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1. INTRODUCTION

One of the most exciting problems which arose re

cently in monopole theory is that of global color [1-7]. We

formulate it in two steps [7]: first, we would like to

define the act:ion of a fixed element: g of the (unbroken)

gauge group. Under usual conditions this presents no

problem. in topologically non—trivial situations, however,

this may not be posssible. This is the problem of imple—

tuentability. Next, if we are able to define such an action,

when do we get a syrumet.y (in the sense of Schwarz [B] and

Forgacs and Manton [s]) for a given field configuration? The

importance of these notions is seen, for example, from their

role played in deriving conserved charges in gauge theories

[735]. in this paper we give the mathematical solution to

these problems. Our theory (formulated in fibre-bundle

terms [8,10—12]) is valid for any classical gauge theory.

Notice that the problem studied here is a special case of

dimensional reduction [g,is].

Our starting point is Prop. 2.2, which states that a

“rigid” internal action of a subgroup K of G on P exists if

and only if P reduces to an II - Z0(K) - bundle Q.

Furthermore, there is a (1-1) correspondence between such

equivalent actions and isomorphic reductions (Props. 2.4 —

2.5).

An action of K on the principal bundle P induces an

action of K also on the YM field. Similarly, we can study the

action of K on matter fields - sections of bundles

associated to P. The condition for such an action to exist

is expressed again in terms of bundle-reduction (Theorem

3. 1).

When is an action a yjy for a given field

configuration? Prop.4.3 tells us, that: the action of K on

(P,G) defined by (Q,H) is an internal symmetry for a Yang-

Mills connection A if and only if A reduces to a connection

on Q. This happens if and only if H contains the holonomy

group of ACó1The implementation of an internal symmetry-

subgroup is nescessarily unique. There is an analogous

statement (Prop. 4.4) for matter fields.

These theorems provide us with a complete solution

of the color problem — when we are able to construct a the

corresponding reductions. A first iilustration is given by

the non-Abelianitohrn--Aharonov experiment of Wu and Yang

[33-3s] , where GSU(2) admits two inequivalent

implementations.

The principal application of our theory is to non—

Abelian monopoles [1-7]. Their basic properties [17-23] are

geometrically reformulated in Section 5. The reduction of

monopole bundles is worked out in Section 6. (As a by

product, we obtain also the topological theory of the “fate”

of Grand Unified monopoles under successive symmetry brea—

kings [24—28]).

The results are summarized as follows: denote by G

the residual symmetry group of a monopole he.ving [P] €

as fundamental topological invariant. A subgroup K of C is

implementable iff [PJ belongs to the image of i*:ir1(Z0(K)) -

—) 711(C) induced by the inclusion i:Z0(K) —) G. Further

more, the inequivalent implementations are labelled by the

elements ofn2(G/Zg(K)). In particular, the implementation

of the full C is unique (when it. does exist).

These results are conveniently expressed in terms

of the “non-Abelian charge” ii of Goddard, Nuyts and Olive

[17]: let us decompose II as II = z(Il) + II’, where z(II) € Z()

and II’ € [P,’]. We prove that 0 is implementable iff either

(i) [exp 411th] € ‘j(0)free, and z(H), the projection of the

non—Abelian charge onto the centre, is quantized: exp4vz(I1)

-- 1. Equivalently, 1ff (ii) expanhlt, 0 t 1, is a

contractible loop. C is a symmetry for a monopole given by 11

iff II e

The general results are illustrated on 50(3) mono—

poles [18,17].
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The orbit of i is identified with G/H, and T can be viewed as

a section of the associated bundle with fibre G/H. Any such

section defines a reduction of P to an H—bundle. The

reductions to H bundles are in known to be in (I—I)

correspondence with sections of the associated bundle

PXG(G/H) P/H and so with rigid actions of K on P Hence we

have proved

constant, equal to a base point,which in this case is the

inclusion map i : K c.——. G. in this gauge the action of K is

rigid -

Requiring rigidity is seen easiLy to be the sane as

to require that, for each p. i is the restriction to K of an

automorphism of G [i.,i,&,i 1.
Let us now consider a rigid internal action of KCG

and let H denote the stabitiier of i K L-—,. G under the

adjoint action of G,

(2.2) H
-- Z(K) -= (g € UI Adgk k, v’ K E K).

iWRNAL_ACTIONS ONP NCipJth_BLJNDLES

Let P be a right principal U-bundle over a connected
manifold M. A subgroup K of C acts internal1yonp, if we are
given a left action p —> k-p of K on P, which preserves each
fibre and commutes with the (right) action of C, k-(pg)
(kp)g, V k € K, g € C, p € P, cf. [i-i]. If so, define the
map Tp : K —> C by kp P(r(k)). rp is Welldefined, since
kp belongs to the same fibre as p, and C acts on each fibre
transitively and freeLy. k — r(k) is a homomorphism of K
into C, which satisfies rpg Adg’o-r, g € C. In what
follows we consider only the case when K acts on P freely;
i.e. the homomorphism Tp : K —> C is irijective for each p.
This can always be assumed without loss of generality for
symmetries (see Section 4).

Choosing a local section sa:Va — P. -i is given by
Va Hom(K,G), where 7a

Tsa(x) if h: VVfl —G
denotes thetransition function of P, then 7aX Adhafl T2x,
X € Va(Vfl

An internal action of K on P is called rigid, if there
exists a local trivialization (Va,sa} of P such that each ra
is constant [i-iJ. If so, there is no loss of generality in
assuming that TaX(k) - k for each x. In such a gauge

(2.].) ksa(x) sa(x)k, V X € Va, k € K.

1?QPOSITION 2.1

An internal action of K on P is rigid if and only if the
image of the associated map T: P — Hom(K,G) is the orbit of
the inclusion map i:Kc—,.G under the adjoint action of G on
Hom(K,G).

Proof: Suppose the action of K on P is rigid in a gauge
{Va,sal. if p E P is such that n(p) € Va, where 71 is the
projection ii:P—->M, then p - s(n(p))g for some g € G. By
(2.1)

pi(k) K p - k (s(n(p))g) (K s(71(p)))g —

- 8(n(p)k)g
-

p (g’kg)

Hence Tp() = Ad g’k and 50 Tp Ad g’i, and thus the image
1.5 the orbit of i Conversely if -r has a single orbit as its
iinage,we can always choose local gauges 8a so that ra is

PROPOSITION 2.2

A rigid internal action of a subgroup K of C on P exists it

and only if P reduces to H = Z0(K).

It is easy to see directly that the existence of a rigid

action forces the bundle to reduce by using the special

gauge (2 1) for if 5 5ahafl then

aO’a) K saha k - sflk sahaiK

showing that hafl commutes with K, and hence (P,G) reduces to

an H-bundle Q.

COROLLARY 2.3

C itself acts on P internally and rigidly if and only if

(P,G) reduces to Z(G), the centre of G. in this case the

transition functions take their values in Z(C) in a suitable

gauge

Now we turn to the question of uniqueness of the

action of K To be able to discuss several actions at once we

use the following notation: we denote by :KxP —— P the map



iz(k,p) = kp. Two actions given by j and #2 should be
regrded as equivalent if they differ only by a gauge
transformation, i.e. it there exists a bundle automorphism
a:P-->P preserving fibres, commuting with the G—action, and
such that L2(k,a(p)) a(#1(k,p)) V k € K, p € P.

Equivalence preserves rigidity, since if sa:V—-> 1?

is a gauge in which is constant then aosa is a gauge in
which L2 is constant.

An equivalence a determines a map y:P——>G by

(2.3) a(p) p(p).

which satisfies (pg) -= Adg’y(p), so y is a section of the
bundle associated to P with C acting on itself by internal
automorphisms. If we have two actions IL, #2 of K with
corresponding maps r1, r2: Hom(K,C) then

so

a(P)r2(k) #(k,o(p)) = o(jL(k,p)) a(p)T(k)

(2.4) 7-(k) = r2 (k) Ady(p)’r2(k)p a(p)

Conversely, given a section y of PXGG satisfying (2.4) then

(2.3) defines an equivalence of the two actions.

En the rigid case we may assume i: KC_,. C is a
subgroup and the actions of K correspond with reductions Q
P to H-Z0(K)-bundles. Here r has values in the C-orbit of i
and Q t p € P!r = i).

if we have two rigid actions ,.t1 and #2 with

corresponding reductions Q1 and Q2 then an equivalence a of

# and #2 implies Tip = T20(p) by (2.4), 50 = o(Q1). This

suggest a notion of equivalence of reductions: two re

ductions Q1 and Q2 of a principal C-bundle P are equivalent

if there is an automorphism a of P preserving fibres with Q2
= o(Q1). Then we have

PROPOSITION 2.4

Two rigid actions jL1, i2 are equivalent if and only if their

corresponding reductions Q1 and Q2 are equivalent.

reductions then they are isomorphic a’i H-bundles ihis is in

fact the only condition to be satisfied as the next result

shows:

PROPOSITION 2.5

There is a (1—1) correspondence between isomorphisms of Q1

and Q2 as H—bundles and equivalences of Q1 and Q2 as

reductions of P.

Proof: It remains only to show how to extend an isomorphisrn

o0:Q1—- Q2 to an isomorphisrn of P. For any p € P we find g€C

(not unique) with pg € Q1 (since Q1 as a reduction of P). Any

other choice of g has the form gh with h€H, but

a0(pg)g =o0(pgh)(gh)’’

since 0 is an H—map, so a(p) -‘ a0(pg)g gives a well—

defined map a:P -->P with o(Q1) o0(Q1) Q2. it is easy to

check o is an automorphism of P.

Obviously, if two reductions Q1.1Q2 of P are equivalent as
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3.INTERNAL ACTIONS ON ASSOCIATED BUNDLES

A matter field 4 is specified by giving a unitary

representation U:G —> U(E) (the set of unitary trans

formation of a linear space E), and by selecting, in each

Va, a local representative cL :V —> E such that

c(x)
- U(h(x))4(x), x E VafV.

Suppose a subgroup K of C acts on 4 pointwise and linearly

This means that k E K sends 4 to an object we denote by

(k4), expressed locally as

(3.1) (k.)a(x) = Ua(k)a(x)

where each U is a representation of K on E. For (3.1) to be

well-defined we need the consistency condition

(3.2) Ua(k) U[ha(x)]U2x(k)U[h(x)]

l is a section of the associated bundle J..-= PxE. (3.2)

requires therefore that the Ua(k) ‘s piece together to give

sections of the bundle assc.ciated to P with fibre U(E),

where G acts by conjugation by U(g). If the action of K on

the fibre at x is denoted by Ux(k), the Ua(k)s are local

representatives of this action. U(k) is a section of U(J1.).

If the representation U is not faithful, denote by N

its kernel. N is a normal subgroup of 0, and GE = G/N is a

group to which U descends to give a faithful representation

U. PxE is naturally isomorphic to P*XG*E, where P P/N -

PXG(G/N) is the principal GE_bundle associated to the

homomorphism G --> GE. In this way we may reduce to the case

where U is faithful but note that now K need not be a

subgroup of G*. This defect can be avoided if we assume that

the action of K is induced locally by gauge transformations,

i.e., if we assume that, for each k, there exist functions

ka:Va --> G such that Ua(k) U(ka(x)). These ka must

satisfy IJ[ka(x)J U[hafl(X)kfl(x)haj’(X)],

(3.3) ka(x)1h(x)k2(X)h81(x) eN

(3.4) k*a(x) h*afl(x)k*fl(x)h*a$(x)_1.

It follows that k* defines a section of PExo*[G*J with G*

acting by the adjoint representation on itself. Since each

is a homomorphism, then, although k —, ka(x) need not

be a homomorphism,k —> k*a(x) is a homomorphism. Thus, by

(3.4), we obtain a section T*x(k) — kEa(x) of

P*xGE[Hom(KC*)] and hence an action of K on I which

commutes with the G*acLion. If further there are local

gauges where the ka are K-valued, then Kc N acts trivially

so we get an action of I( - K/(KrN) which is a subgroup of

G*. Hence we get the situation studied in Section 2, with ICE

acting on
P.

Finally, if we restrict ka(x) to be constant (and

equal to k) in some gauge, then ICE acts rigidly on P. This

can happen, as we have seen, if and only if
P

reduces to

ZG*(K*), the centralizer of K in GE. If

(35) H’= (g € CIU(g)U(k) U(k)U(g) V k € K],

* * * *
then this centralizer is H -= H /N. Since P P/N, P /H -=

P/H’ and thus P reduces to HE if and only if P reduces to

H’. We summarize:

THEOREM 3.1

If K acts pointwise on a generic matter field ‘I transforming

under a unitary representation U of C on E so that there are

local gauges (Va,sa) where this action is rigid,

(3.6) (k.4)a(x) =

then P reduces to the subgroup (3.5). Conversely, any

reduction of P to H’ induces an action of K on .

This is the case in particular when K acts internally on P.

Indeed, H in (2.2) is a subgroup of H’. Alternatively,

observe that if the action of K on P is associated to i:1? —>

Horn(K,G), then

*

r (k) = (T (k))if we denote by g* the projection of g € G into G, then
p p



defines an action of K (and thus of K*) on P. 1 can be

viewed alternatively as a secticln of P*XG*), or as an

equivariant function P
* * *_ * * * * *

1’(p g ) = U(g )(p ), g € C ,p € P

Observe that the action of K on is deduced from that of K

on
P.

(3.7) (k.4)(p) U(r*p(k))(p)

(since 4’(p) = c1(p*), whose local form is

(3.8) (k.ct)(x) = U(T*aX(k))$a(x).

The results of this section apply, besides monopoles

(Section 7), to classical particles in external Yang-Mills

fields [33].

4. I NTERNAL SYMMETRIES

Let us now assume that our principal C-bundLe P

carries a connection form A, and let K be a subgroup of C

acting on P internally. Let this action be given by r. This

allows us to define the action of a k € K on the Yang-Mills

connection A, (kA) - (k_1)*A, where * denotes the pullback

of a differential form. We shall call. K an internal symmetry

group for the Yang—Mills field A if this action preserves

the connect ion

(4.1) (kA) - A.

cf. [7—16]. If K is a compact, connected Lie group with Lie

algebra , any k € K can be written as k = exp K. (4.1)

implies that the vectorfield

- d
(4.2) K(p) (exp—tK)•p

t 0

is invariant under the right action of C on F, and

(4.3) L A 0.
K

A
On the other hand, K(p)

- , the fundamental vectorfield at

p associated to the infinitesimal right action of C at p € P

for some €. Denote (K(P)”)p ‘(p). Alternatively,

cons ider

(4.4)
= dlE IT(exP-tK).

It=o

For each p € F, the map £ -) K ---> WK(P) € satisfies

(4.5) (r)[K1,K21(p)’[WK(p),Cr)K2(p)] and WK(P0) = K.

WK(P9) Adg’w(p) for each K. K is therefore an adjoint

“Higgs - types field.

To express (4.3) another way, observe that L-A -

dA(,.) + d(A()) by the Cartan lemma. But dA(’,.) -= DA(,.)

— [A(),A(.)] = [A(.),A()J because DA F is horizontal.

Finally, A() Ap(wK(p)’) = WK(P), since A(.) = for any



connection A on P. So L’ A IJWK. This yields
as Q (p € P a<(p) - K) [ioj. This impLies

(4.6) L)w - 0.

cf. [i,7,iB]. When expreeseu in a local gauge tVa,Sai (4.1)

and (4.6) become [7-1J

(4’/) Aa(X) Ad T(k) Aa(X) dTa(k)[Ta i—i

and
Ci a a a

IJw - dw ÷ [A ,w j = 0
K K K

respectively, where A° S A, and

(4.8) u(x) = T(exp-tK),

WIYK(x) is just a local representative for WK? WK(x.

GJK(5a(X)), as anticipated by the notation.

Conversely, if we can find a bracket-preserving

linear map K —> WK satisfying (4,5) which associates

covariantly constant adjoirit Higgs—type fields WK to each K

€ ,, (exp—K)p - exp(wK(p)”) (exponential of a vectorfield)

provides us with an internal action of k — exp(—K) E K on P.

in fact, Tp(eXPK) - exp(wK(p)). (exponential in the

group).

All solutions of (4.6) are found by parallel trans

port [18,7). Lg(P) belongs therefore, for all p € P, to a

single adjoint orbit of G. Hence we get

PROPOSITION 4.2

The action of an internal symmetry group K on P is rigid.

As we have seen in Section 2, to have a rigid internal action

of K is equivalent to requiring that the bundle (P,G)

reduces to H=Z0(H). in terms of w this reduction is obtained

PROPOSITION 4.3

The action of K on (P,A) defined by the (Q,H)

Z(K)) is an internal symmetry if and only it the

form A reduces to Q. This happens if and only

contains the holonomy group of A. In this case

the holonomy bundle and so is unique.

In particular, the fuLL guge group C is a group of internal

symmetries if and only if the connection reduces to the

‘L(C)-bundle which characterizes the left action of C on P.

This is equivalent to requiring that the generators of the

holonomy group Lie in the centre of [231.

SimilarLy, let us consider a matter field 4, and

assume there is an internal action of K on determined by a

section r of P*xQ*[Hom(K,C)1. We shall say that this

action of K s an internal symmetry for the maLLer fieLd ,

it

(4.9) (k’)(p) - U(T(k))(p) (p)

in a local (in particular in a rigid) gauge this reads

(4.10) U(Ta(k))(x) — X(x) and U(k)’(X) -

respectively. We can work also infinitesimally:

d
(4.11) K (p ) = (exp LK) ‘p

dt
t=o

d * *
w (p ) - — T (exp—tK)

K dt p
t - 0

provide us with a vertical vectorfield K* and an adjont

“Higgs” field WK
P*=P/N. The infinitesimal action of

(the Lie algebra of K*) on cii reads

*

(4.12) (K •)(p) L uii(p) w (p).c(p)
K

K

where the dot denotes the action of the Lie algebra

induced by U. The definition of a symmetric matter field

PROPOSITION 4.1

A connected subgroup K of G acting internally on P is an

internal symmetry for the connection A if anti only it the

adjoint Higgs field tK associated to its infinitesimal

acLion is covariantly constant for each x,

(where H

connect ion

if H=Z(K)

Q contains

and

*



(4.14) w(X)•(X)

Let us now assume that we have a Yang—Mills potential A and a

covariantly constant Higgs field 4 and that we are inte—

rested in their simultaneous symmetries. First, K imple—

mentable on P implies that K is implementable also on Px0E.

Furthermore, wtK(x) = (WK(p))t. In particular if N is

discrete, 1 = and = , so the star can be dropped.

Both K and 4’ are now found by parallel transport, 4”(x) =

Adga(x)4’0 and w,j(x) Adga(x)ic, where ga is the non

integrable phase factor. (4.13) reduces hence to

(4.15) K4’0 0.

PROPOSITION 4.4

K is a symmetry group for a covariantly constant matter

field 4’ if and only if K belongs to the little group of a

basepoint 4, from the orbit where 4’ takes its values.

As a first illustration consider the non-Abelian

Lohm—Aharonov cpjnietnt [i 33-35] proposed by Wu and Yang

to test the existence of gauge fields Here one considers a

principal 0—bundle P over the punctured plane M R2\(a}

endowed with a flat connection A Such bundles are classi—

fied by classes [P1 in 1r(G). The homotopy exact sequence

Ad it
- —> 77(0) —> n(G/Z(G)) —> 1T(Z(G)) —> (0) .—.

(4.16)
[Q) [P]

analogous to (6.3) and induced by Z(0) —> 0 —> G/Z(G)

shows that 0 is implementable if f [P] belongs to Em it. If

this condition is satisfied, there may be still an ambi—

gjty: the different implementations - the iriequivalent

reductions to Z(G) — are classified by Ker it. For GSLJ(2)

for example, P is trivial because StJ(2) is connected.

n1(SU(2)) — O Z(G) — Z2 0/7(0) - SO(3) so there exist two

gauge—iriequivalent implementations corresponding to the

reductions of P to a trivial or to a twisted bundle

respectively [7].

When do we get an internal symmetry? Let us consider

more generalLy a principal 0-bundle P over a connected

manifold M carrying a flat connection A.

The horizontal distribution of A is int.egrable by the

Frobenius theorem- Let us choose a reference point p0 in P.

and denote by Q the leaf of the horizontal distribution

through p0. Q is a coveting of M which is a reduction of P

with a discrete subgroup U of C as structure group. As a

matter of fact, U is just the holonomy group of A at p0.

According to Prop. 4.3 C acts as a symmetry for (P,A) iff I

is in Z(G).

in the non—Abelian Bohm—Aharonov experiment U con

sists of powers of 4’, the non—integrable phase factor

calculated along a loop which winds once around the origin

[33—35]. Consequently, StJ(2) acts as a group of internal

symmetries only for 4’ 1 (for the first implementation) or

for c1 —1 (for the second implementation) [7]. The physical

consequences are explained in [35].

reads hence infinitesimally

(4.13) **.4’(p)
0.

or in a local gauge
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5 .MONOPOLE BUNDLES

The asymptotic properties of monopoles are de

termined by a principal G-bundle P over the S2 at infinity,

where G, the residual symmetry group, is compact and

connected. In Grand Unified Theories one starts in general

with a trivial “unifying” bundle P = R3xG, where G - a

compact and connected Lie group — is the “unifying group”.

At large distances the G-syrnmetry is spontaneously broken

to a subgroup G of G. Geometrically, this means that over
—, —,

(P,G) is reduced to a principal G-bundle P. Any such

reduction is produced by an equivariant “reducing map”

[101. Choosing a global trivialisation of P, the reducing

map can be identified with a map :S2 —> G/G - the physical

Riggs field. defines a homotopy class [] € ir2(G/G), and

the homotopy class [P1 is ö[], where ö:n2(G/G)—>111(G) is

the connecting homomorphism. O is an isomorphism if is

simply connected. Both [P1 and [1] will be referred to as

the Riggs charge in the sequel.

711(G) 1i(G)free +

where 77j(G)free ZP, p is the dimension of Z(), and G55 is

the semisimple subgroup of G generated by ir1(G55) is a

finite Abelian group. The free part - which plays a

particularly important role — is described as follows [23]:

denote by F =( € I exp21i = 1) and let z: n—> Z() be the

projection of the Lie algebra of G onto its centre. z(F),

the image of F under z, is a lattice whose dimension is the

same as that of Z(). In [23] we proved the following

theorem: Define, for any loop y in G,

‘ z(G) €(5.1) p(’y) = —
211

7

where e gdg is the canonical (Maurer—Cartan) 1—form of

G. p defines an isomorphism of 1T1(G)free with z(F).

Any ioop in G is known to be homotopic to one of the

form 7(t) exp 21rt. For this y p(’y) = z() . If .
,

is

a Z—basis for z(F), then p(7) = Em1t provides us with p

“quantum” numbers m1, . .

In [23] we gave also a second characterization of p,

namely that p() - p(O[]) can also be calculated as the

integral of a 2-form over the 2-sphere at infinity,

(5.2) p()
— f ci, U,

S2

where U is the projection to 0/0 of the Z()-va1ued 2-form
z(dO) on G.

Here we give third construction, adapted from Chern
Weil theory [ioJ, Vol.11.: let us consider an arbitrary
connection form A on P, and denote by F = DA its curvature
form. z(F) is a Z()-valued 2-form on P, which is horizontal
and basic,since

rg*z(F) z(rg*F) = z(Adg’F) =
so z(F) descends to S2 to a Z()-valued 2—form ciA, z(F) =
11*A This two-form is closed,

d(z(F)) = z(dF) = z(DF — [A,F]) = z(DF) = 0,
since z vanishes on the derived algebra and DF = 0 by the
Bianchi identity. The class [z(F)] is known [io] to be inde
pendent of the choice of connection. This proves:

PROPOSITION 5.1

The cohomology class [C99 € H2dR(S2)XZ() is independent of
the choice of the connection A on P. Consequently,

(5.3) p(P) =
— f z(F) € Z()

S2

depends only on the bundle P.

Let us now assume that (P,G) is the reduction of the trivial
unifying bundle (P,G) defined by :S2 --> G/G and so can be
identified with the pullback by ci of G, viewed as a
principal G-bundle over the orbit G/G [io]. The - com
ponent of the Maurer - Cartan 1-form ‘ defines a connection
on the principal G-bundle G whose pullback by ci is a
connection form A on P such that z(DA) = cXfl, where U is the
2-form defined above. Thus we have established the equi
valence of our new construction with those given before.

Monopole fields must also satisfy the Yang—Mills—

Riggs equations. Assuming a sufficiently rapid fall-off at
infinity, the Yang-Mills—Riggs equation on S2 reduces to
D*F 0. The solution has been found by Goddard, Nuyts and

Olive [17—20,28-29]): Let us assume that P is a non-trivial



0—bundle over S2, carrying a connection form A which

satisfies the YM equation D*F -=O Then there is a vector IT in

generating a homomorphism U(i) -- IT such that P is

associated to the I-Iopf bundle over S2 and the field is F

‘yri with ‘ the area form on the 2—sphere. 11 is quantized,

exp4irlE = 1. The vector H can be chosen without loss of

generality in any given Cartan subalgebra of . The tran

sition function h of a monopole is thus homotopic to h(t) =

expa7THt, 0 t 1, so p(P) is simply

(5.4) p(P) =- z(2H)

This theorem can also be reformulated by saying that the

holonorny group of asymptotic monopole bundles is a 0(1),

generated by the “non—Abelian charge” vector H []

Conversely, given H we are able to construct an asymptotic

monopole configuration, see the following section.

DUCT ION OP MONOPOLE BUNDLES

THEOREM 6.1

The monopole bundle (P,G) is reducible to an H-bundle Q

(where H is a closed subgroup of G) iff

(6.1) [t’] € Tm 0*,

where o*:i12(G/H) --> i12(G/G) is induced by the natural

projection o: IT/H --, IT/C. Equivalently, iff

(6.2) [P] = [‘Z] € Tm i*,

where i*:111(H) —, w1(G) is induced by the inclusion i:H’—.

G. The inequivalent reductions from IT to H are parametrized

by the elements of ii2(G/H).

Proof: Suppose first that there exists a reduction (Q,Ff) of

(P,G). (Q,I-1) is a reduction of (P,G) also, and is thus

determined by a reducing map (“Higgs field”) ‘P:S2--> C/H.

This reduces P if and only if each H-coset is contained in a

corresponding G—coset. That is,if and only if cT = 0(111). But

this implies [2] =

Conversely, if [TJ € Tm 0*, then [T] = o*[1P} for

some ‘111:S2 - > /H. ‘Z and 0(’1’) are hence hornotopic and thus

gauge—equivalent [8,9,10], so there exists a map g(x) such

that T(x) = g(x)o(’P1(x)). But 0 is a G—map,so putting ‘11(x)

g(x)• ‘P1(x), T’(x) = 0(111(x)), and hence we get a reduction Q

of P defined by 11. Consider

0

V

2
(C/H)

o —> 7T(0/G) —> 7r1(G) —> i(G) —>.

V

It follows from this diagram that [‘I’) € Em 0* if and only if

ö v
0 —> 1T(G/H) —> ir(I-I) —> r(G) —>

(6.3) Jo.. ii... ii
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(6.2) holds.

FinalLy, by Theorem 2.5 two reductions (Q11H) and
(Q2,H) of (P,C) are equivalent iff [Q1] = [Q2] E i11(H). The
inequivalent reductions are hence labelled by Ker i* which

is, according to the diagram, just 7i2(G/H).

It follows from (6.2) that if In i* = 0, (in

particular when H is simply connected), then (P,C) reduces

to a subbundle Q with structure group H if and only if the

Higgs charge of ‘X is zero and so the C—bundle P is trivial

[25,301.

PROPOSITION 6.2

The structure group G of P can be reduced to H if and only if

hp is homotopic to a loop in H. In this case

(6.4) PG([]) zC(pH([Ql)),

If ir1(G) t8 free and H is Abelian, then (6.4) is also

sufficient.

Indeed, the reductions (P,G) and (Q,H) of (P,)

if the transition function are

homotopic in C, [exp4irIpt] [exp4lrflQt] € ir1(G). Next, the

projection maps zG: --> Z() and zH: —-> Z() satisfy

This follows from zC([g?])=o

observing that 7)=zK(7))+7)’, where q’ € [f,1] Notice

that any H-connection on Q extends naturally to a C—

connection on P. Let F denote the curvature. On Q ZGF

ZC(ZHP), since F is H-valued. (6.4) follows then from the

def mit ion.

Finally, let hp(t) = exp 27Tt and hQ(t) exp 27n)t be

the transition functions of the bundles P and Q. Then

PG([Pl) ZG() and PH([Q]) =
. Thus PG(hQ) ZG(7?)

Therefore, if 1r1(G) is free and H is Abelian, hp and hQ are

homotopic loop8 in C since PG 5 now an isomorphism.

An interesting insight is gained by proceeding

backwards Let us start with a (right) principal H-bundle Q
over the two—sphere, and assume i:HC—.G is a subgroup of C.

(q,g) (gh,h’g) is an equivalence relation on QXG and the

set of equivalence classes (denoted by [q,gl here) yields

the associated bundle PQ QxHG pQ is a principal C-bundle
with C-action (q,g} —> (q,gg’], g e G. (Q,H) is further
more a reduction of (PQ,G), Q ((q,e]Iq c Q).

If (Q,H) has isomorphism class [QJ e 111(H), the
class of pQ is [PQ] ii[Q] € 711(C). PQ is thus isomorphic to
a given C-bundle P iff

(6.5) i*[Q] = [P] -

if (6.5) is satisfied, (Q,H) is a reduction of (P,G) by
construction. This shows also that the different reductions
of P are parametrized by Ker i* ff2(G/H).

This proceedure allows us also to construct asymp
totic monopole configurations [25]. The non—Abelian charge
vector II is written as El = (n/2)e, n an integer and a
minimal U(l) generator, because 11 is quantized. Denote by yn

the Hopf—bundle S3/Zn. H - (exp2llteIO<t<l) is a U(l)

subgroup of G. yn can be viewed also as a principal H-bundle
with H-action y —- yh = h(e2t) for h = exp27rt. The

associated bundle pUt)
= YxHC is a principal C-bundle

having transition function h(9) exp2OII, 00271 being the

angLe parametrizing

natural connection

connection A(11) on

((y,e)IyEY°) is the

the equatorial circle of The
A(m) = ndy/i of yn extends to a

as a mater of fact, y(fl) =

holonomy bundle of (P(1fl,A(’U). This

latter is an asymptotic monopole bundle iff [P(ll)] € Kerj*
for j:C L_,. 0 [20,28]. Under suitable conditions such

asymptotic solutions can be extended to the interior region
[31,32].

The connection on (P,C) determined by the non
Abelian charge vector reduces to a subbundle (Q,H) iff this
latter contains the holonomy bundle. We conclude:

THEOREM 6.3

The Yang-Mills connection A of a principal C-bundle P over
g2 defined by the non—Abelian charge El reduces to a
subbundle (Q,H) if and only if II €

For example, (P,C) reduces to a 0(1) subgroup H = [exp 2iriit

0t<l) where j is a minimal generator 1ff [exp2IItlJ] =

compatible if and only

are



[expairtfl] € 1T1(G). A necessary condition for this is z(7J) =

2Z(fl). This is also sufficient if n1(G) has no finite part.

The YM connection A reduces also iff the reduced H-bundle Q

contains y(11) which happens iff lIT = ni for a suitable

integer n.

These results provide us with topological infor

mat ions concerning the “fate” of monopoles under successive

symmetry breakings C —> H [24—271. The topological condi

tion found in [24,25] for its survival means exactly that

the C-bundle P reduces to an H-bundle Q. On the other hand,

the second condition given in [25—27] requires that the

Yang-Mills connection reduces also.

7. THE COLOR PROBLEM IN MONOPOLE THEORY

Let us consider a Grand Unified monopole (Ac)

with “residual” symmetry group G. G is the little group of a

basepoint t in the orbit where the Higgs field takes

asymptotically its values. Our previous results imply

THEOREM 7.1

A subgroup Kc.G is (rigidly) implementable if and only if,

over S2. the monopole bundle (P,C) reduces to a ZG(K)-bundle

Q. The rigid actions of K are in (1—1) correspondence with

reductions to ZG(K). The necessary and sufficient condition

of implementablity of K is

where i* is the homomorphism between homotopy groups

induced by the inclusion map i:ZG(K) c.__,.G. The inequivalent

reductions are in (1—1) correspondance with the elements of

2 (C/Z0(K))..

An alternative proof is obtained using the inverse tech

nique of the previous section. Denote in fact Z0(K) by H and

consider an H-bundle Q over S2. Such bundles exist for each

element in 1i1(H). Form the associated bundle p(Q). p = qg

with q € Q and g € C for each p € p(Q), because Q is a

reduction of p(Q). Set

(7.2) kp = pgkg.

If p-q’g’ with q’ c Q and g’ € C, then q’=qh, g’=-h’g for

some h € H. Thus

p(g’)’kg’ pg’hkh’g = pg’kg,

because h is in Z0(K). (7.2) is thus a well-defined action

of K on p(Q). Furthermore,

showing that this implementation

rIQ

As we have seen in Section

(7.1) ö[c] € Imi*,

(7.3) Tp = Adg’i,

is rigid. Notice also that

6, p(Q) is isomorphic to a
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given monopole bundle (P,G) iff (6.5) is satisfied, and the

different possibilities are parametrized by 7r2(G/H) =

i,2(G/Z0(K)).

For K = 0 we have some more results: [1,2]:

Proof: z(T1) commutes with everything, and thus

exp4lTfI1= (exp4iT[T).(exp4lTz(fI))’l (exp4ffz(fl))’1

PROPOSITION 7.2

0 is implementable if and only if the transition function

h(t) exp 477t[I, Otcl of the bundle P is homotopic to a ioop

in the centre of 0. This happens if f

(74) O[c1] € lTi(G)free

and

(7.5) eXp2lTp0(P) = exp4lrz(fl) 1.

The implementation of 0 is unique.

Indeed, for i : Z(0) —> G Tm i* belongs to i(0)free On the

Other hand, a Z(G) bundle Q is represented by a loop

exp27Tt, O<t<l, where t is in Z(). Then PH(Q) = zH(L) = C.

By p0(P) C by 6.4. However, PG(P) z(2r1).

Conversely, (7.4) and (7.5) are also sufficient

y(t) exp2np0(P)t is now a loop in Tm i whose homotopy class

is 8[c1], because P() = P(P) and PG’ when restricted to

the free part, is an isomorphism. 0 admits at most one

implementation, since G/Z(G) is a Lie group and has thus

trivial second homotopy. So i* is now injective.

To express this result another way, decompose the

non—Abelian charge vector as U = z(fl) + U’, where U’ belongs

to Denote by G the semisimple subgroup of C whose

Lie algebra is and let be the simply connected

covering group of 055.

(7.5) and (7.6) are thus equivalent; in particular, exp

4rrt[I’ , O<tcl is a loop in [P1 is now decomposed as

[P] = [exp4lrtz(fI)lf[exp4lrt[T’J ‘i(0)free “i(0ss)’

and hence (7.4) is equivalent to exp4ut[I’ contractible in

G. But 7T1(055) is known to be F/*, where r (respectively
k) are the unit lattices of G (respectively of

Thus exp4lTtH’ contractible means exactly (7.5).

This is seen alternatively by noting [1,7] that,

according to the diagram (63), [P} E Im i* exactly when

Ad*[P] = 0, i.e. the transition function Adh is contractible

in (AutG)0 Z InbG G/Z(0). But the condition for this is

just (7.6), since G/Z(G) has [j,] for Lie algebra.

(75) can be translated into numbers: let C1, -
-

be

a Z—basis for z(r) (assumed non—empty), then p(P) =

On the other hand, there exist least positive integers such

that E F [2]. Thus (7,5) can hold only if, for each j,

is an integer, say n. Consequently

PROPOSITION 7.4

O is implementable if and only if (7.4) is valid and

(7.8) mj = nM for suitable integers nj.

The case K C is similar but more complicated, cf[i].

Next, Prop. 4.4 and Theorem 6.3 imply

PROPOSITION 7.3

0 is implementable if and only if exp awtfl’, Otcl is a

contractible loop in 0. This happens 1ff

(7.6) exp* 47TH’ 1,

where ezp is the exponential map in

THEOREM 7.5

K 0 is an internal symmetry group if and only if the loop

hp(t) exp 4ntfl lies in Z€j(K). This happens if f

(7.9) AdkTI = H, V k € K.

In particular, 0 is an internal symmetry if f H lies in the

centre. The action is then unique.



Indeed, the holonomy group of a rnonopole—bundle is gene
rated by the non—abelian charge 11 and (7.9) means exactly
that KC Z0(fl). [t] - 0 is automatically satisfied, since
stabilizes Alternatively, the implementation defined by
a reduction (Q,H) is a symmetry iff (Q,H) contains the
holonomy bundle y(fl).

As an illustration, consider a GUT with residual
group G= 50(3). Such a situation arises, e.g., when G= SU(3)
is broken by a I-{iggs [18,27]. Choose in so(3) the Cartan
algebra

(7.10) 7 = aL = [a o o] , a € R.

The non-Abelian charge vector can be gauge-rotated into ‘Y.
Then 11 = (m/2)L3 where m is an integer. ir1(SO(3)) =

[exp2nmL3] -= m (modulo 2). Topologically non—trivial solu
tions arise therefore if m is odd. Denote by P the
corresponding SO(3)—bundle.

G=SO(3) is not implementable on P: (7.6) would
require, in fact, m to be even.

Consider now a U(l) subgroup K with minimal gene
rator , K (exp21rt1. is conjugate to L3, and hence
n1(SO(3)) [exp27Tntj = [exp2irnL3] = n (modulo 2).

so the interesting part of Diagramm (6.3)
be comes

—> 1T1(K) —> ir(SO(3))

(7.11) 1’

n — n (modulo 2)

Theorems 7.1 and 7.5 tell us therefore that
(i) K is implementable on P iff n is odd;
(ii) For n 2k+l Keri* Z Z: there is a different

implementation for each k, corresponding to the different
reductions to K;

(iii) K is a symmetry if f II and are parallel, II —

(n/2) for some integer n.

We ate able to construct the bundles explicitly

choose an integer n and consider the Hopf bundle yn S3/Zn
where S3 is viewed as sitting in C2. yfl is a two-sided 0(1)
bundle with actions z:y — z.y = (zy1,Zy2) and z’: y —,

y-z’ = (y1z’ ,y2z’), y (y1,y2) € CL, z,z’ E 0(l)). 1n can be
viewed alternatively as a two-sided principal K-bundle with
k = exp27ra acting as ky = (e2lnia)y and yk = y(e2la)
respectively.

The associated bundle p(n) = ynxKSO(3), is a right
principal SO(3) bundle. yn is identified with Y ((y,ejI y

yn) and so is a reduction of p(n)

The right action of K on y’ was used to construct
p(n) However, we still have a left action of K on yn which
extends to a left action of K on p(n) according to

(7.12) k(y,g] = (ky,q] = (y,kg] = (y,g}.Adg’k,

where k exp2iTa. Hence, for p =(y,g),

(7.13) r(k) = Adg’k,

The transition function of the principal K-bundle
y(U is h(O) = expOn . Hence ir1(SO(3)) [en] = n (modulo
2): p(n) is the trivial bundle for n even and is isomorphic
to P for n odd. Our construction provides us hence with a
rigid action of K on P for each odd integer n, as expected.
These actions are obviously inequivalent.

The action of K as constructed above is a symmetry
for the monopole field A given by the non-Abelian charge
vector IT iff y() contains the holonomy bundle, which
happens iff IT (n/2).
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