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ABSTRACT

The problem of "global color"™ (which arose recently
in monopole theory) is generalized to arbitrary gauge theo-
ries: a subgroup K of the “unbroken" gauge group G is imple-
mentable iff the gauge bundle reduces to the centralizer of
K in G. Equivalent implementations correspond to equivalent
reductions. Such an action is an internal symmetry for a
given configuration iff the Yang-Mills field reduces also.
The case of monopoles is worked out in detail.
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1. INTRODUCTION

one of the most exciting problems which arose re-

cently in monopole theory is that of global coloxr {1-7]. We
formulate it in two steps [7)}: first, we would Llike to
define the action of a fixed element g of the (unbroken)
gauge group. Under usual conditions this presents no
problem. 1n topologically non-trivial situations, however,
this may not be posssible. This is the problem of imple-
mentability. Next, if we are able to define such an action,

when do we get a sym
Forg;cs and Manton [9]) for a given field configuration? The
importance of these notions is seen, for example, from their
role played in deriving conserved charges in gauge theories
[7,35). 1In this paper we give the mathematical solution to
these problems. Our theory (formulated in fibre-bundle
terms [s,10-12]) 1is valid for any classical gauge theory.
Notice that the problem studied here is a special case of
dimensional reduction [9,15].

Our starting point is Prop. 2.2, which states that a
"rigid" internal action of a subgroup K of G on P exists if
and only 1if P reduces to an H = 2g(K) - bundle Q.
Furthermore, there is a (1l-1) correspondence between such
equivalent actions and isomorphic reductions (Props. 2.4 -
2.5).

’ An action of K on the principal bundle P induces an
action of K also on the YM field. Similarly, we can study the
action of K on matter fields - sections of bundles
associated to P. The condition for such an action to exist
is expressed again in terms of bundle-reduction (Theorem
3.1).

When is an action a symmetry for a given field
configuration? Prop.4.3 tells us, that the action of K on
(p,C) defined by (Q.H) is an internal symmetry for a Yang-
Mills connection A if and only if A reduces to a connection
on Q. This happens if and only if H contains the holonomy
group of ALdThe implementation of an internal symmetry-
subgroup is nescessarily unique. There is an analogous
statement (Prop. 4.4) for matter fields.

These theorems provide us with a complete solution

of the color problem - when we are able to construct a the

corresponding reductions. A first illustration is given by

the non-Abelian Bohm-Aharonov experiment of Wu and Yang

{a3z-3s], where G=5U(2) admits two inequivalent
implementations.

The principal application of our theory is to non-
Abelian monopoles [1~7]. Their basic properties {17-23] are
geometrically reformulated in Section 5. The reduction of
monopole bundles is worked out in Section 6. (As a by-
product, we obtain also the topological theory of the "fate"
of Grand Unified monopoles under successive symmetry brea-
kings [24-287).

The results are summarized as follows: denole by G
Lhe residual symmetry group of a monopole having {(P] € 7, (G)
as fundamental topological invariant. A subgroup K of G is
implementable iff [P] belongs to the image of ey (4g(K)) —
-> 7,(G) induced by the inclusion i:%g(K) - G. ¥urther-
more, the inequivalent implementations are labelled by the
elements of 7,(G/Zg(K)). In particular, the implementation
of the full G is unigue (when it does exist).

These results are conveniently expressed in terms
of the "non-Abelian charge" II of Goddard, Nuyts and Olive
[17]: let us decompose }l as 11 = z(Il) + I1', where z(Il) e Z(%)
and 1I' € [§,§]. We prove that G is implementable iff either
(i) lexp amtll] € 7,(G)freer and z(Il), the projection of the
non-Abelian charge onto the centre, is gquantized: expanz(ll)
= 1. kquivalently, iff (ii) expsanil't, 0 < t < 1, 1s a
contractible loop. G is a symmetry for a monopole given by lI
iff 11 € z(fj).

The general resulis are illustrated on S50(3) mono-
poles [18,17].



2. INTERNAIL, ACTIONS ON PRINCIPAL BUNDLES

Let P be a right Principal G-bundle over a connected
manifold M. A subgroup K of G ggggVin;g:Qé;;xmggwf, if we are
given a left action p —> k-p of K on P, which preserves each
fibre and commutes with the (right) action of G, k- (pg) =
(k-p)g, ¥ k € K, g € G, p e P, cf. [1-7]. [f so, define the
map rp : K —> G by k'p = p(Tp(k))‘ Tp is well-defined, since
k-p belongs to the same fibre as p, and G acts on each fibre
transitively and freely. k —; Tp(k) is a homomorphism of K
into G, which satisfies Tpg = Adg‘lnTp, g € G. In what
follows we consider only the case when K acts on P freely;
i.e. the homomorphism Tp : K —> G is injective for each p.
This can always be assumed without loss of generality for
symmetries (see Section 4).

Choosing a local section 8q:Vg —> P, 7 is given by 7@ :
Vg —> Hom(K,G), where T, = Tsg(x)- If hgg: VgnVg ——G
denotes the transition function of P, then 7X, = Adhgg 78y,

X € Var\Vﬁ.

An internal action of K on P is called rigid, if there
exists a local trivialization (Vqrsq} of P such that each 72
is constant [1-7]. If so, there is no loss of generality in
assuming that 7%;(k) = k for each x. In such a gauge

(2.1) kegg(x) = 84(xX)k, ¥ x € Var k € K.

PROPOSITION 2.1
An internal action of K on P is rigid if and only if the

image of the associated map 7: P —> Hom(K,G) is the orbit of
the inclusion map i:K<— G under the adjoint action of G on
Hom(K,G).

Proof: Suppose the action of K on P is rigid in a gauge
{Vgrsg}. 1If p € P is such that n(p) € Vg, where 7w is the
projection w:P-->M, then p = sq(m(p))g for some g € G. By
(2.1)

PTp(k) = k-p = k- (s4(n(p))g) = (k-sq(m(p)))g -

= 8qg(n(p)k)g = p (g7 'kg).
Hence Tp(k) = Ad g~ 'k and so Tp = Ad g~ 'i, and thus the image
is the orbit of i. Conversely,if 7 has a single orbit as its

image,we can always choose local gauges s, so that 7@ js

constant, equal to a base point,which in this case 1is the
inclusion map 1 : K&¢-» G. 1In this gauge the action of K is
rigid.

Requiring rigidity is seen easily to be the same as
to require that, for each p, 7p is the restriction to K of an
automorphism of G [1,2,6,7 1.

[.et us now consider a rigid internal action of K< G
and let H denote the stabilizer of i: K ¢« G under the

adjoint action of G,
(2.2) H - Z5(X) = {g € GI Adgk = k, ¥ k € K}.

The orbit of i is identified with G/H, and 7 can be viewed as
a section of the associated bundle with fibre G/H. Any such
section defines a reduction of P to an H-bundle. The
reductions to H bundles are in known to be in (1l-1)
correspondence with sections of the associated bundle
Pxg(G/H) = P/H, and so with rigid actions of K on P. Hence we

have proved

PROPOSITION 2.2
A rigid internal action of a subgroup K of G on P exists if

and only if P reduces to H = Zg(K).

[t is easy to see directly that the existence of a rigid
action forces the bundle to reduce by using the special
gauge (2.1), for, if sg = sghgag, then )

sq(khgg) = k-sghgg = k-sg ~ sgk = sghggk
showing that haﬁ commutes with K, and hence (P,G) reduces to
an H-bundle Q.

COROLLARY 2.3

G itself acts on P internally and rigidly if and only if
(P,CG) reduces to Z(G), the centre of G. In this case the
transition functions take their values in Z(G) in a suitable

gauge.

Now we turn to the question of unigueness of the
action of K. To be able to discuss several actions at once we

use the following notation: we denote by u:KxP --> P the map



#(k,p) = k-p. Two actions given by u, and u, should be
~regrded as equivalent if they differ only by a gauge
transformation, i.e. if there exists a bundle automorphism
o:P-->P preserving fibres, commuting with the G-action, and
such that u,(k,o(p)) = o(u,(k,p)) V k € K, p € P.

Equivalence preserves rigidity, since if Sq:Vg——~> P
is a gauge in which #4, 1is constant then oge.s, is a gauge in
which ux, is constant.

An equivalence o determines a map y:P-->G by
(2.3) o(p) = py(p):

which satisfies y(pg) = Adg~ly(p), so v is a section of the
bundle associated to P with G acting on itself by internal
automorphisms. I[f we have two actions Ly, M, of K with
corresponding maps 7!, 72: Hom(K,G) then

2

U(p)To(p

y 06 = w,y (K 0(R)) = ok, (k) = o(p)72(K)

S0

2

1 =
(2.4) 7p(k) = Tc(p

_ -1_2
)(k) = Ady(p) Tp(k)-

Conversely, given a section ¥ of PxgG satisfying (2.4) then
(2.3) defines an equivalence of the two actions.

In the rigid case we may assume i: K< C is a
subgroup and the actions of K correspond with reductions Q
P to H-~Zg(K)-bundles. Here 7 has values in the G-orbit of i
and Q = { p € Blrp = i}.

1f we have two rigid actions u, and u, with

corresponding reductions Q, and Q, then an equivalence o of
4y, and 4, implies 7lp = ng(p) by (2.4), so Q, = 0(Q,). This
suggest a notion of equivalence of reductions: two re-
ductions Q; and Q, of a principal G-bundle P are equivalent
if there is an automorphism o of P preéerving fibres with Q,
= 0(Q;). Then we have

PROPOSITION 2.4
Two rigid actions u,, 1, are equivalent if and only if their

corresponding reductions Q, and Q, are equivalent.

Obviously, if two reductions Q,yQ; of P are equivalent as

reductions then they are isomorphic as H-bundles. This is in
fact the only condition to be satisfied as the next resulb

shows:

PROPOSITION 2.5

There is a (1-1) correspondence between isomorphisms of Q,

and Q, as H-bundles and equivalences of @, and Q, as

reductions of P.

Proof: [t remains only to show how to extend an isomorphism
0g5:0,--> Q, to an isomorphism of P. For any p € P we find geG
(not unique) with pg € Q, (since Q, is a reduction of P). Any
other choice of g has the form gh with heH, but

0,(pg)g™* -0, (pgh)(gh) '
since o, is an H-map., so o(p) - gg(pg)g—?!
defined map o:P —->F with 0(Q,) = 0,(Q;) = Q5. 1t is easy to

gives a well-

check o is an automorphism of P.



3. INTERNAL ACTIONS ON ASSOCIATED BUNDLES

A matter field ® is specified by giving a unitary
representation U:G -— U(E) (the set of unitary trans-
formation of a linear space E), and by selecting, in each
Vqr @ local representative &% :V, —> E such that

@E(x) = U(hgg(x))®B(x), x € VanVg.
Suppose a subgroup K of G acts on ® pointwise and linearly .
This means that k € K sends & to an object we denote by
(k-®), expressed locally as

(3.1) (K-@)X(x) = U%y(k)o%(x)

where each U%, is a representation of K on E. For (3.1) to be

well-defined we need the consistency condition
(3.2) Uy (k) = Ulhgg(x)1UPy(k)Ulhgg™t(x)].

® is a section of the associated bundle J{= PxgE. (3.2)
requires therefore that the U%;(k)'s piece together to give
sections of the bundle asscciated to P with fibre U(E),
where G acts by conjugation by U(g). If the action of K on
the fibre at x is denoted by Uy(k), the U%,(k)’s are local

representatives of this action. U(k) is a section of U(R).

If the representation U is not faithful, denote by N
its kernel. N is a normal subgroup of G, and G* = G/N is a
group to which U descends to give a faithful representation
u*. PxgE is naturally isomorphic to P*xG*E, where P* = P/N =
Pxg(G/N) 1is the principal G*-bundle associated to the
homomorphism G --> G*. In this way we may reduce to the case
where U* is faithful but note that now K need not be a
subgroup of G*. This defect can be avoided if we assume that
the action of K is induced locally by gauge transformations,
i.e., if we assume that, for each k, there exist functions
kg:Vq —-> G such that U% (k) = U(kg(x)). These k, must
satisfy Ulkg(x)] = U[haﬁ(x)kﬁ(x)haﬂ‘l(x)], so

(3.3) ka(x) lhag(x)kg(x)hgg™2(x) € N .

1f we denote by g* the projection of g € G into G*, then

(3.4) k*q(x) = h*ug(x)k*g(x)h*4g(x) 1.

it follows that k* defines a section of P*xG*[G'] with ¢*

acting by the adjoint representation on itself. Since each

U%, is a homomorphism, then, although k ——> k4(x) need not
be a homomorphism,k —> k*a(x) is a homomorphism. Thus, by
(3.4), we obtain a section T*x(k) = k*a(x) of

P*xG*[Hom(K,G*)], and hence an action of K on P* which
commutes with the G*-action. [f further there are local
gauges where the k, are K-valued, then Kn N acts trivially
so we get an action of K* = K/(KAN) which is a subgroup of
G*. Hence we get the situation studied in Section 2, with K*
acting on p*. )

Finally, 1f we restrict kg(x) to be constant (and
equal to k) in some gauge, then K* acts rigidly on P*. This
can happen, as we have seen, if and only if P* reduces to

Zg*(K*), the centralizer of K* in G*. If
(3.5) H'= {g € GIU(g)U(k) = U(k)U(g) V k € K},

then this centralizer 1s H* = H'/N. Since P* = P/N, P*/H* =
P/H* and thus P* reduces to H* if and only if P reduces to

H'. We summarize:

THEOREM 3.1
If K acts pointwise on a generic matter field ® transforming
under a unitary representation U of G on E so that there are

local gauges (Vg,8y) where this action is rigid,
(3.6) (k-®)%(x) = U(k)®%(x),

then P reduces to the subgroup (3.5). Conversely, any

reduction of P to H' induces an action of K on &.

This is the case in particular when K acts internally on P.
indeed, H in (2.2) 1is a subgroup of H*'. Alternatively,
obsérve that if the action of K on P is associated to 7:P —
Hom(K,G), then

k) = (T (k)
P P

wh



defines an action of K (and thus of K*) on P*. & can be
viewed alternatively as a section of P*xG*E, or as an
equivariant function P* —» E,

¢(p*g*) - U(g’“l)w(p‘), g* € G’,p* € P*.
Observe that the action of K on ® is deduced from that of K*
on P*,

(3.7)  (k-®)(p) = U(T"p(k))®(p),

(since ®(p) = ®(p*), whose local form is

(3.8) (k-®)X(x) = U(T*% (k))O(x).

The results of this section apply, besides monopoles

(Section 7), to classical particles in external Yang-Mills
fields [33].

4. INTERNAL SYMMETRIES

Let us now assume that our principal G-bundle P
carries a connection form A, and let K be a subgroup of G
acting on P internally. Let this action be given by 7. This
allows us to define the action of a k € K on the Yang-Mills
connection A, (k-A) = (k™1)*A, where * denotes Lhe pullback
of a differential form. We shall call K an internal symmetry
group for the Yang-Mills field A if this action preserves

the connection,
(4.1) (k-A) = A.
cf. [7-16]. If K is a compact, connected Lie group with Lie

algebra R, any k € K can be written as k = exp k. (4.1)
implies that the vectorfield

(4.2) ;(p) = a% (exp-tk)-p
t=0

is invariant under the right action of G on P, and
(4.3) L? A = 0.

A
On the other hand, ?(p) - fp' the fundamental vectorfield at
p associated to the infinitesimal right action of G at p € P

for some ¢ 59‘ Denote (wy(p)™)p = K(p). Alternatively,
consider
(4.4) w (p) = L (exp-tk)
. x'P dt p P -
t=0

For each p € P, the map R 2 k --> wy(p) € 5 satisfies
(4.5) wiw,, k,1(P)=lwyg (P) wy,(P)] and wylpg) = x.

we(pg) = Adg~ lw,(p) for each k. w, is therefore an adjoint
"Higgs - type"” field.

To express (4.3) another way, observe that L;A =
dA(K,.) + d(A(K)) by the Cartan lemma. But dA(X,.) = DA(K,.)
- [A(Q),A(.)] = [A(.),A(?)] because DA = F 1is horizontal.
Finally, AP(;b) = Ap(wx(p)A) = Wge(p), since A(?) = ¢ for any



connection A on P. So L A = Dwy,. This yields:

PROPOSITION 4.1

A connected subgroup K of G acting internally on P is an
internal symmetry for the connection A if and only if the
adjoint “Higgs"” field w, asscciated to its infinitesimal

action 1s covariantly constant for each «,
(4.6) Dwyg = 0.

cf. [5,7,18]. When expressed in a local gauge {(Vgrsgl (4.1)

and (4.6) pbecome [7-16]

(4.7) a%x) = aa %) A% x) - ar®o (e 7
X X X
and w [s3 o [¢]
Dw = dw. + [AT,w.] =0
K K K
. a *
respectively, where A~ = S, A, and
(4.8) w¥(x) = 2 % (exp-tk)
. K dat x p '
t=o0

w®, (x) 1is just a local representative for w,, w% . (x) =
we{sg(x)), as anticipated by the notation.

Conversely, if we can find a bracket-preserving
linear map « —> w, satisfying (4.5) which associates
covariantly constant adjoint Higgs-type fields w, to each «
€ ﬂ, (exp-k)-p = exp(wK(p)A) (exponentiali of a vectorfield)
provides us with an internal action c¢f k = exp(-«) € K on P.
In fact, 7p(expnx) = exp(wg(pl))- (exponential in the
group) .

All solutions of (4.6) are found by parallel trans-
port [18,7]. w,(p) belongs therefore, for all p € P, to a
single adjoint orbit of G. Hence we get

PROPOSITION 4.2
The action of an internal symmetry group K on P is rigid.

As we have seen in Section 2, to have a rigid internal action
of K 1is equivalent to requiring that the bundle (P,G)
reduces to H=Zg(H). In terms of w this reduction is obtained

as Q - {p € P lwg(p) - «} [10]. This implies

PROPOSITION 4.3

The action of K on (P,A) defined by the (Q,H) (where H =
20(¥)) is an internal symmetry if and only if the connection
form A reduces to Q. This happens if and only if H=%g(K)
contains the holonomy group of A. In this case Q contains

the holoncmy bundle and so is unigue.

In particular, the full gauge group G is a group of internal
symmetries if and only 1f the connection reduces to the
Z(G)-bundle which characterizes Lthe left action of G on P.
This 138 eguivalent to requiring that the generators of the
holonomy group lie in the centre of [23].

Similarly, let us cbnsidet a matter field ®, and
assume there is an internal action of K on ® determined by a
section T of P*xg*[Hom(K*,0*)]. We shall say that this
action of K is an internal symmelry for the matter field &,
if

(4.9) (k-®) (p) -~ U<v;(k))m(p) - @(p).

Ifn a local (in particular 1n a rigid) gauge thils reads

(4.10) U(T;a(k))¢a(x) = o%(x) and U(k)-o%(x) = o%(x)

respectively. We can work also infinitesimally:

ok *x d * X
(4.11) Kk (p ) = ——| (exp -tk) -p
dat |, _
t=o
and
* X d Xx *
w,(p ) = =% 7 ,(exp-tk)
K dt p
t=o

provide us with a vertical vectorfield «* and an adjoint
"Higgs” field w”, on P*<P/N. The infinitesimal action of £*
(the lL.ie algebra of K*) on & reads

(4.12) (K-0)(p) = L ®(p) = w ,(p)-®(p)

K
K

where the dot - denotes the action of the Lie algebra

induced by U. The definition of ‘a symmetric matter field



reads hence infinitesimally
(4.13) w* *-d(p) = 0.

or in a local gauge

(4.14) W %(x)-2%(x) = 0.
K

Letkus now assume that we have a Yang-Mills potential A and a
covariantly constant Higgs field ® and that we are inte-
rested in their simultaneous symmetries. First, K imple-
mentable on P implies that K is implementable also on PxgE.
Furthermore, w*x(x) = (wK(p))*. In particular if N is
discrete, ¥ = f and %* = g , 80 the star can be dropped.
Both wy and ® are now found by parallel transport, ®%(x) =
Adg®(x)®, and w,%(x) = Adg%(x)x, where g2 is the non-

integrable phase factor. (4.13) reduces hence to
(4.15) K-®g = O.

PROPOSITION 4.4

K is a symmetry group for a covariantly constant matter
field ® if and only if K belongs to the little group of a
basepoint ®, from the orbit where ® takes its values.

As a first illustration, consider the non-Abelian
Bohm-Aharonov experiment [7,33-35)] proposed by Wu and Yang
to test the existence of gauge fields. Here one considers a
principal G-bundle P over the punctured plane M= R2\{o}
endowed with a flat connection A. Such bundles are classi-
fied by classes [P] in n43(G). The homotopy exact sequence

Ad, 8 i,
A "1(0) —> nl(G/Z(G)) —> 7 _(Z(G)) —> w (G) — ..
] o
(4.16) (o) (P]

analogous to (6.3) and induced by Z(G) —> G —> G/Z(G)
shows that G is implementable iff [P] belongs to Im ix. If
this condition is satisfied, there may be still an ambi-
guity: the different implementations - the inequivalent
reductions to Z(G) - are classified by Ker ix. For G=SU(2)
for example, P is Ltrivial because S8SU(2) is connected.

nl(SU(Z)) = 0y 2(G) = Z,, G/Z(G) = SO(3) so there exist two
gauge-inequivalent implementations corresponding to the
reductions of P to a trivial or to a twisted bundle
respectively {7]}.

When do we get an internal symmetry? Let us consider
more generally a principal G-bundle P over a connected
manifold M carrying a flat connection A.

The horizontal distribution of A 1is integrable by the
Frobenius theorem. Let us choose a reference point p; in P,
and denote by Q the leaf of the horizontal distribution
through p,. Q is a covering of M which is a reduction of P
with a discrete subgroup I' of G as structure group. As a
matter of fact, I' is just the holonomy group of A at pg-
According to Prop. 4.3 G acts as a symmetry for (P,A) iff I’
is in Z(G).

in the non-Abelian Bohm-Aharonov experiment I' con-
sists of powers of ®, the non-integrable phase factor
calculated along a loop which winds once around the origin
[33a-35]. Consequently, SU(2) acts as a group of internal
symmetries only for ® = 1 (for the first implementation) or
for @ = -1 (for the second implementation) [7]. The physical

conseguences are explained in [3s].
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5.MONOPOLE BUNDLES

The asymptotic properties of monopoles are de—
termined by a principal G-bundle P over the S2 at infinity,
where G, the residual symmetry group, is compact and
connected. In Grand Unified Theories one starts in general
with a trivial "unifying*® bundle'g = Raxg, where & - a
compact and connected Lie group - is the "unifying group”.
At large distances the 6lsymmetry is spontaneously broken
to a subgroup G of g Geometrically, this means that over S§2
(?,E} is reduced to a principal G-bundle P. Any such
reduction 1is produced by an equivariant “reducing map"
[10]. Choosing a global trivialisation of ?ﬁ the reducing
map can be identified with a map ®:82 —» E}G - themghysical
Higgs field. ® defines a homotopy class [®] € 7,(G/G), and
the homotopy class [P] is 6[®], where o:nz(ayc)——anl(c) is
the connecting homomorphism. 6 is an isomorphism if d is
simply connected. Both [P] and [®] will be referred to as
the Higgs charge in the sequel.

7, (G) = 7, (Glfree * 71 (Cgs)

where 7,(G)free — 2P, p is the dimension of Z(g), and Ggg is
the semisimple subgroup of G generated by [§'§}~ 7,(Ggg) is a
finite Abelian group. The free part - which plays a
particularly important role - is described as follows [23]:
denote by I' ={¢ € %I expz2mf = 1} and let z: §~—> Z(g) be the
projection of the Lie algebra of G onto its centre. z(I),
the image of T under z, is a lattice whose dimension is the
same as that of Z(g). In [23] we proved the following
theorem: Define, for any loop ¥ in G,

(5-1) P = o= [ 2(e) € 2§,

Y
where 6 = g~ ldg is the canonical (Maurer-Cartan) l-form of
G. p defines an isomorphism of 7,(G)fyrge With z(TI).

Any loop in G is known to be homotopic to one of the
form y(t) = exp 2mét. For this v p(vy) = z(&). If (1,..,Cp is
a Z-basis for z(T), then p(v) = Imj{j provides us with p
“quantum® numbers m;,..,mp.

In [23] we gave also a second characterization of p,
namely that p(®) = p(8[®]) can also be calculated as the

integral of a 2-form over the 2-sphere at infinity,

(5.2) pee) = L [ o',
SZ

where N is the projection to E/C of the Z(g)—valued 2-form
z(d§3 on 61
Here we give third construction, adapted from Chern-

Weil theory [10], Vol.II.: let us consider an arbitrary

connection form A on P, and denote by F = DA its curvature
form. z(F) is a Z(g)—valued 2-form on P, which is horizontal
and basic,since

gtz (F) = z(rg*F) = z(Adg~'F) = z(F),
so z(F) descends to S2 to a Z(S)—valued 2-form n#, z(F) =
7*0A. This two-form is closed,

d(z(F)) = z(dF) = z(DF - [A,F]) = z(DF) = O,
since z vanishes on the derived algebra and DF = 0 by the
Bianchi identity. The class [z(F)] is known [10] to be inde-

pendent of the choice of connection. This proves:

PROPOSITION 5.1
The cohomology class [nNA] ¢ H2gRr(S2)xZ(§) is independent of
the choice of the connection A on P. Consequently,

1
(5.3)  p(®) = 35 [ 2(F) e z()
2
S
depends only on the bundle P.

Let us now assume that (P,G) is the reduction of the trivial
unifying bundle (?,5) def ined by ®:82 -~ 5/0 and so can be
identified with the pullback by & of E; viewed as a
principal G-bundle over the orbit EVG [1t0]. The @ - com-
ponent of the Maurer - Cartan l-form & defines a connection
on the principal G-bundle G whose pullback by & is a
connection form A on P such that z(DA) = o‘n, where N is the
2-form defined above. Thus we have established the equi-
valence of our new construction with those given before.
Monopole fields must also satisfy the Yang-Millsg-
Higgs equations. Assuming a sufficiently rapid fall-off at
infinity, the Yang-Mills-Higgs equation on S2 reduces to
D*F = 0. The solution has been found by Goddard, Nuyts and

Olive [17-20,28-29]): Let us assume that P is a non-trivial
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G-bundle over 82, carrying a connection form A which
satisfies the YM equation D*F =0. Then there is a vector T in
generating a homomorphism U(l) --»> G such that P is
associated to the Hopf bundle over s2 and the field is F =

¥NO with F the area form on the 2-sphere. N is quantized,

expsamll = 1. The vector I can be chosen without loss of
generality in any given cartan subalgebra of 5. The tran-
gition function h of a monopole is thus homotopic to h(t) =

exparnlit, 0 < t < 1, so p(P) is simply
(5.4) p(P) = z(z20).

This theorem can also be reformulated by saying that the
holonomy group of asymptotic monopole bundles is a U(1l).,
generated by the vnon-Abelian charge” vector T [29].
Conversely, given Il we are able to construct an asymptotic

monopole configuration, see the following section.

6 .REDUCTION OF MONOPOLE BUNDLES

THEOREM 6.1
The monopole bundle (P,G) is reducible to an H-bundle Q
(where H is a closed subgroup of G) iff

(6.1) [®] € Im Oz,

-~ ~
where os2:m,(G/H) --> 7,(G/G) is induced by the natural
projection o: G/H —-» 576. Equivalently, iff

(6.2) [P] = B6[®] € Im i=x,

where isx:w,(H) —> 7,(G) is induced by the inclusion i:He«—»
G. The inequivalent reductions from G to H are parametrized
by the elements of 7, (G/H).

Proof: Suppose first that there exists a reduction (Q,H) of
(P,G). (Q,H) is a reduction of (3,5) also, and is thus
determined by a reducing map ("Higgs field") F:82--> g/H.
This reduces P if and only if each H-coset is contained in a
corresponding G-coset. That is,if and only if ® = o(¥). But
this implies [®] = ox[¥].

Conversely, if [®] € Im ox, then [®] = ox[¥,] for
some ?1:82 - > 87H. ® and o(¥,) are hence homotopic and thus
gauge-equivalent [8,9,10], so there exists a map g(x) such
that ®(x) = g(x)-o(¥,(x)). But o is a G-map,so putting ¥(x)
=g(x)- ¥,(x), ®(x) = o(¥(x)), and hence we get a reduction Q
of P defined by ¥. Consider

0
|
v
7 (G/H)
- s 1o (Goi), -
0 —> ﬂz(G/H) —_— ”1(H) —_— nl(G) —_—
(6.3) o i
Jou Jie 1
0 —> 7 (6/6) —> m (G) —> 7 (6) —>..
Js
|
\'4

It follows from this diagram, that [®] € Im ox if and only if



(6.2) holds.

Finally, by Theorem 2.5 two reductions (Q,,H) and
(Q;,H) of (P,G) are equivalent iff [Q:1 = [Q,] € m,(H). The
inequivalent reductions are hence labelled by Ker ix which
is, according to the diagram, just m,(G/H).

It follows from (6.2) that if Im ix = O, (in
particular when H is simply connected), then (P,G) reduces
to a subbundle Q with structure group H if and only if the
Higgs charge of ¢ is zero and so the G-bundle P is trivial

[25,30].

PROPOSITION 6.2
The structure group G of P can be reduced to H if and only if

hp is homotopic to a loop in H. In this case

(6.4) pg([P]) = zg(py(IQ1)).

If 7;(G) is free and H is Abelian, then (6.4) is also

sufficient.

Indeed, the reductions (P,G) and (Q,H) of (;,6) are
compatible if and only if the transition function are
homotopic in G, [expanllpt] = [expthQt] € m,(G). Next, the
projection maps zg: g -=> Z(g) and zy: [ --> 2(h) satisfy
zg(zg(n))=2g(n), M € G&a-g‘ This follows from zG([g,§])=0,
observing that p=zy(n)+n', where 7' € [E,C] c[g,gl. Notice
that any H-connection on Q extends naturally to a G-
connection on P. Let F denote the curvature. On Q zgF =
zg(zyF), since F is H-valued. (6.4) follows then from the
definition.

Finally, let hp(t) = exp 2m¢t and hg(t) = exp 2wyt be
the transition functions of the bundles P and Q. Then
pPg([P]) = zg(£) and py([Ql) = m. Thus pg(hg) = zg(n) = zg(€).
Therefore, if n,(G) is free and H is Abelian, hp and hQ are
homotopic loops in G since pg is now an isomorphism.

An interesting insight is gained by proceeding
backwards. Let us start with a (right) principal H-bundle Q
over the two-sphere, and assume i:H<= G is a subgroup of G.
(g:,9) = (gh,h71g) is an equivalence relation on QxG and the
set of equivalence classes (denoted by {g,g} here) yields

11

the associated bundle PQ = QxuG. PQ is a principal G-bundle
with G-action {q,g} —> {q.,gg9'}. g' € G. (Q,H) is further-
more a reduction of (PY9,G), Q = ({q,e}iqg € Q).

If (Q,H) has isomorphism class [Q] € m(H), the
class of PR is [PR] = ix[Q] € 7,(G). PQ is thus isomorphic to
a given G-bundle P iff

(6.5) ix[Q] = [P].

If (6.5) is satisfied, (Q,H) is a reduction of (P,G) by
construction. This shows also that the different reductions
of P are parametrized by Ker ix = 7, (G/H) .

This proceedure allows us also to construct asymp-
totic monopole configurations [28]. The non-Abelian charge
vector IT is written as I = (n/2)¢, n an integer and ¢ a
minimal U(1l) generator, because I is quantized. Denote by yn
the Hopf-bundle S3/Z,. H = {exp2rtg10<tb<l} is a U(1l)
subgroup of G. YN can be viewed also as a principal H-bundle
with H-action y --> yh = h(e2"t) for h = exp2nmtg. The
associated bundle p(l} = YNxyG is a principal G-bundle
having transition function h(8) = exp26l, 0<8<27m being the
angle parametrizing the eqguatorial circle of S2. The
natural connection af(n) = nydy/i of YD extends to a
connection A(M) on p{I); as a mater orf fact, y(I) =
({y,e}lye¥R) is the holonomy bundle of (P(M) A(M))_  phisg
latter is an asymptotic monopole bundle iff (P} ¢ Kerjx
for j:6 > G [20,28]. Under suitable corditions such
asymptotic solutions can be extended to the interior region
[3r,32].

The connection on (P,G) determined by the non-
Abelian charge vector reduces to a subbundle (Q,H) iff this
latter contains the holonomy bundle. We conclude:

THEOREM 6.3

The Yang-Mills connection A of a principal G-bundle P over
S2 defined by the non-Abelian charge I reduces to a
subbundle (Q,H) if and only if O € [, .

For example, (P,G) reduces to a U(1l) subgroup H = {exp 2wt |
0<t<1l}, where 7 is a minimal generator, iff [expa2mtn] =
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[expamtll] € m,(G). A necessary condition for this is z(7y) =
2z (). This is also sufficient if 7,(G) has no finite part.
The YM connection A reduces also iff the reduced H-bundle Q
contains Y(MI) which happens iff 2T = nn for a suitable
integer n.

These results provide us with topological infor-
mations concerning the "fate” of monopoles under successive
aymmetry breakings G —> H [24-27]. The topological condi-
tion found in [24,25] for its survival means exactly that
the G-bundle P reduces to an H-bundle Q. On the other hand,
the second condition given in [25-27] requires that the

Yang-Mills connection reduces also.

7. THE COLOR PROBLEM IN MONOPOLE THEORY

Let us consider a Grand Unified monopole (Aj,o)
with "residual" symmetry group G. G is the little group of a
basepoint @, in the orbit where the Higgs field takes

asymptotically its values. Our previous results imply

THEOREM 7.1

A subgroup K< G is (rigidly) implementable if and only if,
over S2, the monopole bundle (P,G) reduces to a Zg(K)-bundle
Q. The rigid actions of K are in (1-1) correspondence with
reductions to Zg(K). The necessary and sufficient condition

of implementablity of K is
(7.1) B[®] € Imix,

where ix is the homomorphism between homotopy groups
induced by the inclusion map i:Zg(K) > G. The inequivalent
reductions are in (1-1) correspondance with the elements of
7, (6/2g(K)) . V

An alternative proof is obtained using the inverse tech-
nique of the previous section. Denote in fact Zg(K) by H and
consider an H-bundle Q over S2. Such bundles exist for each
element in w,(H). Form the associated bundle p(Q). p = qg
with g € Q and g € G for each p € P(Q), because Q is a
reduction of P(Q). set

(7.2) k-p = pg™lkg.

If p~g'g' with g' € Q and g' € G, then g'=gh, g'=h"1g for
some h € H. Thus

p(g') " *kg' = pg~thkh7lg = pgTlkg,
because h is in Zg(K). (7.2) is thus a well-defined action
of K on P(R). Furthermore,

(7.3) Tp = Adg~1li,
showing that this implementation is rigid. Notice also that

TIQ = i.

As we have seen in Section 6, P(Q) is isomorphic to a



given monopole bundle (P,G) iff (6.5) is satisfied, and the
different possibilities are parametrized by wmw,(G/H) =
m,(G/2Gg(K)) -

For K = G we have some more results: [1,2]:

PROPOSITION 7.2
¢ is implementable if and only if the transition function

h(t) = exp 4ntll, O¢t<l of the bundle P is homotopic to a loop
in the centre of G. This happens iff

(7.4) 8[®] € M, (G)free
and
(7.5) exp2mpg(P) = expamz(l) = 1.

The implementation of G is unique.

indeed, for i : Z(G) —> G Im ix belongs to 7,(G)free- On the
other hand, a 2Z(G) bundle Q is represented by a loop
expa2m{t, Oc¢t¢l, where { is in 2(%). Then py(Q) = zy({) = -
By pg(P) = ¢ by 6.4. However, pg(P) = z(2I).

conversely, (7.4) and (7.5) are also gufficient :
y(t) = exp2mpg(P)t is now a loop in Im i whose homotopy class
is 8[{®}, because pg(y) = pg(P) and pg, when restricted to
the free part, is an isomorphism. G admits at most one
implementation, since G/Z(G) is a Lie group and has thus
trivial second homotopy. So ix is now injective.

To express this result another way, decompose the
non-Abelian charge vector as IT = z(II) + II', where I’ belongs
to [g,g]. Denote by Ggg the semisimple subgroup of G whose
Lie algebra is [§,§], and let Ggg* be the simply connected

covering group of Ggg-

PROPOSITION 7.3
G is implementable if and only if exp awtIl®, Octcl is a
contractible loop in Ggg. This happens iff

(7-6) exp* amnm' = 1,

where exp® is the exponential map in Ggs" -
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Proof: z(JT) commutes with everything, and thus
expanll'= (expanll).(expanz(M))~ ! = (expamz(M)) 1.

(7.5) and (7.6) are thus equivalent; in particular, exp

awkll’, O<t<¢l is a loop in Ggg. [P] is now decomposed as
[P] = [expambz(l)]+t[expanmtl'] ¢ T (C)freet m"1(Ggg)«

and hence (7.4) is equivalent to expanwtfl' contractible in
Ggg- But 7,(Ggg) is known to be I'/T*, where I' (respectively
'*) are the unit lattices of CGgg (respectively of Gss*).
Thus expartll' contractible means exactly (7.5).

This is seen alternatively by noting [1,7] that,
according to the diagram (6.3), [P] € Im ix exactly when

Adx[P] = 0, i.e. the transition function Adh is contractible

in (AutG), = IntG = G/Z2(G). But the condition for this is
just (7.6), since G/Z(G) has [%,gl for Lie algebra.
(7.5) can be translated into numbers: let Ll,A.,cp be

a Z-basis for z(I') (assumed non-empty), then p(P) = Lmyly.
On the other hand, there exist least positive integers such
that MjCj € I' [23]. Thus (7.5) can hold only if, for each j,

mj/Mj is an integer, say nj- Consequently

PROPOSITION 7.4
G is implementable if and only if (7.4) is valid and

(7.8) my = anj for suitable integers nj.

The case K # G is similar but more complicated, cf.[7].

Next, Prop. 4.4 and Theorem 6.3 imply
THE 7.5
K G is an internal symmetry group if and only if the loop
hp(t) = exp awtll lies in Zg(K). This happens iff

(7.9) Adkll = 1II, ¥V k € K.

In particular, G is an internal symmetry iff II lies in the
centre. The action is then unique.



Indeed, the holonomy group of a monopole-bundle is gene-
rated by the non-abelian charge M and (7.9) means exactly
that K € 25 (1) . I, ®5] = 0 is automatically satisfied, since
stabilizes ®,. Alternatively, the implementation defined by
a reduction (Q,H) is a symmetry iff (Q,H) contains the
holonomy bundle y(T) .

As an illustration, consider a GUT with residual
group G= SO(3). Such a situation arises, e.g., when G= SU(3)
is broken by a Higgs 6 [18,27]. Choose in so(3) the Cartan
algebra

(7.10) ﬁT = aL3 = jla o 0 ;, a € R.

The non-Abelian charge vector can be gauge-rotated into 7.
Then I = (m/2)L, where m is an integer. m,(50(3)) = Z,,
{expzrml,;] = m (modulo 2). Topologically non-trivial solu-
tions arise therefore if m_is odd. Denote by P the
corresponding SO(3)-bundle.

G=80(3) 1is not implementable on P: (7.6) would
reguire, in fact, m to be even.

Consider now a U(l) subgroup K with minimal gene-—
rator ¢, K = {expamét}. ¢ is conjugate to L,, and hence
7, (50(3)) [expa2mEnt] = [exp27nLl;] = n (modulo 2).
250(3)(K)=K, so the interesting part of Diagramm (6.3)
becomes

i*
—_— "1(K) — nl(SO(B)) —_—

i H

Z — 22

n (modulo 2)

(7.11)

n ——

Theorems 7.1 and 7.5 tell us therefore that
(i) K is implementable on P iff n is odd;

(ii) For n = 2k+1 Keris = Z: there is a different
implementation for each k, corresponding to the different
reductions to K;

(iii) K is a symmetry iff I and ¢ are parallel, NI =
(n/2)¢ for some integer n.

' We are able to construct the bundles explicitly:

Re§
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choose an integer n and consider the Hopf bundle YN = 53/7,
where 53 is viewed as sitting in €C2. YD is a two-sided U(l)
bundle with actions z:y — z-y = (2Y,,2y,;) and z': y —>
Y Z' = AY1Z2 Y2 ) Y S (YY) € CL, z,Z' € U(l)). YN can be
viewed alternatively as a two-sided principal K-bundle with
k = expzm¢a acting as k-y = (e?7la)y and y-k = y(e27ia)
respectively.

The associated bundle p(n) = YnxKSO(S), is a right
principal 80(3) bundle. YN is identified with Y = ({y,e}l y
€ YN) and so is a reduction of p(n).

The right action of K on YN was used to construct
P(n)  However, we still have a left action of K on ¥M which

extends to a left action of K on p(n) according to
(7.12) kly.g} = (k-y.g} = {y,k"'g} = {y,g}-Adg~ ik,
where k = expamta. Hence, for p ={y.gl,
(7.13) Tp(k) = Adg~ 'k,
The transition function of the principal K-bundle

Y(£) is h(e) = expftn . Hence m,(50(3))
2): P(N) is the trivial bundle for n even and is isomorphic

[Ph] = n (modulo

to P for n odd. Our construction provides us hence with a
rigid action of K on P for each odd integer n, as expected.
These actions are obviously inequivalent.

The action of K as constructed above is a symmetry
for the monopole field A given by the non-Abelian charge
vector m iff Yy(&) containsg the holonomy bundle, which
happens iff II = (n/2)¢.
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