13.a) and (l2.b.c) can be combined to give the conlinulty equation

(15)

which is nothing else than

(15’) V•J÷p= 0.

Equation (15) underlines that charge transport is exclusively related

to the gradi cut potential of the current.

and (8.b’) equivlcnt to

-ii
(l2.b.c) -

• )

(12.b:p . ( )
z

(12.b.T) VX. -

/L(f •L Vr
3 i —

the assumptions (9) are equivalent to

(14.a)

The formulation (12) of the Maxwell equations exhibits a structure

which is ciucial for the quantization procedure. By (12,b. ), the

electric gradient field coincides with a matter field. ilence its

possible quaneization is subject to a quantum theory of matter. In

the free case has to vanish, according to (13.a) and ihe boundary

assumptions. But even with different boundaiy conditions, since

and are submitted to a laplace equation, a canonical quantization

would make no sense. We definitely have to exempt
E

and from

the quantization of the electromagnetic field.

In the wave equation (14) the inhomogeneities refer only to maiLer

(current J, polarization P, magnetizetion H) while the homogeneous

solutions precisely exhaust the free electromagnetic field. Therefore

the quantization of the free electromagnetic field is achieved by the

canonical quantization of the solutions of the homogeneous wave

equations

(16)

and presents no problem at all. General quantized solutions of (14)

would involve the quantization of the inhomogeneities as well which

has to originate in quantum theory of matter; but that is beyond the

scope of this note.

The equations (16) do not fix multiplicative constants in the fields

For later convenience we redefine

_2. 1/z

1—>

(17)
1/i
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(23) X (. t) Z- (2 L./( )) 4 1( () &

4 C

The redefined potentials are real; notice that the imaginarity of ‘‘
* -.*4 (x

and X in (11) comes from the definition of the angular momentum

) e
&tj;

operator, L:= —iAV.
the orthogonality may be given with respeci to the inner product

o can
< f > .S f() ,

We sketch the canonical quantization of (16). (V—t,

be derived from the Lagrange density
(24.a) <U t ,> =A’ 4

(18) (‘ V ) — (c,ic — Vx, Vç ) We assume a non-trivial time dependence in (23), O>O for all k (see

final section). Now insert (23) in (20) and (21). Observe that both

by the Euler Lagrange equation *

Uk and Uk are eigenfunctions to the same eigenvalue in (22) such that

(19) ---- + U. by

(Vx)
U <z,(-V)?b.> - <-V14 U>

j, IC’

The canonical momentum with respect to is
L *

£ (j
-

LJ) < z, >
(20) T ——— = ç,it, ç

I
we have

and the hamiltonian density
L3 4f3

+ Vx Vx,.)
(24.b) K U4, l{, > U,

(21) !Z (J
.E,8

= z.- —

Vz )
Hence the hamillonian density

2.
(25) K,, = (4,, * 4 4 ), p: - E, g,

pp

A Fourier transformation with respect to the time variable makes (16)

assume the form of an eigenvalue equation,
follows straightforward. Canonical quantization consists in postulating

the commutation relations

(22) -
E•/A,

&
-

(26) 14;,., = , g
,I,,a I,’ p

We specify a boundary value problem on £2-, Dirichiet data say, such

that the laplacian is seif—adjoint. Now let us expand (x,t) with ilierefore the hamiltonian density is

respect to an orihonormal basis uk of eigenfunctions of —

—

(27) ,. p j’
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We can reirrange the decomposition of the electromagnetic field into 4. 1)iscussion

the poloidil potentials ( X to realize the helicity:
a’ .j’

1. The energy density of an electromagnetic field is defined as [81

(28.a) 1. ( ) — + 1, 1.

(31 a) “ if. . * £
Q

This transformation leaves the commutation relations (26) unaffected,

i.e. they are valid for
which, for the free field, is

(28.b) = ( I ) • 1, 1, (31.b) I (

(28.c) 4,: ( t
_. /, )

We insert the decomposition (2) of the free (E,B)—field where the

gradient potentials vanish. Now we distinguish the pseudo—scalar

(29) [ t,, 4,, 3 = , £ £, 4,.J
toroidal Debye polentials and the scalar poloidal Debye

The hamiltonian density with respect to helicity is
potentials ‘Xe, from the redefined potentials,

_,1 j/

(30) ‘ zt,L,_,7 .

(a ‘):= 4,14—1 (.‘)

7 777
(‘!t, ): = (t.i’’)4(’a.

i:.;)

-. -b

(32) F = L * VA r , F = E, ‘.

The rewritten hamiltoniari density (31.b) is

a
-,(L÷V8)Zt

2.

By vector analysis calculations, where the involved surface integrals

vanish due to assumed Dirichiet boundary conditions, we get

/ a —‘ ZL

‘2L= --- .-ç/L. L ÷;VL )

vhi )
(_

L

I C -

a -

a E I

Respecting (20) this expression coincides with (21).
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in the Helmholtz equation (22), which happens to emerge in the infinite

volume limit, or for Neumann data, etc., presents a conceptual problem

with respect to the photon. A rest mass zero particle with kinetic

energy zero cannot exist. However the photon concept is restored by

the gauge freedom for the potentials X, . The spherically symmetric

eigenfunciion of the eigenvalue zero can always be subtracted. At the

same lime this prevents the photon to have zero helicity. — Because

of the “zero point energy”, the quantized hamiltonian of the

electromagnetic field does not show up the zero energy difficulty.

The gauge freedom introduces the non—uniqueness of the ground state

of the electromagnetic field.
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